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ABSTRACT

Soft dynamic time warping (SDTW) is a differentiable

loss function that allows for training neural networks from

weakly aligned data. Typically, SDTW is used to itera-

tively compute and refine soft alignments that compensate

for temporal deviations between the training data and its

weakly annotated targets. One major problem is that a

mismatch between the estimated soft alignments and the

reference alignments in the early training stage leads to

incorrect parameter updates, making the overall training

procedure unstable. In this paper, we investigate such sta-

bility issues by considering the task of pitch class estima-

tion from music recordings as an illustrative case study. In

particular, we introduce and discuss three conceptually dif-

ferent strategies (a hyperparameter scheduling, a diagonal

prior, and a sequence unfolding strategy) with the objective

of stabilizing intermediate soft alignment results. Finally,

we report on experiments that demonstrate the effective-

ness of the strategies and discuss efficiency and implemen-

tation issues.

1. INTRODUCTION AND RELATED WORK

Deep neural networks (DNNs) have been commonly used

in many music information retrieval (MIR) tasks, such as

music transcription [1], or pitch class estimation (PCE) [2,

3]. The latter provides a widely-used feature represen-

tation for various subsequent processing pipelines, e.g.,

audio thumbnailing [4], or chord recognition [3]. Deep

learning-based feature extractors yield the highest predic-

tion accuracy when trained on data from the same dis-

tribution, which is, however, often not readily available.

Thus, one major challenge is the acquisition of a sufficient

amount of correctly labeled training data. In classical mu-

sic, it is often difficult to automatically annotate strongly

aligned targets (short: strong targets), i.e., with frame-wise

target labels, due to changes of tempo. On the other hand,

weakly aligned targets (short: weak targets) only globally
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Figure 1: Deviation of strong reference alignments

(dashed green) and soft alignments (red) and stabilizing

strategies. (a) Alignment mismatch of standard SDTW.

Stabilizing alignments with (b) hyperparameter schedul-

ing and (c) diagonal prior.

correspond to the input without containing frame-wise lo-

cal alignments [5,6]. These weak targets are relatively easy

to obtain, e.g., by only annotating start and end of an audio

segment and deriving targets from the musical score. In

our definition of weak targets, the order of the target vec-

tors is correct, but their duration is unknown. Using weak

targets in DNN training requires a loss function that aligns

network predictions with the corresponding weak targets.

In classification tasks, one widely used technique for

training DNNs with weakly aligned targets is the connec-

tionist temporal classification (CTC) loss [7], which aligns

network predictions with a sequence of discrete labels.

Despite being extendable to multi-label problems such as

multi-pitch estimation (MPE) [8], CTC remains limited to

discrete targets and is algorithmically complex.

In contrast to CTC, dynamic time warping (DTW) can

be used to measure similarity between two real-valued se-

quences and has been successfully applied in, e.g., music
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synchronization and structure analysis [9]. Recently, dif-

ferentiable approximations of the minimum function [10–

12] have been included in DTW, enabling the usage of

the DTW principle in gradient-based optimization algo-

rithms. The algorithm proposed in [10], soft dynamic time

warping (SDTW), uses so-called soft alignments to com-

pute a differentiable cost measure between sequences of

different length. In [13], SDTW is used in the context

of performance-score synchronization and [6] employed

SDTW as a loss function to train DNNs for MPE with

weakly aligned pitch annotations. Experiments in [6] indi-

cated training instabilities with SDTW when the sequence

lengths of inputs and targets are significantly different.

This poses a severe problem in many MIR tasks, where

sequences of input audio are typically very long, while

weakly labeled targets, i.e., without note durations, are sig-

nificantly shorter.

In this paper, we investigate the cause of training in-

stabilities under the SDTW loss and show that it is due

to a mismatch between the estimated soft alignment and

the reference alignment (see Figure 1a) in the early stages

of training. This mismatch causes incorrect parameter up-

dates and the training may diverge. Therefore, we intro-

duce and investigate strategies to decrease this alignment

error to stabilize training. In particular, we analyze a hy-

perparameter scheduling strategy to yield smooth align-

ments in the early training phase (see Figure 1b) as well

as the strategy of adding a diagonal prior to the SDTW

cost matrix to initially favour diagonal alignments (see Fig-

ure 1c). Furthermore, we investigate a sequence unfold-

ing approach, where we uniformly stretch the weak target

sequence to the length of the input sequence as proposed

in [6]. We choose DNN-based PCE as an exemplary task to

study the training process of standard SDTW and the im-

pact of our stabilizing strategies. We demonstrate that the

hyperparameter scheduling and the diagonal prior strate-

gies reliably reduce label mismatch in the early training

stage and therefore lead to successful trainings. In addi-

tion, these two strategies are computationally efficient and

require only small modifications to the standard SDTW al-

gorithm.

The remainder of this article is structured as follows.

First, in Section 2, we discuss the SDTW loss function and

define the concept of soft alignments. Next, in Section 3,

we introduce three conceptually different strategies for sta-

bilizing DNN training under SDTW loss. After describing

the experimental setup in Section 4, we evaluate cause and

effect of training problems with SDTW in Section 5, along

with the impact of our stabilizing strategies. Finally, we

conclude with Section 6 and give an outlook to potential

areas of future research regarding SDTW-based training in

MIR.

2. INTRODUCTION TO SDTW

In this section, we introduce SDTW as a loss function in

a DNN training framework and define the concept of soft

alignments, closely following [10, 14].

2.1 Definition

Let X = {x0,x1, . . . ,xN−1} denote a sequence of DNN

predictions, Y = {y0,y1, . . . ,yM−1} denote a sequence

of weak targets and Y S =
{

yS
0 ,y

S
1 , . . . ,y

S
N−1

}

denote a

sequence of strong targets, where xn,ym,yS
n ∈ R

D for

n ∈ {0, 1, . . . , N − 1} and m ∈ {0, 1, . . . ,M − 1}.
Without loss of generality, we assume N ≥M .

Using the mean squared error (MSE) as a

local cost function, the elements of the cost

matrix C := CX,Y ∈ R
N×M are computed as

CX,Y (n,m) = ∥xn − ym∥
2
2 . (1)

We next define binary alignment matrices A ∈ {0, 1}
N×M

which align two sequences of length N and M . Each ma-

trix A encodes an alignment via a path of ones from cell

(0, 0) to (N − 1,M − 1) using only vertical, horizontal,

and diagonal unit steps [10]. All cells not corresponding to

the alignment are set to zero. The set of all binary align-

ment matrices for sequences of length N and M is denoted

AN,M . Using a differentiable approximation of the mini-

mum function

softminγ (S) = −γ log
∑

s∈S

exp (−s/γ) (2)

for a given finite set S ⊂ R and a hyperparameter γ ∈ R,

the SDTW cost is given by

SDTWγ
C
= softminγ ({⟨A,C⟩, A ∈ AN,M}) (3)

and can be computed efficiently via dynamic program-

ming [10]. The inner product ⟨A,C⟩ is the sum of all

elements of C along the alignment given by A.

2.2 Soft Alignments

The expectation over all alignments A for a cost matrix C

is captured by the soft alignment matrix [14]

E
γ
C
=

∑

A∈AN,M

pγ
A,CA ∈ R

N×M , (4)

where the probability of an alignment is defined as

pγ
A,C =

exp (−⟨A,C⟩/γ)
∑

A′∈AN,M
exp (−⟨A′,C⟩/γ)

. (5)

The soft alignment matrix is of particular interest as it is the

the gradient of the SDTW cost w.r.t. the local cost matrix

∇CSDTWγ
C
= E

γ
C

(6)

and is computed during the backward pass of an SDTW

training step with a dynamic programming algorithm [10,

14]. In contrast to the binary alignments A, the entries

of the soft alignment matrix E
γ
C
(n,m) can be interpreted

as the probability of an alignment path going through

cell (n,m). Only if this soft alignment assigns probabil-

ity mass to the correct alignments (n,m), the local cost

terms (1) between the correct pairs of predictions xn and
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targets ym constitute the overall SDTW cost and the DNN

parameters can be successfully trained.

The hyperparameter γ, also termed temperature, con-

trols the smoothness of the softmin function (2). Larger

values of γ lead to smooth minima in (3), i.e., with contri-

butions of multiple alignments A, and therefore a “blurry”

soft alignment matrix E
γ
C

(see Figure 1b). On the other

hand, small values of γ promote “sharp” soft alignments

E
γ
C

with fewer non-zero entries (see Figure 1a), as (2) con-

verges to the hard minimum function in the limit γ → 0
and a single binary alignment A becomes dominant in (3)

and (4).

3. STABILIZING TRAINING WITH SDTW

In this section, we introduce three strategies for stabilizing

SDTW-based training: hyperparameter scheduling, diago-

nal prior, and sequence unfolding.

3.1 Hyperparameter Scheduling

As described in Section 2, the softmin temperature param-

eter γ controls the smoothness of the SDTW soft align-

ments. While a low value of γ is desirable to ensure ex-

act correspondences between predictions and targets due

to sharp alignments, the latter are problematic in the initial

training phase as inaccurate predictions from randomly ini-

tialized network parameters lead to erroneous alignments,

thus hampering convergence. Therefore, as a first strat-

egy to stabilize SDTW training, we discuss an epoch-

dependent scheduling of γ. Starting a training with a large

softmin temperature γstart = 10 makes the soft alignment

fuzzier, which leads to coarse, yet mostly meaningful tar-

get assignments (see Figure 1b). After ten epochs with

γ = 10, when the trained network predicts meaningful fea-

tures, we linearly reduce γ during the following ten epochs

to a final value of γfinal = 0.1, which stays constant for the

remaining training.

3.2 Diagonal Prior

On average, the correct alignment of two sequences with

arbitrary symbol durations has a higher probability to be

close to the diagonal than to deviate from it. Therefore, as

a second approach to stabilize the initial training phase, we

investigate an additive prior P ∈ R
N×M which penalizes

elements of the cost matrix C that are far from the diagonal

(see Figure 2 for an illustration of a prior matrix). A sim-

ilar strategy was employed in [15] for restricting speech-

text alignments to the diagonal. Assuming equal symbol

durations, the diagonal alignment of a target ym starts at

input frame qm = ⌊Nm
M
⌋ and ends at qm+1 − 1. To yield

no penalty along the diagonal and a smoothly increasing

penalty for distant alignments, we define the elements of

the prior matrix as

P (n,m) = 1−















1, qm ≤ n < qm+1

exp
(

(n−qm)2

−2ν

)

, n < qm

exp
(

(n−qm+1)
2

−2ν

)

, n ≥ qm+1 ,

(7)
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Figure 2: Diagonal prior matrix P for N = 500, M = 50
and ν = 1000.

where the parameter ν controls the sharpness of the prior.

In our experiments, we use ν = 1000. Finally, the prior

matrix is added to the cost matrix with a weight ω to obtain

the penalized cost matrix

CP := C+ ωP , (8)

which replaces C in (3) to (6). Similarly to the hyper-

parameter scheduling strategy, we choose a constant prior

weight ω = 3 during the first five epochs and then linearly

reduce it to ω = 0 during the following five epochs.

Note that the numerical parameters for the strategies

presented in Sections 3.1 and 3.2 were determined em-

pirically by the authors and small changes did not affect

the training performance. However, when training on se-

quences of different length, with a different learning rate,

or other DNN types, parameters should be adjusted on a

validation set. As presented in Section 5, analysis of the

soft alignment matrix E
γ
C

provides a good indication of

the current alignment stability.

3.3 Sequence Unfolding

Based on the observation that equal sequence lengths stabi-

lize SDTW training, a third strategy is to uniformly unfold

the target sequence (see also [6]). The unfolded target se-

quence Y U =
{

yU
0 ,y

U
1 , . . . ,y

U
N−1

}

is constructed by uni-

formly repeating elements from the weakly aligned target

sequence, i.e., setting

yU
n ← y⌊Mn

N
⌋ (9)

to yield equal sequence lengths of the predictions X and

the targets Y U. Note that the repetition of target vectors

introduces ambiguities, leading to multiple optimum align-

ments.

4. EXPERIMENTAL SETUP

In this section, we describe the task for our case study, the

employed dataset, as well as the used DNN architecture

and the training procedure.

4.1 PCE Task

We choose PCE from music recordings as an illustrative

case study to investigate the problems of the SDTW loss

function and the effect of the stabilizing strategies. In our

experimental setting, a DNN takes N frames of input au-

dio (including context) and, for all frames, predicts twelve-

dimensional pitch class activation vectors X (see Figure 3

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023
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Figure 3: Alignment between training targets and pre-

dicted pitch class features X for the running example from

Frühlingstraum. (a) Strong reference alignment for MSE

loss with strong targets Y S. (b) Soft alignment for SDTW

loss with weak targets Y .

for an illustration of predicted pitch class features). We

want to train the DNN such that the predictions X match

the training targets as close as possible. In the case of

strong targets Y S, each predicted frame xn is assigned to

exactly one target frame yS
n using a strong alignment (see

Figure 3a). When using weak targets Y , SDTW internally

computes a soft alignment based on the cost matrix CX,Y

to assign predictions and targets (see Figure 3b).

4.2 Dataset

Throughout all experiments, we use the Schubert Win-

terreise dataset (SWD) [16] which contains audio record-

ings and strongly aligned pitch class annotations. Winter-

reise is a song cycle for piano and singer, consisting of

24 songs. For each song, SWD comprises nine different

performances, resulting in 9 · 24 recorded songs with a to-

tal duration of 10 h 50min. We split the dataset for train-

ing, validation, and testing using a performance split [16].

The publicly available performances by Huesch (HU33,

recorded in 1933) and Scarlata (SC06, recorded in 2006)

Layer Kernel Size Stride Output Shape

Prefiltering

LayerNorm (N + 74, 216, 5)
Conv2D 15× 15 (1,1) (N + 74, 216, 20)
MaxPool 3× 1 (1,1) (N + 74, 216, 20)
Dropout

Binning to MIDI pitches

Conv2D 3× 3 (1,3) (N + 74, 72, 20)
MaxPool 13× 1 (1,1) (N + 74, 72, 20)
Dropout

Time reduction

Conv2D 75× 1 (1,1) (N, 72, 10)
Dropout

Chroma reduction

Conv2D 1× 1 (1,1) (N, 72, 1)
Dropout
Conv2D 1× 61 (1,12) (N, 12, 1)

Table 1: Musically motivated CNN architecture [3, 5].

were annotated manually [16] and constitute the test set.

For training and evaluation we choose sequences of length

N = 500, corresponding to approximately 8.7 s of audio at

a sampling rate of 22 050Hz and a hop length of 384 sam-

ples. In order to generate weak training targets Y from

SWD (which provides strongly aligned pitch class annota-

tions Y S, see Figure 3a), we remove all adjacent repetitions

of a pitch class vector (see Figure 3b) [5]. We choose an

excerpt from the song Frühlingstraum, performed by Ran-

dall Scarlata (SC06), as a running example (see Figure 3)

to visualize the soft alignment matrices (see Figure 4).

4.3 DNN Architecture and Training

We adapt a conceptually simple and musically mo-

tivated five-layer convolutional neural network (CNN)

from [3, 5] with 43383 trainable parameters to predict

twelve-dimensional pitch class activation vectors from an

input sequence. Table 1 provides an overview of the ar-

chitecture. We choose the harmonic constant-Q transform

(HCQT) [17] with five harmonics as an audio feature rep-

resentation, spanning six octaves at a resolution of three

bins per semitone (resulting in 216 frequency bins starting

from C1), a hop length of 384 samples and a frame rate of

57.4Hz. From an input sequence of length N + 74, the

CNN sequentially predicts N vectors of pitch class activa-

tions. For the prediction of one frame, the CNN’s recep-

tive field covers 37 adjacent context frames on each side.

Leaky ReLU with a negative slope of 0.3 is used as a non-

linearity after all hidden convolutional layers and sigmoid

activation is used after the final layer. The dropout rate

is set to 0.2. All models are trained using the Adam op-

timizer [18] with a batch size of 32 and an initial learning

rate of 0.001. We reduce the learning rate by a factor of two

if the validation loss did not decrease during the last four

epochs, and terminate the training if the validation loss did

not decrease during the last twelve epochs. At the end of

training, the model from the epoch with the lowest valida-

tion loss is restored. The source code for reproducing our

experiments, as well as the trained models are available on

github.com/groupmm/stabilizing_sdtw.
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F-measure
Loss Targets γ Strategy mean std

MSE strong - - 0.82 0.07

SDTW weak 0.1 - 0.56 0.37

SDTW weak 0.3 - 0.63 0.32

SDTW weak 1.0 - 0.24 0.36

SDTW weak 3.0 - 0.31 0.38

SDTW weak 10.0 - 0.57 0.37

SDTW weak 10 → 0.1 hyp. sched. 0.80 0.04

SDTW weak 0.1 diag. prior 0.81 0.02

SDTW weak 0.1 seq. unfold. 0.53 0.04

Table 2: Averaged test results for DNNs trained on

strongly aligned reference targets as well as DNNs trained

with SDTW on weakly aligned targets using either the

standard configuration or the discussed stabilization strate-

gies. We report the mean (higher is better) and standard

deviation (lower is better) of the F-measure.

5. EVALUATION

In this section, we investigate the training process as well

as the prediction accuracy under the standard SDTW loss,

and compare it to the discussed stabilizing strategies. For

quantitative evaluation, we repeat all DNN trainings ten

times from random initializations. For the test set predic-

tions of each trained model, we compute the F-measure

w.r.t. time-pitch class bins using a threshold of 0.5. The

mean and standard deviation of the F-measures from all

trained models are displayed in Table 2.

5.1 Baseline: Strongly Aligned Targets

As a first baseline and an upper bound for all fol-

lowing experiments, we consider DNN training with

strongly aligned targets Y S. For the sequence lengths

M = N = 500 and an MSE loss function, the networks

achieve the overall highest mean F-measure of 0.82 with a

standard deviation of 0.07 on the test set.

5.2 Standard SDTW

We next analyze DNN training with weak targets Y and

the unmodified SDTW formulation from [10, 19] as a

loss function. We investigate five different values of

γ ∈ {0.1, . . . , 10}which we keep constant during training.

Analyzing the mean F-measure on the test set in Table 2,

the five variants with standard SDTW yield comparably

low results between 0.24 and 0.57, and high standard de-

viations between 0.32 and 0.38. Between 20% (γ = 0.3)

and 70% (γ = 1.0) of all training runs converged to the

all-zero output, indicating a highly unstable training pro-

cess of standard SDTW. In order to determine the cause

of these instabilities, we analyze the quality of automati-

cally generated soft alignments in the SDTW algorithm by

visualizing the soft alignment matrix for the running ex-

ample after training epochs one and 25, respectively. To

highlight the effects of small and large values of γ, we

focus on the edge cases γ ∈ {0.1, 10.0}. For γ = 0.1,

the estimated soft alignment exhibits a sharp structure (see

Figure 4a), which, after a collapse to a single target frame
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Figure 4: Reference alignment (green) and soft align-

ment matrix E
γ
C

(gray/black) for the running example af-

ter training epoch 1 (left) and epoch 25 (right) for different

training strategies. (a) γ = 0.1, (b) γ = 10, (c) hyperpa-

rameter scheduling, (d) diagonal prior, (e) sequence un-

folding.

at epoch one, still only marginally overlaps with the refer-

ence alignment after 25 epochs. This sharp and erroneous

soft alignment causes unstable gradient updates and leads

to the collapse of many training runs. When choosing a

large softmin temperature γ = 10, SDTW yields “blurry”

soft alignments (see Figure 4b) which at least partially cap-

ture the actual target frames in early epochs and coincide

well with the reference alignments as training progresses.

However, a blurry soft alignment also leads to blurry net-

work predictions as multiple target frames are aligned to

each predicted frame, thus resulting in a low F-measure

when compared to strongly aligned targets..

5.3 Stabilizing Strategies

After evaluating the unsatisfactory training behavior of

standard SDTW, we investigate the effect of the previously
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introduced training strategies in the following section. We

empirically choose γ = 0.1 as the final softmin tempera-

ture in all following experiments, as sharp alignments are

necessary for training an estimator with frame-wise preci-

sion.

5.3.1 Hyperparameter Scheduling

First, we combine the advantages of high and low values

of γ in a hyperparameter scheduling strategy. Starting a

training with γ = 10, the soft alignment matrix for our run-

ning example after one epoch is blurry and at least partially

overlapping with the reference alignment (see Figure 4c).

The successive reduction to γ = 0.1 until epoch 20 permits

sharp alignments at a later training stage. Indeed, Figure 4c

shows a soft alignment after epoch 25 which is sharp and

coincides well with the reference. The mean F-measure

(0.80) in Table 2, as well as the standard deviation (0.04),

are the second best of all SDTW-based trainings. However,

as the softmin function in (2) is a lower bound for the min-

imum function [12] which becomes tight for γ → 0, the

SDTW loss is increasing when decreasing γ, despite un-

changed network parameters. Therefore, this strategy does

not allow for loss-based learning rate scheduling and early

stopping before γ is set to its final value.

5.3.2 Diagonal Prior

The second strategy stabilizes SDTW trainings with low

values of γ by adding a penalty cost to off-diagonal

elements of the cost matrix. For our running example in

Figure 4d, the soft alignment is indeed close to the di-

agonal after the first training epoch. As, on average, the

alignments are diagonal, this often leads to correct assign-

ments of predictions and targets even for randomly initial-

ized DNNs. When the prior weight ω is reduced to zero

after the initial training phase, the network is still able to

adapt to off-diagonal alignments, as seen in our running

example in Figure 4d. Analyzing the performance met-

rics in Table 2, using a diagonal prior yields the highest

mean F-measure (0.81) and the lowest standard deviation

(0.02) of all SDTW variants, almost reaching the mean

F-measure of the baseline experiments with strong targets

and element-wise MSE loss. Moreover, when the prior

weight ω is reduced during training, the loss also decreases

and therefore learning rate scheduling and early stopping

are possible from the beginning.

5.3.3 Sequence Unfolding

Last, we investigate the strategy of unfolding the weak tar-

get sequence to the length of the input, which was em-

ployed in [6]. For this strategy, we observe fully diagonal

soft alignments in the initial training phase, as visualized

for our running example in Figure 4e. This is caused by

the equal length of the predicted and the target sequence,

which can be aligned using only diagonal steps. In the

SDTW formulation from [10], the cost of a diagonal step

is equal to the cost of a vertical or horizontal step. Thus,

for a uniform cost matrix (which is probable at the initial

training phase due to random network initialization), tak-

ing a diagonal step only accumulates half the cost com-

pared to going “around the corner”, i.e., one step in the

vertical and one in the horizontal direction, or vice versa.

This diagonalizing behavior leads, on average, to decent

soft alignments in the early training phase (as discussed in

Section 5.3.2). However, in contrast to the additive diag-

onal prior strategy, the implicit diagonalization of align-

ments is not reduced during the training, as can be seen

in Figure 4e, which still exhibits strong diagonal compo-

nents after 25 training epochs. Thus, the softly aligned

SDTW targets seldom match the reference targets and per-

formance remains low, resulting in a mean F-measure of

0.53 in Table 2.

Note that the sequence unfolding strategy adds a sig-

nificant computational overhead compared to the previous

two strategies, as unfolding always corresponds to using

a target sequence length of M = N . The forward and

backward pass of the SDTW loss function both have lin-

ear complexity w.r.t. the sequence lengths O (MN) [10].

Thus, in our setting with N = 500 and a mean length of the

weak target sequences in the test set of M = 24, the un-

folding strategy leads to an increase in the computational

cost of the SDTW loss by a factor of more than 20.

6. CONCLUSION AND OUTLOOK

In this paper, we analyzed DNN training instabilities with

SDTW as a loss function by the example of PCE. By anal-

ysis of the soft alignment matrix, we argued that align-

ment mismatch in the early training phase often causes

a collapse of the training procedure. Motivated by these

findings, we investigated three strategies for stabilizing the

early training phase. We found that the previously applied

strategy of unfolding the weakly aligned target sequence

leads to almost exclusively diagonal alignments due to a

naïve weighting of horizontal, vertical, and diagonal align-

ment steps. Furthermore, this strategy is computation-

ally inefficient, as it increases the target sequence length.

In contrast, the two introduced strategies of hyperparam-

eter scheduling and diagonal prior can be implemented

with negligible additional computational cost and stabi-

lize SDTW-based training by two different mechanisms.

The hyperparameter scheduling strategy promotes smooth

alignments in the early training phase, which increases the

probability of the predicted frame being at least partially

aligned to the correct target. Penalizing off-diagonal align-

ments in the SDTW cost matrix by an additive diagonal

prior is a strategy that initially restricts the soft alignment

to a region of high probability. Experimental evaluation

showed that these strategies reliably stabilize the SDTW

training process. Implementing them as a default in the

SDTW loss highly increases convergence rates.

Future research on SDTW-based loss functions in MIR

applications might incorporate musically informed prior

information, e.g., based on note durations or tempo anno-

tations extracted from the musical score. Furthermore, the

preference of diagonal alignment steps could be addressed

by choosing different step weights.
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ang, and B. Catanzaro, “RAD-TTS: Parallel flow-

based TTS with robust alignment learning and diverse

synthesis,” in International Conference on Machine

Learning (ICML), Third Workshop on Invertible Neu-

ral Networks, Normalizing Flows, and Explicit Likeli-

hood Models, Virtual, 2021.

[16] C. Weiß, F. Zalkow, V. Arifi-Müller, M. Müller, H. V.

Koops, A. Volk, and H. Grohganz, “Schubert Winter-

reise dataset: A multimodal scenario for music anal-

ysis,” ACM Journal on Computing and Cultural Her-

itage (JOCCH), vol. 14, no. 2, pp. 25:1–18, 2021.

[17] R. M. Bittner, B. McFee, J. Salamon, P. Li, and J. P.

Bello, “Deep salience representations for F0 tracking

in polyphonic music,” in Proceedings of the Interna-

tional Society for Music Information Retrieval Confer-

ence (ISMIR), Suzhou, China, 2017, pp. 63–70.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochas-

tic optimization,” in Proceedings of the International

Conference for Learning Representations (ICLR), San

Diego, California, USA, 2015.

[19] M. Maghoumi, E. M. Taranta, and J. LaViola, “Deep-

NAG: Deep non-adversarial gesture generation,” in

Proceedings of the International Conference on Intel-

ligent User Interfaces (IUI), College Station, Texas,

USA, 2021, pp. 213–223.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

439


