
Studying Tonal Evolution of Western Choral Music:
A Corpus-Based Strategy
Christof Weiß1,∗, Meinard Müller2

1Center for Artificial Intelligence and Data Science (CAIDAS), Universität Würzburg, Germany
2International Audio Laboratories Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

Abstract
The availability of large digital music archives combined with significant advances in computational
analysis methods have enabled novel strategies for musicological corpus studies. This includes ap-
proaches based on audio recordings, which are available in large quantities for different musical works
and styles. In this paper, we take up such an audio-based approach for studying the tonal complexity
of music and its evolution over centuries. In particular, we examine the tonal evolution of Western
choral and sacred music exploiting a novel audio corpus (5773 tracks) with a rich set of annotations.
The data stems from one of the world’s leading music publisher for choral music, the Carus-Verlag,
which is specialized on scholarly-critical sheet music editions of this repertoire and also runs an own
record label. Based on this corpus, we revisit a heuristic strategy that exploits composer life dates to
approximate work count curves over the years, validate this approximation strategy, and optimize its
parameters using the reference composition years annotated in the Carus dataset. We then apply this
strategy to derive evolution curves from the full Carus dataset. We compare the results to a study based
on a purely instrumental dataset and test three hypotheses on tonal evolution, namely that (1) global
complexity increases faster than local complexity, that (2) major keys are tonally more complex than
minor keys, and that (3) instrumental music is more complex than vocal music. The results provide inter-
esting insights into the choral music repertoire and suggest that well-curated publisher data constitutes
a valuable resource for the computational humanities.
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1. Introduction

As digitization progresses, more and more comprehensive archives of cultural data become
available. In combination with the further development of analysis algorithms, such archives
provide promising opportunities for quantitative analyses and large-scale corpus studies in
computational humanities. This also applies to music data, which exists in a variety of
styles and digital data types, including graphical sheet music, symbolic (i. e., machine-readable)
scores, and audio recordings. While symbolic scores, which explicitly encode musical symbols,
usually allow for the most detailed analyses (as in [1, 2, 3, 4, 5, 6]), such data is hard to ac-
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Figure 1: Approximating evolution of tonal complexity based on composer dates (figure from [15]).

quire. Manual creation of symbolic data is tedious, and automated conversion of graphical
sheet music to symbolic scores known as optical music recognition (OMR) [7] or automatic
music transcription (AMT) for converting audio recordings to symbolic scores [8] often lead
to unsatisfactory results, thus requiring labour-intensive post-processing.
For efficiently scaling up computational music analyses, corpus-based studies have also been

approached directly based on raw data such as sheet music images [9, 10] or audio recordings
[11, 12, 13, 14, 15]. This requires advanced computational techniques that convert the data into
semantically meaningful representations that can be directly interpreted by music experts. An
example for such a representation is the measurement of tonal complexity [16], which has been
applied for corpus analyses of jazz [14] and Western classical music [15] based on pitch-class
representations (chroma) of audio recordings.
Beyond the computational tools, comprehensive and carefully curated datasets are essential

for conducting corpus analyses [17]. While some well-annotated public datasets of limited
size and scope are available (see e. g., [18, 19, 20, 21]), a good coverage of a larger repertoire
is required to draw more general conclusions. However, annotations and historical metadata
is often hard to acquire for large corpora. In previous work [15], we made an attempt to com-
pile a diverse, medium-sized dataset (Cross-Era) of 2000 classical music recordings (piano and
orchestral music) spanning roughly 350 years of Western music history. Since this dataset
did not contain any fine-grained annotations of composition years (work dates), we proposed
a workaround to map tonal analysis results onto a historical time axis (“evolution curves”,
compare Figure 1) based on composers’ lifetime (composer dates). Until now, this simplifying
approach has not been systematically tested on any dataset with composition year annotations.

In this paper, we approach this problem by studying the distribution of work dates over the
lifetime of a composer. To this end, we consider the data repository of the Carus Verlag,1 a
German music publisher specializing in choral and sacred music. Carus produces high-quality
editions conforming to a historical-critical standard, also employing leadingmusicologists with
comprehensive expertise on their repertoire. Since Carus is also active as a record label releas-
ing reference recordings of their own editions, their repository comprises a large number of
audio recordings (more than 7000) with a rich set of detailed and well-curated metadata, includ-

1https://www.carus-verlag.com/en/

https://www.carus-verlag.com/en/


ing information about work dates, composer dates, instrumentation, singing language, key, and
other annotations.2

Based on the Carus audio corpus (CAC), we make the following contributions in this pa-
per. First, we revisit the heuristic strategy for approximating work count curves and evolution
curves based on Tukey windows (Figure 1) proposed in [15]. We systematically validate this
strategy and optimize the Tukey window parameters by comparing the approximation curves
with reference curves derived from the work dates annotated in the CAC. As an exemplary
application, we then consider the measurement of tonal complexity as proposed in [16], visual-
ized over composer dates and work dates, respectively. Second, using this strategy, we perform
multiple analyses regarding the tonal evolution. In contrast to [15], the CAC allows us to go
beyond instrumental music and focus on vocal/choir and sacred music instead. Moreover, we
consider a substantially extended time span of 450 years in CAC (as opposed to roughly 300 in
[15]). Finally, the detailed annotations in the CAC allow for testing different hypotheses about
the tonal complexity ofWestern (vocal) music, i. e.: (1) Global complexity increases earlier than
local complexity. (2) Major keys are tonally more complex than minor keys. (3) Instrumental
music is more complex than vocal music. The computed evolution curves provide interesting
insights regarding these questions and indicate that well-curated publisher data can be of high
value for the computational humanities.

The remainder of this paper is organized as follows: Section 2 presents information and
statistics of the CAC. Section 3 deals with the approximation of work count curves and evolu-
tion curves, tests the validity of this strategy, and determine optimal parameters based on the
reference annotations in CAC. In Section 4, we use this strategy to compute evolution curves
on tonal complexity and to test three hyptheses on tonal evolution. Section 5 concludes the
paper. Further related work is discussed in the respective sections.

2. The Carus Audio Corpus

The Carus-Verlag, founded near Stuttgart, Germany, in 1972 is a family business focusing on
vocal and sacred music. Their sheet music editions include around 45,000 works (most of them
vocal compositions) and reflect the development of five centuries of choral music, ranging from
Gregorian chant, madrigals, and motets of the Renaissance, to contemporary choral music, and
works for jazz and pop choir.3 Carus offers scholarly-critical music editions of the most impor-
tant oratorios, masses, and cantatas in music history, oriented towards historically informed
performance practice. Being also active as a record label, Carus releases reference recordings
based on their own editions. A core mission of the company is to help amateur and semi-
professional choirs to improve their skills. To this end, digital tools such as the Carus music
app have been created.
The CAC4 comprises the majority of the Carus CD releases (as of 2019), totalling 7115

tracks corresponding to individual works (for one-movement works) or movements (for multi-

2Since the audio recordings are commercial releases, we cannot publish the dataset. However, detailed information
about individual recordings is provided at the publisher’s website (https://www.carus-verlag.com/en/).

3https://www.carus-verlag.com/en/ueber-carus/
4This corpus has been made available to us for research puposes based on a collaborative project.

https://www.carus-verlag.com/en/
https://www.carus-verlag.com/en/ueber-carus/


Table 1
Statistics of the Carus audio corpus and its annotations. All numbers refer to full works (not individual
movements).

Annotation type No. of works

–All– 2409
Work date 1151
Instrumentation 1964
• instrumental 200
• vocal 1764
• choral 1400
• solo 364

Key 1166
• major 673
• minor 348
• other 145

movement works and work cycles). Since we want to focus on original art music compositions,
we perform a first cleaning step where we remove works without composer, works without
composer life dates, arrangements, pop music, children songs, and christmas songs. After this,
5773 tracks (movements) remain belonging to 2409 different works with a total duration of
389:52:20 (hh:mm:ss). On average, a work has 2.4 movements and a duration of 9:43 (mm:ss).
However, we note that the number of movements per work is highly unbalanced, with many
one-movement works on the one hand and many large-scale works (oratorios, passions, etc.)
with more than 30 movements on the other hand. In the following, we present all statistics and
analysis results at the work level, where information such as key or instrumentation always
refer to the overarching work (note that e. g., a mass in C minor for choir and orchestra may
also contain individual movements in other keys and instrumentations).
Table 1 provides statistics over the CAC’s annotations at the work level. Roughly half of

the works (1151 out of 2409) has annotations regarding the year of composition (work date).
The majority (1964 out of 2409) is annotated regarding instrumentation. As expected, there is
a strong focus on vocal music (1764) in general and on choral music specifically (1400 out of
1764).5 From the perspective of tonal analysis, the availability of key annotations for roughly
half of the works (1166 out of 2409) is of particular relevance. As one might expect for this
repertoire, there is a bias towards major keys as well as a considerable number of other keys
(church modes such as dorian in early works).

As mentioned above, CAC spans roughly 450 years, covering the period from about 1570–
2020. In total, the works stem from 234 different composers. Figure 2 shows a historical view
on the composer dates for composers with at least five works. Well-known composers like
Felix Mendelssohn Bartholdy, Johann Sebastian Bach, orWolfgang Amadeus Mozart make up a
significant part. However, CAC also comprises less known composers such as Heinrich Schütz
(featuring the complete edition) or Max Reger. Carus even makes great efforts to bring almost

5Please note that, due to the work-related annotations, individual solo vocal movements (e. g., an aria) within a
choir work (e. g., an oratorio) are counted towards choral works.
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Vivaldi, Antonio [12]
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Zelenka, Jan Dismas [5]
Telemann, Georg Philipp [55]
Graupner, Christoph [12]
Heinichen, Johann David [7]
Händel, Georg Friedrich [28]
Bach, Johann Sebastian [112]
Scarlatti, Domenico [9]
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Kayser, Isfrid [7]
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Mozart, Wolfgang Amadeus [24]
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Spohr, Louis [5]
Silcher, Friedrich [22]
Rossini, Gioachino [18]

Schubert, Franz [43]
Mendelssohn Bartholdy, Felix [138]
Schumann, Robert [32]
Nicolai, Otto [14]
Liszt, Franz [31]

Gounod, Charles [7]
Bruckner, Anton [15]
Cornelius, Peter [15]

Brahms, Johannes [67]
Becker, Albert [22]
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Tschaikowsky, Peter I. [11]
von Herzogenberg, Heinrich [60]

Wolf, Hugo [9]
Rachmaninow, Sergei [34]
Reger, Max [84]

Schreker, Franz [7]
Boulanger, Lili [15]

Distler, Hugo [11]
Tormis, Veljo [41]

Miskinis, Vytautas [19]
Schanderl, Hans [15]
Johannsen, Kay [11]
Schwemmer, Frank [23]

Mocnik, Damijan [18]

Figure 2: Historical view of CAC considering all composers with at least five works. The number of
works by each composer is indicated in square brackets and encoded by the darkness of the bars.

forgotten works by Gottfried August Homilius or Josef Gabriel Rheinberger back into the focus
of the German choir scene and beyond. A particular interesting fact is the good coverage of
the late 15th and 16th century (which is not covered in [15]). In the 20th century, however, we
find a lower number of works, almost observing a gap around 1950.



3. Approximation Strategy for Work Count Curves

We now outline the approximation of work count curves and the strategy for computing evolu-
tion curves as done in [15]. We then validate this strategy and optimize the involved parameters
by comparing approximation curves based on composer dates to the reference curves based on
true work dates using the annotations in CAC. In the following, we simplify all temporal infor-
mation by only considering the respective year.

3.1. Work count curves

To analyze musical styles in their historical context, one ideally has information about the true
work dates, which we assume to be the year 𝑡work ∈ ℕ, where a composition was completed.
Musical styles may evolve rapidly, and composing is subject to trends and influenced by other
composers, the taste of audiences, or extra-musical stimuli such as political events. One might
think of composers with several “creative periods,” such as Ludwig van Beethoven or Arnold
Schönberg. However, collecting reliable work date annotations for larger datasets requires a
substantial amount of manual research, and this information is unknown or in doubt for quite
a number of works. Even if one knows all composition dates, it becomes difficult to create a
dataset with a balanced coverage of all years.
Because of such problems, we adopted in previous work [15] a pragmatic approach by pro-

jecting works onto the historical time axis based on composer dates, i. e., the information on
birth year 𝑡birth, death year 𝑡death, and overall age 𝑎death = 𝑡death − 𝑡birth, which is consider-
ably faster to acquire. We proposed an approximation of work counts over the course of a
composer’s life. For this distribution, we assumed that a typical composer starts composing
not before a certain (fixed) age given by 𝑎start ∈ ℕ years (with 𝑎start = 10 in [15]). For the
remaining years (ages) [𝑎start ∶ 𝑎death] ∶= {𝑎start, 𝑎start + 1,… , 𝑎death}, we computed a roughly
flat distribution with smooth edges. To this end, we used a so-called Tukey window (or tapered
cosine window) 𝑤 ∶ ℕ → ℝ with parameter 𝛼 ∈ ℝ:

𝑤(𝑛) =
⎧
⎨
⎩

0.5 (1 − cos (2𝜋𝑛𝛼𝑁 )) , 0 ≤ 𝑛 < 𝛼𝑁
2

1, 𝛼𝑁
2 ≤ 𝑛 ≤ 𝑁

2
𝑤(𝑁 − 𝑛), 𝑁

2 < 𝑛 ≤ 𝑁
(1)

with 𝑛𝚤 = [0 ∶ 𝑁 ] and 𝑁 = 𝑎death − 𝑎start being the window length. In [15], the parameters
were heuristically chosen to a start age of 𝑎start = 10 and a Tukey parameter of 𝛼 = 0.35.
Figure 1 shows the resulting distribution for Beethoven and Schönberg. The total distribution
is then amplitude-normalized to ∑𝑛 𝑤(𝑛) = 1 and weighted with the total number of works
by a composer in the dataset, resulting in a so-called work count curve (WCC). That way, each
work contributes to the part of the time axis that corresponds to the composer’s lifetime, as
indicated in the distribution. This means that a composer with more works in the dataset will
have a greater influence on the WCC.



3.2. Validating and optimizing the approximation strategy

In [15], the Tukey window 𝑤 and its parameters were chosen heuristically without any fur-
ther validation since work date annotations were not available for the dataset used. The CAC
contains such annotations for roughly half of the works (compare Table 1). Using these an-
notations, we now validate the approximation strategy and search for optimal values of the
parameters 𝛼 and 𝑎start. We do this in a stepwise fashion: First, we determine the start age
𝑎start, i. e., the age at which we expect an average composer to start composing. To this end,
we calculate the percentage of all works that were composed at a specific absolute age in years
(blue curve in Figure 3a). To counteract the effect of imbalanced composition ages, we slightly
smooth this curve by convolution with a 5-year kernel k = (0.1, 0.2, 0.4, 0.2, 0.1)T. Since com-
posers have died at different ages, the red curve slowly decreases after an age of approximately
60. We then define a half Tukey window for the range [𝑎start∶60] preceded by zeros (red curve
in Figure 3a). For each value of 𝑎start ∈ [0∶24], we fit the Tukey parameter 𝛼 (see Eq. (1)) as well
as a magnitude scaling factor using non-linear least squares. We obtain a minimal squared dis-
tance (Euclidean distance) between the curve and the half-Tukey approximation at 𝑎start = 13
(compare Figure 3a), which is slightly higher than the value 𝑎start = 10 used in [15].

Using 𝑎start = 13, we nowfit thewindowparameters for the remaining years, i. e., the interval
[𝑎start ∶ 𝑎death]. To counteract the effects of different overall ages, we normalize the overall
ages from [𝑎start ∶ 𝑎death] to [𝑎start ∶ 60] by interpolating work dates accordingly followed by
smoothing with the kernel k (blue curve in Figure 3b). Since the curve ends steeper than it
begins, we allow the fitted Tukey window to cover a range [𝑎start ∶ 60 + 𝑎add] (the additional
years will be set to zero later). With the same fitting strategy as above (non-linear least squares),
we then find an optimal value of 𝑎add = 6. For the Tukey parameter 𝛼 , we determine the optimal
value to 𝛼 = 0.72, which is considerably larger than the value of 𝛼 = 0.35 used in [15]. The
fitted curve is shown in red in Figure 3b.

We finally set the curve to zero for all ages > 60 and normalize the window weights such
that the total weight amounts to 1. The resulting curve is shown in Figure 3c. For a given
composer with final age 𝑎death, we then re-normalize this window length back from the range
[𝑎start∶60] to [𝑎start∶𝑎death] by suitable interpolation.
With these optimized window parameters, we now validate the approximation strategy for

the work count curve. To this end, we first compute the reference curve using the work date
annotations for 1151 works that have these annotations. We post-process the curve with an
average filter of length 15 years (red curve in Figure 4). We then compare this reference curve
with our approximation curve based on composer dates and our optimized Tukey window
(blue curve in Figure 4). Overall, the approximation seems to be suitable. In some periods (e. g.,
around 1680), the approximation curve is ahead, for others (e. g., at 1770), it lags behind the
reference curve. In a quantitative comparison, we measure an Euclidean distance of 0.046 (av-
eraged per year). In contrast, when using the parameters of [15], i. e., , 𝛼 = 0.35, 𝑎start = 10, and
𝑎add = 0, we measure an average distance of 0.068. We conclude that the approximation based
on Tukey windows is a suitable strategy to compensate for missing work date annotations.
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Figure 3: Curve fitting procedure to determine the optimal window parameters (a) Partial curve fit to
determine the optimal start composing age 𝑎start = 13. (b) Fit to determine optimal parameters 𝑁end
and 𝛼 for the Tukey window 𝑤 . (c) Resulting full window.

4. Studying the Evolution of Tonal Complexity

With the validated strategy, we now investigate the tonal evolution of choral music in the CAC.
First, we summarize the computational approach for measuring tonal complexity from audio
recordings. Then, we compare the results to the study in [15] and then use our evolution curves
to test three common hypotheses about the repertoire.

4.1. Measuring tonal complexity

We now revisit the measurement of tonal complexity from audio recordings as performed in
[15]. First, we discuss related work regarding complexity. Then, we present themethod applied
here, closely following [14].
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Figure 4: Work count curves based on composer dates (approximation curve, blue) and based on work
dates (reference curve, red), respectively.

Figure 5: Complexity measure Γ based on the circle of fifths. Values for a sparse chroma vector (left),
a flat chroma vector (middle), and a more realistic chroma vector (right) are shown. The red arrows
denote the resultant vectors (figure from [14]).

Musical complexity is a highly relevant (yet vague and multi-faceted) notion for analysis,
which has been approached by various researchers. In [22], several aspects of complexity re-
garding acoustic, timbral, or rhythmic properties were investigated. Concerning tonality, sev-
eral authors [22, 23, 24] have focused on sequential complexity including chord sequences [23].
In contrast, we introduced in [16] tonal complexity measures that locally describe distributions
of energy across the twelve chromatic pitch classes used in the Western tonal system. As one
principle, these measures quantify the variety of pitch classes used such that flat distributions
(e. g., chromatic clusters) result in high complexity values while sharp distributions (e. g., single
notes) result in low ones (see Figure 5), thus indicating an average degree of dissonance. Such
features have shown good correspondence to an intuitive understanding of tonal complexity
over the course of an individual work, which we have verified on a set of chords as well as for
segments of Beethoven’s piano sonatas [16]. Averaging such complexity features over many
works provides meaningful and stable results, which has been demonstrated by a large-scale
study of musical evolution in classical music [15] and jazz [14].
Following [15, Fig. 6], we select a geometric complexity measure that accounts for the har-

monic relationship between pitch classes and is capable of describing the pitch-class content
on various temporal levels (fifth-width complexity, see [16]). We now summarize the defini-
tion of this measure encoded by the function Γ ∶ ℝ12 → [0, 1]. First, we extract a chroma



representation from the audio data using the filter-bank method presented in [25], with a
resolution of 10Hz (ten chroma vectors per second). As a result, we obtain chroma vectors
c = (𝑐0, 𝑐1, … , 𝑐11)T ∈ ℝ12 with positive entries (𝑐𝑛 ≥ 0) normalized with respect to the ℓ1-norm
(∑11

𝑛=0 𝑐𝑛 = 1). The entries 𝑐𝑛 with 𝑛 ∈ [0 ∶ 11] indicate the salience or energy of the twelve
pitch classes C, C♯, …, B, respectively. Because of octave invariance, the features are of a cyclic
nature (a transposition results in a cyclic shift).

For computing the complexity Γ(c) ∈ [0, 1], we map the chroma features onto the circle
of fifth. To this end, we first re-order the chroma values according to perfect fifth intervals
(having a size of 7 semitones) resulting in the vector cfifth:

𝑐fifth𝑛 = 𝑐(𝑛⋅7) mod 12. (2)

Based on the reordered vector cfifth, we compute circular statistics using the resultant vector
r(c):

r(c) = 1
𝑁 ∑𝑁−1

𝑛=0 𝑐fifth𝑛 exp (2𝜋 i𝑛𝜋12 ). (3)

Then, the complexity Γ(c) relates to the inverse length of r(c) and is defined as:

Γ(c) = √1 − |r(c)|. (4)

This measure corresponds to the angular deviation (the circular equivalent to the standard
deviation) and describes the spread of the pitch classes around the circle of fifths. Figure 5
illustrates the definition of the complexity feature and the resultant vector r(c) (in red) showing
examples for three input chroma vectors c. For a sparse vector (left), the complexity is minimal
(Γ(c) = 0). For a flat vector (middle), we obtain maximal complexity (Γ(c) = 1). Other chroma
vectors yield intermediate complexity values (0 < Γ(c) < 1).

Finally, we note that there are different strategies of aggregation to track-wise (i. e.,
movement-wise) values. First, we define a local measure Γlocal by calculating Γ(c) for all 10Hz
chroma vectors c (i. e., ten chroma vectors per second) and then averaging over these features.
Second, we first compute a global chroma statistics by averaging and ℓ1-normalizing the fea-
tures and then calculating a single complexity value Γglobal for each movement. Aggregation
to works is then done by averaging over the complexity values for all movements.

4.2. Evolution curves

In Section 3, we have studied the total number of works in CAC over the course of the years
(work count curves) using the work dates or our approximation strategy based on composer
dates. As an example for a quantitative analysis, we now apply these strategies to our measure-
ments of tonal complexity as defined in Section 4.1. For the approximation curves, we again
use the window parameters as determined above. For the reference curves, we use a 15-year
average filter for smoothing.
While the windows for each work were weighted with the value of 1 to account for the total

number of works, we now use the complexity value Γ of the respective work for weighting. We
sum up all weighted windows and divide by the respective work count curve for normalization.
We obtain a so-called evolution curve (EC) that indicates the average complexity of the works
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Figure 6: ECs for the global complexity. (a) Comparing ECs based on the subset 𝐷work computed
as approximation curve using composer dates (blue) and reference curve using work dates (red). (b)
Combined EC for the global complexity in 𝐷 (black) computed using work dates for 𝐷work (red) and
composer dates for 𝐷comp (blue). Original complexity values for works are shown as gray crosses.

along the historical time axis. That way, each work contributes to the part of the time axis
that corresponds to its work date (for the reference curve) or its composer’s life dates (for the
approximation curve).
Denoting our full dataset as 𝐷, we first consider the subset 𝐷work ⊂ 𝐷 comprising all works

with available work date annotations (1151 works in total). Figure 6a shows the resulting
EC for the global complexity both as approximation curve (blue) and reference curve (red),
together with the individual works’ complexity values (gray crosses). Compared to the work
count curves (Figure 4), the approximation is still good but the deviations are slightly higher.
However, we observe such deviations only in regions where only few works contribute, e. g.,
around the years 1600, 1750, 1800, or 1920–1950. As long as there is sufficient coverage of
works/composers, the approximation curve closely resembles the reference curve.

Based on this finding, we now analyze the full dataset 𝐷 applying a combined strategy: For
the subset 𝐷work ⊂ 𝐷 (1151 works), we make use of the work date annotations and map them
directly to the time axis (smoothed as above) as done for the reference curves (red curve in
Figure 6b. For the subset 𝐷comp ⊂ 𝐷 (1258 works), which contains the works without work
date annotations, we use the mapping based on our optimized Tukey windows as done for the



approximation curves (blue curve in Figure 6b). The resulting combined EC is shown as the
black curve in Figure 6b. We observe a stabilized curve where minor outliers are removed (e. g.,
around the years 1700, 1760, or 1920) while not loosing the interesting trends.

4.3. Three hypotheses on tonal evolution

We now apply this mixed strategy for investigating the evolution of the tonal complexity in
CAC, for comparing the results to those in [15], and for testing three musicological hypotheses.
To this end, we use our mixed approach for computing various variants of the combined EC,
always using the full dataset 𝐷.
Comparison to related work. We start with two of the combined ECs, one based on

the local complexity Γlocal and the other based on the global complexity Γglobal, respectively
(Figure 7). Looking at the global EC (black), we observe an increase in complexity over the
course of the 17th and 18th century. Interestingly, we do not observe any drop around 1750,
in contrast to [15] where the demand for more “simplicity” after the Baroque era was clearly
visible (however, this trend is supported by a small number of works available for the period
around 1800). On the other hand, the increase during the 19th century observed in [15] is not
visible for CAC. Even more remarkably, CAC does not show any major increase in complexity
during the 20th century. Themodernism in tonality, pushed by expressionist and dodecaphonic
composers such as Arnold Schoenberg or Igor Stravinsky, does not seem to be reflected in
choral music to the same degree. This could be based on different stylistics trends in choral
music, but also be a property of the CAC, where complex atonal works might not be in the
focus since they are hard to be performed by amateur choirs.
Global versus local complexity. We now test different hypotheses starting with the as-

sumption that the global complexity evolves independently from the local one. This behavior
was observed in [15] especially within the 19th century, where the local complexity (refer-
ing to the complexity of e. g., chords) was fairly stable while the global complex (refering to
the complexity of modulations across the whole piece) was clearly increasing. For CAC, we
do not observe such a behavior. Comparing ECs for global and local complexity, we mostly
observe a parallel evolution. The distance beween the curves only marginally increases after
1820. A possible reason might be the typical movement length, which can be considerably
higher in instrumental works such as string quartets or symphonies, as opposed to the shorter
movements of oratorios or masses. This shorter length might restrict the number and tonal
distance of modulations occuring within a movement. However, this hypothesis needs further
investigation.
Major versus minor keys. Our second hypothesis is based on the observation that minor

keys usually exhibit more chromatic inflections as compared to major keys. To this end, we
consider the data subset with key annotations (major and minor) and compute an EC for each
of them (Figure 8). For the global complexity (solid lines), both curves follow a similar trend.
However, we see a small but consistent offset of the minor curve (red) over the major curve
(green). This confirms our hypothesis that minor keys use a larger pitch-class range and, thus,
are tonally more complex. For the local complexities (dashed curves), we do not observe this
offset. Moreover, for the 20th century, we see some fluctuating behavior, which is due to the
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Figure 7: Comparing ECs for global and local complexity.
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Figure 8: Comparing ECs for global and local complexity separated into major and minor keys.
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Figure 9: Comparing ECs for global and local complexity separated into vocal and instrumental music.

fact that there is little data with key annotations for that period (for atonal and free tonal music,
key is often not a relevant concept).
Vocal versus instrumental music. Next, we investigate the hypothesis that instrumental

music is more complex than vocal music. We expect such behavior since vocal compositions
need to account for the higher difficulty in producing pitches when singing, especially for large
and complex intervals. Moreover, musicologists often claim that compositional “revolutions”
were often happening in compact instrumental settings such as the string quartet. To test
our hypothesis, we use the instrumentation annotations and compute a vocal as well as an
instrumental EC (Figure 9). As a downside of CAC, we find an unbalanced situation (compare



Table 1), resulting in a small number of works available for the instrumental EC. Nevertheless,
we observe a clear tendency that contradicts our hypothesis: Vocal music seems to be more
complex than instrumental music for most time periods. In particular, the offset is large for the
local complexity (dashed lines). However, we suspect a technical reason for this behavior. Our
chroma features are based on a signal processing approach, whichmaps frequency components
extracted from audio recordings to the twelve chroma bands. When dealing with recorded
vocal music, this process often leads to substantial artifacts since pitch stability is much lower
than for instruments and effects such as vibrato, portamento, or typical deviations from the
twelve-tone equal temperament (pure tuning) substantially blur the chromagrams. This can
lead to quasi-chromatic artifacts that may push the complexity measurements even locally.

5. Conclusions and Future Work

In this paper, we considered an approach for studying the tonal evolution of music based on
partially annotated corpora of music audio recordings. As our first contribution, we revisited
and validated a strategy for computing work count curves, compensating for missing work
composition dates using heuristics based on composer life dates as an approximation. To this
end, we exploited the novel Carus audio corpus (CAC), which contains work date annotations
for a substantial part of the works. We showed that a good choice of the parameters helps to
minimize the deviations of the approximation curve from the reference curve. On this basis,
we performed a combined approach for computing evolution curves that map musical features
onto the time axis. This strategy allowed us to compare the CAC with previous studies and to
test three hypotheses on tonal complexity in this repertoire. In our future work, we plan to
substantially extend, improve, and deepen these studies. In particular, we want to investigate
potential technical reasons for higher complexity measurements in choral music. To this end,
more recent chroma extraction strategies based on deep neural networks are of high potential
since they have shown to be successful for deriving tonal information from vocal recordings by
reducing typical artifacts [26]. Beyond that, a combination of the analysis based on CAC with
other datasets such as the one in [15] will provide better insights into the evolution of tonal
music and allow for testing further hypotheses. Finally, this paper also aimed for providing
high-level insights into the CAC. While the analyses revealed that a very good coverage of the
time period under investigation is crucial for obtaining reliable results and that additional data
might be beneficial for some periods, we see a high potential of such well-curated publisher
datasets for studies in computational musicology and beyond.
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