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ABSTRACT
Generating multi-instrument music from symbolic music represen-
tations is an important task in Music Information Retrieval (MIR).
A central but still largely unsolved problem in this context is mu-
sically and acoustically informed control in the generation process.
As the main contribution of this work, we propose enhancing control
of multi-instrument synthesis by conditioning a generative model
on a specific performance and recording environment, thus allowing
for better guidance of timbre and style. Building on state-of-the-art
diffusion-based music generative models, we introduce performance
conditioning – a simple tool indicating the generative model to syn-
thesize music with style and timbre of specific instruments taken
from specific performances. Our prototype is evaluated using uncu-
rated performances with diverse instrumentation and achieves state-
of-the-art FAD realism scores while allowing novel timbre and style
control. Our project page, including samples and demonstrations, is
available at benadar293.github.io/midipm.

Index Terms— Multi-Instrument Synthesis, Diffusion

1. INTRODUCTION

Multi-Instrument Music Synthesis is the task of generating audio
from MIDI files, emulating specific instruments played with desired
notes and timbre. It is a novel task in Music Information Retrieval
(MIR), attracting increasing attention in recent years, with applica-
tions in music creation and production for all proficiency levels. It
comprises several challenges, one of the central thereof is control
over the style of the synthesized pieces.

Since physically modeling and specifying the different sound
phenomena (e.g., vibrato, intensity, echo, and specific instrument
timbre) for generation is unfeasible, current approaches avoid the
flat and unrealistic sound of traditional concatenative synthesizers
and naturally infer the aspects of generation from data, typically us-
ing denoising diffusion probabilistic models (DDPMs) [1, 2]. How-
ever, the subtle nuances of expression are often lost in the generation
process, resulting in less realistic audio, and other phenomena such
as instrument drift, where the same instrument is not rendered co-
herently in different parts of the generated piece.

In this work, we introduce a mechanism that specifically tackles
style control; Except for conditioning the model on notes and instru-
ments, our synthesizer is also conditioned on the performance, en-
abling generation with performance-specific characteristics, such as
timbre, style, and recording environment. This performance condi-
tioning not only increases realism but also allows the sound of, e.g.,
a specific guitar to be reproduced in a specific acoustic environment.

The International Audio Laboratories Erlangen are a joint institution
of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and the
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To give a concrete example, our approach enables reproducing
the sound of the guitar in a 1975 recording of Segovia playing Al-
béniz’s Capriccio Catalán, now playing another piece, such as Jo-
bim’s Felicidad. To the best of our knowledge, our work is the first
to offer this capability in a multi-instrument setting.

Performance conditioning is integrated, like the iteration pa-
rameter t of the diffusion process, using FiLM layers [3], and a
sampling-overlapping technique ensures smooth transitions between
generated segments, together providing coherent generation of long
sequences.

Through extensive evaluation with established score metrics [4],
e.g., Fréchet Audio Distance (FAD), we show that our concept en-
hances perceptual similarity to the desired performance while im-
proving realism.

2. RELATED WORK

Audio synthesis in current literature can be done auto-regressively,
where models directly construct a waveform sample-by-sample [5–
7]. Another approach, which we take, operates in the spectral do-
main. This requires a subsequent step to convert the generated spec-
tral representation (STFT, mel) into a waveform, but it is computa-
tionally more efficient.

For a data-driven approach, large amounts of labeled data are
required, i.e., paired datasets of audio recordings and their corre-
sponding time-aligned transcriptions. While such datasets exist for
instruments such as the piano thanks to special equipment (e.g.,
Disklavier), this is not the case for other instruments. Thus, previous
works mainly focus on the generation of piano performances, mono-
phonic (single-voice) music, or music produced by a concatenative
synthesizer [1].

Table 1 provides a summary of existing methods. [8] uses a U-
Net to synthesize solo violin, cello, and flute performances, requiring
a separate model for each instrument. [9] uses a Transformer archi-
tecture to synthesize solo violin or piano. Both works produce only
monophonic and single-instrument music (i.e., only one note played
by a specific instrument is synthesized at any given time).

[10] learns a parametric model of a musical performance, syn-
thesizing from controls such as intensity, vibrato, etc. Although
promising, the main drawback is the requirement of elaborate per-
formance controls at inference time (vibrato etc.), which requires
much effort even from a skilled musician. Instead, we rely on the
diffusion model to generate such aspects of expression. In addition,
[10] only operate on monophonic single-instrument data, similar to
former works, due to a lack of high-quality polyphonic training data.

In multi-instrument synthesis, Hawthorne et al. [1] use a T5
Transformer-based diffusion model. While this method is promising
and produces high-fidelity audio, it has several limitations: It does
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Multi Perf. Symph. Data Real%
[7] ✗ ✓ ✗ ∼140H 100%
[8] ✗ ✗ ✗ ∼1H 100%

[11] ✗ ✗ ✗ ∼1H 0%
[9] ✗ ✗ ✗ ∼1H 100%
[10] ✗ ✗ ✗ ∼3H 100%
[1] ✓ ✗ ✗ ∼1500H ∼ 2%

Ours ✓ ✓ ✓ ∼58H 100%

Table 1. Overview of previous work indicating the ability to ren-
der multiple instruments simultaneously (Multi), reproducing spe-
cific performance style (Perf.), generating orchestral symphonies
Symph.), Data size, and ratio of real vs. synthetic data used for
training (Real%).

not have control over the performance characteristics and style (e.g.,
type of organ, recording environment) and produces less realistic
sound, as shown on our supplemental website with audio examples
at benadar293.github.io/midipm.

3. METHOD

An overview of our method is depicted in Figure 1. We seek
to enhance the generation quality and control of an off-the-shelf
diffusion-based music generator using performance conditioning.
Hence, starting from a dataset D = {(ai,mi, pi)}Ni=1, comprising
audio performances ai, their symbolic MIDI annotation mi, and
information regarding the identity of the performing ensemble and
recording environment pi, we train a music synthesizer using state-
of-the-art architectures (see Section 3.1), infused with performance
conditioning.

As previously mentioned, we choose to operate in the spec-
tral domain, using the mel-spectogram representation, mainly for
computational purposes. We postulate our method can be adapted
to larger spectral representations (e.g., STFT), or the waveform
domain, at significantly higher computational costs. To convert
mel-spectrograms into audio, we rely on the state-of-the-art GAN-
based Soundstream vocoder [12] (which is the same vocoder used
by Hawthorne et al. [1]). We represent a performance condition ID
pi as an integer number, where recordings performed by the same
ensemble in the same recording environment are assigned the same
number. Each condition can represent a single recording of a few
minutes (e.g., Segovia playing Albéniz’s Capriccio Catalán on the
guitar) in the training set, or a set of recordings of several hours
(e.g., of Beethoven’s concertos for piano and orchestra performed
by Mitsuko Uchida and The Orchestra of The Bavarian Radio).
Performance conditioning is implemented using FiLM layers [3], a
popular technique used to condition the denoising diffusion process
on the iteration parameter t (see Section 3.2 for more details).

During training, the synthesizer is trained to reconstruct per-
formances, based on their MIDI representation and corresponding
performance condition ID. During inference, new unseen MIDI per-
formances are combined with different performance conditions that
correspond to the performances seen during training to yield note
control from the MIDI representation, and style and timbre from the
performance conditioning.

Finally, to generate longer sequences and ensure their seam-
less transitions between generated intervals, we adapt an overlapping
technique, borrowed from visual generation (Section 3.3).

3.1. Architecture

We experiment with two architectures: A U-Net originally used for
images [13], and a T5 Transformer [1].

We adapt the U-Net to spectrogram synthesis by using 1D con-
volution, attention, and group normalization rather than 2D, regard-
ing the frequencies as channels. This is more expressive than spatial
2D convolutions, as it captures interactions between distant frequen-
cies, inherent in spectrograms (partial frequencies). It is a common
practice in spectrogram synthesis (e.g. [8] use a 1D U-Net without
diffusion).

The T5, borrowed from Hawthorne et al. [1], comprises a trans-
former encoder, encoding the MIDI condition, and a transformer
decoder, processing the noise itself. It receives the encoded MIDI
through cross-attention layers.

As can be seen in Section 4, the SOTA transformer-based archi-
tecture indeed achieves slightly better results, but the U-Net archi-
tecture requires significantly less training time.

3.2. Conditioning

For Performance Conditioning, we apply FiLM layers. FiLM lay-
ers [3] apply learned conditional affine transformations on network
features. They are suitable for multi-modal cases, where a model
learns many similar tasks simultaneously. They enable the different
tasks to share most parameters while maintaining flexibility.

We apply them by predicting an affine transformation for each
block of the network (T5 or U-Net), using MLPs. For the U-Net
and T5 decoder, we concatenate the diffusion timestep representa-
tion with the performance ID representation. We observed that con-
ditioning also the T5 note encoder on performance using FiLM lay-
ers produced better results than conditioning the T5 decoder alone.

For Note Conditioning, we insert the conditioning notes into the
encoder in the T5 model, and into the input layer in the U-Net. The
note input contains the information of note onset (beginning time),
instrument, and approximate duration.

3.3. Temporal Coherency & Smooth Transitions

We generate long performances of several minutes, by segments of
∼5 seconds each (dictated by memory constraints). For smooth tran-
sition between segments, we generate the segments with short over-
laps, smoothly interpolating between consecutive segments, in each
step of the sampling process. We use an interpolation coefficient
linearly decreasing from 1 to 0 along the overlap, in the predicted
sample x0 = xt−σtϵ

αt
of each step, derived from the predicted noise

ϵ. Borrowed from motion generation [14,15], this is an effective and
convenient approach, performed solely at the sampling stage, and
requiring no additional training components, contrary to [1].

3.4. Diffusion Process

We use a cosine noise schedule, with T = 1000 training steps,
and T = 250 sampling steps. We use Classifier-Free Guidance
(CFG) to control the conditioning strength, for both performance
and notes – we train with condition dropout of probability 0.1, for
notes and performance independently, and sample with guidance
weights of 1.25 for both, which gave best overall results after a pa-
rameter search.

benadar293.github.io/midipm
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Fig. 1. Overview of our proposed diffusion-based synthesis model. Performance conditioning (determining the style, recording environment,
and specific timbre) is done through FiLM layers at each block, which can be applied to both to a T5 transformer and a U-Net. The
performance condition ID is inserted at each layer by concatenation with the diffusion timestep.

4. EXPERIMENTS AND EVALUATION

In the following section, we first give an overview of the datasets
used. Next, we present experimental results showing the potential
of our proposed method in correctly synthesizing MIDI files, as well
as the effect of performance conditioning on reproducing a desired
timbre and style. Lastly, we briefly describe the listening examples
which can be found on our supplemental website.

4.1. Datasets

We train on 197 performances of western classical music, compris-
ing 19 instruments (including symphonies, chamber music, solo and
other instrumentations), totaling in 58:06:07 hours. The data consists
of performances from YouTube [16] and Musopen [17], with cor-
responding MIDI transcriptions from www.kunstderfuge.com,
aligned as proposed by Maman and Bermano [18]. Following [18],
we augment the data by pitch-shifting up to ±2 semitones. We label
the data with performance IDs by assigning numerical indices to the
different performances, where typically the same index is given to
an entire set of recordings (e.g., a CD box with Beethoven’s Piano
Trios recorded by the same ensemble in the same studio).

We evaluate our models with 58 MIDI performances of western
classical pieces of a total duration of 5:09:30 hours, none of which
appear in the train set, but containing the same instruments. For
each test MIDI, we randomly sample 3 conditioning performances
for synthesis. For example, the test MIDI can be of Mozart’s 40th
symphony and the condition can be the performance of the Berlin
Philharmonic Orchestra playing Brahms’ Haydn Variations. See our
website for the complete ensemble distribution of the data.

4.2. Fréchet Audio Distance (FAD)

To evaluate the fidelity and resemblance of our generated perfor-
mances to the conditioning performances, we use the Fréchet Au-
dio Distance (FAD) [4] – a perceptual score with origins in com-
puter vision [19]. FAD is based on large DNN-based models such as
TRILL [20], trained on large real-world datasets to predict embed-
ding vectors from snippets of input audio. The assumption is that
perceptually similar audio snippets yield closely spaced embedding

vectors. To compute FAD between two datasets (e.g., a set D1 of
MIDI files synthesized with a specific performance condition, and a
set D2 of real recordings of the same performance), the mean vectors
µ1,2 and the covariance matrices Σ1,2 are computed over all embed-
ding vectors generated from the respective datasets. The FAD is then
defined as:

FAD(D1,D2) = |µ1 − µ2|2 + tr
(
Σ1 +Σ2 − 2(Σ1Σ2)

1/2
)
.

Kilgour et al. [4] show that FAD correlates with human percep-
tion and that increasing distortions increase the FAD. We use two
models as backbones for FAD, also used by Hawthorne et al. [1]:
TRILL [20] (5.9 embeddings/sec.), and VGGish [21] (1 embed-
ding/sec.). We measure FAD in two ways, differing in the choice of
the compared datasets: All (Section 4.2.1), and Group (Sect. 4.2.2).

4.2.1. All-FAD - General Quality

To measure quality and fidelity, we measure FAD comparing the en-
tire evaluation set to the entire train set. This measures the gen-
eral similarity of the synthesized performances to real performances,
rather than resemblance to a specific performance. We refer to this
metric as All-FAD (Table 2). While this metric is important to mea-
sure fidelity, the main metric for evaluating performance condition-
ing is the Group-FAD (Section 4.2.2, Table 3).

4.2.2. Group-FAD - Resemblance to Target Performance

Figure 2 shows a t-SNE visualization from the train set’s TRILL
embedding distribution. Each point represents the mean embedding
of an audio track (e.g., a movement in a symphony), and each color
represents a recording, comprising multiple such tracks. It can be
seen that tracks of the same performance form close clusters.

Following this insight, we define the Group-FAD metric (Ta-
ble 3): To measure how well our synthesized performances resemble
the target conditioning performance in timbre, room acoustics, etc.,
we compute FAD comparing each performance synthesized with a
performance condition p, to the subset of the train set correspond-
ing to p. Furthermore, we use this metric to classify our generated
performances, according to Group-FAD-nearest over all training per-
formances.

www.kunstderfuge.com


Fig. 2. T-SNE Visualization of the TRILL embedding space. Points
represent audio tracks, and colors represent complete recordings of
specific performance IDs, comprising multiple such tracks.

4.3. Correct Reproduction of Notes and Instruments

To evaluate whether our models render the MIDI files correctly, i.e.,
whether the generated audio files contain the right notes at the right
time, played by the correct instruments, we use transcription met-
rics: We measure the transcription accuracy of the synthesized per-
formances using a transcriber (as in [7,18]) trained on the same data
as the synthesizer. We compare the note events specified by the in-
put MIDI to the transcription of the synthesized performance and
measure the F1 score for note (pitch + onset within 50ms) and note-
with-instrument (also correct instrument).

4.4. Results

Results are reported in Tables 2 (All-FAD and transcription), and 3
(Group-FAD). Note that for FAD, the smaller the value, the greater
the similarity (as desired). For the T5 model, for example, in Table 2,
the TRILL-based All-FAD is 0.12 without performance conditioning
and improves to 0.09 when performance conditioning is used. Sim-
ilar tendencies (with the exception of U-Net and VGGish) can also
be observed for the other models and the VGGish-based FAD.

Next, we look at the transcription accuracy, indicating whether
the synthesized performances actually realize the notes specified by
the input MIDI files. As shown in Table 2, the T5 model reaches
an accuracy of 63% (note-level), which is of reasonable magnitude
when considering the complexity of highly polyphonic orchestral
music. This is slightly higher than w/o performance conditioning,
however, the more significant impact of performance conditioning
on transcription is on the note-with-instrument level, which reaches
47% (w/) compared to 36% (w/o), indicating instrument identity is
better preserved with performance conditioning. For the U-Net, per-
formance conditioning does not significantly impact transcription.

With the All-FAD and transcription metrics, we discussed the
quality of our model’s generated performances, in terms of gen-
eral similarity to real performances, and producing the desired notes.
We now discuss Group-FAD, to evaluate performance conditioning,
which is the main focus of our work. It can be seen in Table 3
that performance conditioning consistently improves Group-FAD.
For example, the VGGish-based Group-FAD drops from 7.1 (w/o)
to 5.1 (w/) for the U-Net.

To get another perspective on the potential of our conditioning
strategy, we performed a classification experiment. For each test per-
formance synthesized with a conditioning performance p, we search
for the performance in the train set, that is its nearest neighbor in
terms of Group-FAD. As shown in Table 3, the top-1 classification
accuracy is only 36% for the model T5 without conditioning. When

All-FAD↓ Transcription
VGGish TRILL N/N+I↑

P Con. w/o w/ w/o w/ w/o w/
T5 3.9 3.5 0.12 0.09 62/38% 63/47%

U-Net 3.4 3.9 0.12 0.11 63/47% 62/46%

Table 2. Results for All-FAD, and transcription accuracy for note
(N) and note-with-instrument (N+I). For each metric, the best result
is bold, and the next-best is underlined.

Group-FAD↓ Perf. Acc.%
VGGish TRILL Top-1/3↑

P Con. w/o w/ w/o w/ w/o w/
T5 5.8 5.5 0.43 0.35 36/60% 68/90%

U-Net 7.1 5.1 0.5 0.33 14/30% 56/73%

Table 3. Results for Group-FAD, and performance classification ac-
curacy with TRILL FAD-nearest (Acc.%). The best result in each
metric is bold, and the next-best is underlined.

using conditioning, it increases dramatically to 68%. Similar im-
provements can also observed for the U-Net, and when looking at
top-3 accuracy values. These results suggest that conditioning helps
adapt to the specific timbre and room acoustics of a performance.

When comparing the actual FAD values in Tables 2, 3, one can
see the All-FAD values are lower than the Group-FAD. We attribute
this to the fact that the mean vectors and covariance matrices for All-
FAD are computed over significantly larger evaluation and reference
datasets than for Group-FAD and therefore yield less statistical fluc-
tuations, resulting in an overall lower FAD score.

While the quantitative analysis in this section indicates that
performance conditioning indeed improves perceptual similarity in
music synthesis, it cannot replace listening to the actual generated
samples. Therefore, in order to assess the potential of performance
conditioning in the context of diffusion-based music synthesis,
we strongly encourage the reader to listen to the samples pro-
vided on our supplemental website (benadar293.github.io/
midipm). We provide comparisons of MIDI files sonified with
a simple concatenative synthesizer, the baseline approach [1], and
our proposed method. Furthermore, we show the conditioning effect
when synthesizing the same MIDI file with a variety of different per-
formance conditions. Among others, we render Bach’s 8th Invention
on eight different harpsichords, and Beethoven’s Pastoral Symphony
with four different orchestras and recording environments.

5. DISCUSSION

We presented a framework for training neural synthesizers on real
performances, using diffusion models conditioned on notes and a
performing style. We demonstrated that the latter condition both im-
proves realism of multi-instrument performances of classical music,
including orchestral symphonies, and adapts to the specific charac-
teristics of a given performance, such as timbre and recording en-
vironment. Important future work includes extension to other gen-
res, such as jazz, ethnic, pop music, and even human singing. An-
other important direction is exploring other spectral domains, such as
STFT, CQT, etc. Yet another direction involves human speech – we
believe a unified diffusion-based framework for music and speech is
possible, by providing additional textual or phonemic conditions.

benadar293.github.io/midipm
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