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ABSTRACT

A descriptive transcription of a violin performance re-
quires detecting not only the notes but also the fine-grained
pitch variations, such as vibrato. Most existing deep learn-
ing methods for music transcription do not capture these
variations and often need frame-level annotations, which
are scarce for the violin. In this paper, we propose a
novel method for high-resolution violin transcription that
can leverage piece-level weak labels for training. Our
conformer-based model works on the raw audio waveform
and transcribes violin notes and their corresponding pitch
deviations with 5.8ms frame resolution and 10-cent fre-
quency resolution. We demonstrate that our method (1)
outperforms generic systems in the proxy tasks of violin
transcription and pitch estimation, and (2) can automati-
cally generate new training labels by aligning its feature
representations with unseen scores. We share our model
along with 34 hours of score-aligned solo violin perfor-
mance dataset, notably including the 24 Paganini Caprices.

1. INTRODUCTION

Automatic music transcription (AMT) is a core task in Mu-
sic Information Retrieval that aims to convert a musical
performance into some form of symbolic notation. While
general-purpose AMT systems have recently seen substan-
tial progress with deep learning [1–5], instrument-specific
systems usually perform better, e.g., for piano [6–9], vo-
cals [10, 11], guitar [12–14], and drums [15–17]. Despite
the prominence of the violin in Western classical music and
other traditions, a specialized high-precision violin tran-
scription system that applies the recent advances in deep
learning does not exist. In this paper, we aim to tran-
scribe violin performances into a descriptive music nota-
tion [18]. As opposed to a prescriptive transcription, whose
aim would be to produce an easily understandable score
from which a musician can perform according to stylistic
conventions of Western classical music writing, a descrip-
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Figure 1: Our method transcribes violin recordings sam-
pled with 44.1 kHz waveform into MIDI with a 5.8ms
time- and 10-cent frequency-resolution pitch bends.

tive transcription has an analytical purpose, aiming at no-
tating high-precision pitch modulations along the notes.

Most typical AMT systems employ audio-to-MIDI tran-
scription where each note event is represented with semi-
tone resolution in the 12-tone equal temperament (12-
TET). However, cognitive studies show that even the West-
ern classical violinists heavily deviate from the 12-TET
in favor of Pythagorean tuning and just intonation [19,
20]. Furthermore, the violin also plays a central role in
many other traditions that do not employ the Western 12-
TET [21]. Considering playing styles such as the vibrato
and glissando that involve pitch modulations, a higher
frequency resolution than the conventional 12-TET is re-
quired for violin transcription. An important step towards
transcription outside the 12-TET was introduced by Bittner
et al. [1] with an instrument-agnostic AMT system, which
employs MIDI pitch bends to represent performances with
33-cent frequency resolution. However, adapting their ap-
proach to violin transcription remains to be a challenge
since 33-cent frequency resolution is still too high com-
pared to a violinist’s intonation precision [20].

A further main challenge in violin transcription is the
lack of frame-level annotated training data. To cope
with the absence of frame-level annotations, Weiß and
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Peeters [22] employ sequence-level targets and a variant
of the Connectionist Temporal Classification (CTC) loss
for multipitch estimation. However, this strategy is sensi-
tive to the segment duration (stable until segment lengths
of 60 seconds) and, therefore, still requires some form of
weak alignment. While some works explore data aug-
mentation for frame-level supervised models through ad-
ditional unlabeled [4] or pseudo-labeled [5] data, recent
AMT methods are mostly trained using frame-level anno-
tations [1, 3, 8, 9]. In some cases, obtaining such annota-
tions is feasible through electronic music instruments, e.g.,
Disklavier. For example, the MAESTRO [23] dataset, with
200 hours of virtuoso piano performances and respective
note labels captured with 3ms frame resolution, enabled
significant improvements for piano transcription.

In case electronic music instruments are unavailable, a
common approach for obtaining automatic frame-level an-
notations is employing audio-to-score alignment (ASA),
which found application in score following [24, 25]. ASA
itself is not a technology developed for creating training
datasets for AMT systems, and it has been reported that in-
accurately aligned datasets may even worsen the result [2].
The intertwined nature of ASA and transcription can also
be viewed from another aspect. For example, Kwon et
al. [26] showed that frame and onset features of an AMT
system work as robust feature representations for ASA. To
our knowledge, the only deep-learning-based transcription
system that integrates ASA into AMT is the recent work by
Maman and Bermano [2], which utilizes ASA with chroma
representations obtained from AMT frames.

As the main contribution of this paper, we propose a
novel AMT system specifically tailored for descriptive vi-
olin transcription 1 regarding two crucial aspects: 1) We
represent pitch deviations such as vibrato, glissando, or
intonation choice by incorporating fine-grained pitch rep-
resentations into the transcription. While borrowing our
note postprocessing system and the MIDI pitch bend rep-
resentations from Bittner et al. [1], we build a conformer-
based model that works on the raw audio waveform and
further improves the pitch bend estimation through note-
constrained Viterbi pitch tracking. 2) We acquire frame-
level annotations for violin transcription by considering si-
multaneous transcription and alignment in a joint frame-
work, similar to the work by Maman and Bermano [2].
Following the findings from the music synchronization lit-
erature, we also incorporate activation-function-based fea-
tures in the alignment [27, 28].

In order to benchmark our descriptive violin transcrip-
tion method, we consider the proxy tasks of transcription
and pitch estimation and compare our model with general-
purpose baselines. As a side contribution, we also release
a 34-hour dataset of solo violin recordings, with automat-
ically aligned MIDIs and note-constrained multi-f0 tracks
obtained using our descriptive violin transcription system.

The remainder of this paper is organized as follows:
in Section 2, we introduce our MUlti-Stream Conformer
(MUSC) model for AMT that processes an audio wave-

1 https://github.com/MTG/violin-transcription/
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Figure 2: The Multi-Stream Conformer architecture con-
verts raw audio sampled with 44.1 kHz into four feature
representations with a frame rate of 5.8ms.

form into four musical representations. In Section 3, we
describe our strategy for learning without frame-level an-
notations. In Section 4, we introduce how we simultane-
ously annotate a novel violin transcription dataset while
training our model. In Section 5, we compare our descrip-
tive violin transcription model against general-purpose
transcription and pitch estimation baselines. Finally, we
conclude in Section 6 with prospects on future work.

2. MULTI-STREAM CONFORMER

We propose a MUlti-Stream Conformer (MUSC) that pro-
cesses the raw audio waveform into four streams that es-
timate onset, offset, semitone-level pitch frames (denoted
as frames as in the AMT literature), and high-resolution
f0 frames as shown in Figure 2. The raw audio waveform
sampled with 44.1 kHz is converted into 256-dimensional
features with a hop size of 5.8ms through duplex CNNs.
Then, these features pass through the Conformer blocks to
estimate the four representations. The resulting represen-
tations can be either used for MIDI transcription with pitch
bends as in Figure 1, or for frame-level dataset annotation
for training (see Section 3).

2.1 Duplex CNNs

We borrow the basic CNN structure from the first two lay-
ers of the CREPE [29] pitch estimator, except for zero
padding. We remove the zero padding in the convolutional
layers so that the duplex CNNs can access to the infor-
mation at the borders of the window with varying recep-
tive fields. With the raw audio in 44.1 kHz as the input,
the duplex CNNs independently summarize the waveform
into 128-dimensional frames with a hop length of 5.8ms.
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Figure 3: A closer look at the Duplex CNNs.

The standard CNN (shown in red in Figure 3) analyzes the
frame with the CREPE configuration, resulting in a recep-
tive field of 26ms. The dilated CNN (depicted in yellow
within Figure 3) incorporates double the number of dila-
tions and strides per layer, ultimately leading to a receptive
field of 118ms. Thanks to the dilations and strides, the
sampling rate for the dilated CNN is subsequently reduced
to 22.05 kHz, and 11 kHz. Thus, it effectively analyzes
a smoother version of the signal. The 128-dimensional
outputs of the individual CNNs are then stacked into a
256-dimensional representation and pass through a simple
fully-connected layer before the main Conformer stream.

2.2 Conformer Blocks

Due to the direct analogy between music transcription and
speech recognition, we adopt the Conformer [30], a state-
of-the-art automatic speech recognition (ASR) model, as
the base block of MUSC. We directly employ conformer
blocks from the Conformer encoder (M version) as de-
scribed by Gulati et al. [30], i.e., with four attention heads,
a depthwise convolution size of 32, and an encoder dimen-
sion of 256. For the main stream, we repeat the conformer
blocks 16 times as in Conformer (M). Then, we employ
separate conformer blocks for each of the onset, offset,
frame, and f0 streams with four conformer blocks per rep-
resentation. The total number of conformer blocks we uti-
lize in the multi-stream conformer architecture is 32.

2.3 Feature Representations

Our method is based on transforming weak labels into
frame-level features that are used both as training targets
and alignment features. The feature representations en-
compass the violin pitch range from F♯3 to E8, i.e., 58
bins for the onsets, offsets, and note frames, which work
on semitone resolution, and 580 bins for the f0s, which
work on 10-cent resolution. More precisely, we use a fixed
sequence duration of three seconds and convert the audio
waveform into 512 × 58 dimensional onset, offset, and
(note) frames, and 512× 580 dimensional f0 frames.

tonset toffset

fMIDI

fMIDI + 100c

fMIDI - 100c

Viterbi Constraint Region

Figure 4: Constraint region for the Viterbi pitch tracking.

We train the model to predict strong onset, offset, and
frame labels that are generated from iterative score align-
ments. We employ Gaussian label smoothing for onset,
offset, and f0 features. For the onsets and offsets, we
smooth the feature representations with a standard devi-
ation of 4ms. Following Kim et al. [29], we also blur the
f0 features with a 12-cent standard deviation.

Note that the high-precision f0 features are not included
in the score, hence cannot be inferred from the alignment.
For the f0 features, we train the model to predict pseudo-
labels generated by the TAPE model [31] in the first iter-
ation. Then, we use our model’s predictions as pseudo f0
labels. The polyphonic multipitch information are also en-
coded in the f0 representations. We employ constrained
Viterbi pitch estimation (see Section 2.5) for generating
pseudo-f0 labels for the polyphonic segments.

2.4 Note postprocessing

In the original Conformer paper [30], which is designed
for ASR, the output of the encoder is proceeded by a de-
coder that uses an external language model to generate the
word sequence. A natural adoption of this strategy to our
scenario would require onsets, offsets, and frames to be
fed into a language model that is specialized in the vio-
lin repertoire. However, employing a decoder is not viable
since violin repertoire remains a low-resource language,
and training decoders with such limited data is prone to
overfitting. Instead, we experiment with postprocessing
techniques from open-source AMT libraries and adopt the
one 2 from Bittner et al. [1]. We leave improving the post-
processing stage as an open question for further studies.

2.5 Constrained Viterbi Pitch Estimation

Previous studies have shown that score information [32]
and the continuity principle of pitch perception [33] can be
used for refining the f0 estimation. We apply continuity
constraints within note sections to detect the pitch bends
with higher accuracy. First, we define the constraint region
on the f0 matrix from the note onset, offset, and 200 cents
around the note frequency as shown in Figure 4. We calcu-
late the Viterbi path within the note boundaries by utiliz-
ing the constraint region as observation probabilities and
f0 transition probability matrix S ∈ R

21×21 covering the

2 https://github.com/spotify/basic-pitch/blob/

main/basic_pitch/note_creation.py
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Figure 5: The proposed high-resolution violin transcrip-
tion model only requires piece-level labels for learning as
it can generate frame-wise labels using its own onset, off-
set, and frame feature representations.

200 cents around the note frequency. For each consecutive
time instant, S allows smooth transitions with a Gaussian
standard deviation of 25 cents, i.e., 2.5 f0 states:

sij =

exp

(

− 1
2

(

j−i
(25/10)

)2
)

(25/10)
√
2π

,

for i, j ∈ [1 : 21], where sij denotes the state transition
probabilities in the 10-cent resolution f0 matrix.

Since Viterbi algorithm has a complexity of O(n2), ap-
plying the pitch tracking within the constrained region also
improves the runtime speed compared to Viterbi without
note constraints. Moreover, applying Viterbi within note
constraints allow detecting multiple f0s.

After per-note Viterbi paths are calculated, the frame-
wise pitch predictions are obtained through the regional
weighted averaging method from Kim et al. [29] to deter
the f0 estimates through further interpolations.

3. LEARNING FROM WEAK LABELS

Our proposed method enables learning from weak labels,
which involve pairs of violin recordings and their publicly-
available scores. The learning procedure consists of four
phases. First, we create initial audio-score alignments us-
ing music synchronization techniques. Second, we use
the aligned audio-score pair for the first round of train-
ing. Third, we recompute the alignment using the esti-
mated features. Fourth and finally, we finetune our model
using the finer features learned by the model.

To create the initial audio-score alignments, we use dy-
namic time warping (DTW), which is a well-known tech-

nique for music synchronization [34–36]. Conventional
methods for music synchronization typically use DTW
and chroma features as the input representation [32, 37],
whereas the integration of additional activation functions,
e.g., onsets, beats, downbeats, has proven to enhance the
synchronization accuracy [27, 28]. Since we deal with vi-
olin transcription in this paper, we follow the alignment
method in [28], which deals with a similar scenario, i.e.,
audio-to-audio synchronization of string quartets. Inspired
by their combined synchronization approach, we first in-
corporate beat, downbeat, and onset activation functions
alongside chroma features to generate the initial audio-
score alignments. The inclusion of activation functions re-
sults in a grid-like structure in the DTW cost matrix, which
guides the alignment through activation cues that point to
note onsets or other musical events. At the same time,
chroma features account for the harmonic and melodic in-
formation.

Following the setting in [28], we use a sample rate of
22.05 kHz and a feature rate of 50Hz to create the align-
ments. As this feature rate (20ms) is coarser than the
model’s frame resolution (5.8ms), we apply linear inter-
polation to create labels. Note that we cannot evaluate the
synchronization accuracy of the training data since we do
not have any annotations for these. Using these target la-
bels obtained from the initial alignment, which can possi-
bly be inaccurate, we train our model for one epoch in the
first training phase.

Following the first training phase, we obtain the
four learned representations, onset, offset, semitone-level
frames, and high-resolution f0 frames for each audio-score
pair. To acquire finer and more accurate labels, we run a
novel synchronization stage. We recompute the alignment
with the refined features, estimated semitone-level frame
representations, and the activation with the stacked onset
and offset features (see Section 2.3). Note that the feature
rate we use in the alignment is the same as the MUSC fea-
tures (hop size of 5.8ms). Using the labels obtained from
synchronization, we finetune our model using early stop-
ping.

Our iterative training strategy resembles the approach
by Maman and Bermano [2]. Their approach starts with
training the transcription model with synthetic data and
then creating the initial alignments with the features esti-
mated by this model and involves three training iterations:
first on synthetic data and two more iterations to finetune
the model on the target dataset. In contrast, we start from
a robust ASA and complete the training process in two it-
erations.

4. DATASET AND TRAINING

In this section, we describe our dataset that we use for the
training and our training procedure. The weakly-labeled
dataset consists of 120 scores and 34 hours of solo vio-
lin performances. We also provide automatic score align-
ments and frame-level pitch bends that are generated by
our joint data curation and training process.
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#s #p #r dur

Paganini, Op. 1 24 10 235 13:00
Wohlfahrt, Op. 45 60 6 506 11:36

Kayser, Op. 20 36 8 280 09:48
Total 120 22 1021 34:24

Table 1: Dataset statistics. #s: number of scores, #p:
number of distinct players, #r: number of recordings, dur:
total recording duration in hh:mm.

4.1 Dataset Statistics

Our dataset comprises public scores of 96 etudes which are
included in the Violin Etudes dataset [38], i.e., Wohlfahrt
Op. 45, and Kayser Op. 20. We also extend these scores
with additional 24 etudes/caprices by Paganini Op. 1. In
contrast to the Violin Etudes dataset, which only includes
monophonic recordings, the recordings in our dataset in-
clude a mix of monophonic and polyphonic etudes. We
collect multiple versions of these etudes from YouTube and
automatically match and align them using the method de-
scribed in Section 3. For the Paganini Op. 1 score, we no-
ticed that performers do not always follow the repeat signs.
To ensure better alignments, we automatically expand each
repetition pattern individually and select the one that best
matches the recording based on the alignment distance. As
the most extreme case, we found four different repetition
patterns for the Paganini Op. 1 No. 23, which we label as
Op01-23, Op01-23-a, Op01-23-b, and Op01-23-c in the
dataset, respectively.

The dataset we provide includes original YouTube links,
annotated start and end timestamps, and aligned MIDI
files containing multi-pitch bends. These resources can be
utilized to generate expressive performances featuring vi-
brato. Moreover, for each etude and caprice, we provide
at least five performances, which can be utilized for audio-
to-audio synchronization and comparative studies. Table 1
summarizes the dataset statistics.

4.2 Training Details

Using Adam optimizer and a learning rate of 1e−3, we
train the model to minimize the binary cross entropy (BCE)
loss for the onset, offset, frame, and f0s:

L = Lonset + Loffset + Lframe +
Lf0

10
.

In addition to Gaussian label smoothing as described in
Section 2.3, we weight positive onset and offsets with 9
to balance the sparse matrices. Furthermore, we also ob-
serve that weighting the Lf0 by 1/10 helps in increasing
the stability of the training.

Since our dataset includes several versions per piece,
we do not employ further data augmentations. We train
the model using a batch size of 16 and a fixed sequence
duration of three seconds (512 frames). We employ (80−
20) train–validation splits and consider each sample with
the etude no ≡ 3 (mod 5) for the validation set.

After training for one epoch on the dataset obtained
with initial alignments and pseudo f0 labels, we realign

the dataset with the model’s onset, offset, and frame fea-
tures and apply constrained Viterbi tracking for the f0 la-
bels. Using the new labels estimated by the model, we train
the model further, applying early stopping.

5. EXPERIMENTS

While we aim at the task of descriptive violin transcription
with high-resolution pitch bends, there is no previous work
on which we can directly compare with. Therefore, we
compare our model with general-purpose baselines for the
closely-related proxy tasks of transcription and pitch esti-
mation. We provide our experimental results on the violin
tracks of two manually-annotated and corrected datasets,
i.e., URMP [39] and Bach10 [40].

5.1 Test Datasets

The URMP dataset [39] is a multimodal dataset that in-
cludes 44 performances in various chamber ensemble set-
tings. The dataset was annotated with the help of the
Tony melody transcription software [41], which utilizes the
pYIN [33] algorithm for the initial f0 estimates and applies
a hidden Markov model for note quantization. The note on-
sets, offsets, and f0s are then manually corrected. For our
evaluation, we use all the violin tracks from the URMP
dataset. We note that one of our transcription baselines,
the MT3 [3] model, was trained using this dataset. Since
we employ our tests in the entirety of the violin tracks, the
tests include the training samples of the MT3.

Our second test dataset, Bach10 [40], comprises 10
four-part chorales played by a violin, clarinet, tenor sax-
ophone, and bassoon quartet. The ground-truth f0 annota-
tions in the dataset were estimated first using the YIN [42]
algorithm and then corrected manually. The dataset also
includes note annotations derived from the beat times that
are manually-annotated by musicians. However, the man-
ual correction for offset times is not included in the dataset.
For our evaluation, we use all the violin tracks from the
Bach10 dataset. We note that the Bach10 dataset was in-
cluded in the training of one of our baselines in pitch esti-
mation, i.e., CREPE [29].

5.2 Evaluation Metrics

As a proxy to descriptive violin transcription, we evalu-
ate our method’s transcription and pitch estimation perfor-
mance separately using the common mir_eval metrics,
and compare with general-purpose baselines. For the tran-
scription, we provide our results with Precision P, Recall
R, F1-score F1, and F1-score without offset F1no using
the default thresholds. Namely, for P, R, and F1, a note
is considered correct its pitch is within 50 cents, the onset
is within 50ms and the offset is within 20% of the note’s
duration. We also include an additional measure, F1no,
where a note is considered correct if the onset is within
50ms without considering the offset. For the pitch estima-
tion experiments, we used the Raw Pitch Accuracy (RPA)
metric with two thresholds: the standard RPA50 metric,
which considers the estimate accurate if it is within 50
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URMP Bach10
P R F1 F1no P R F1 F1no

MUSC 86.5 83.1 84.6 93.0 65.0 64.8 64.8 77.0
MT3 79.1 87.1 82.2 88.9 54.2 51.5 52.7 62.0
BP 58.8 67.9 62.8 83.3 33.6 43.2 37.6 57.5

Table 2: Violin transcription results (%) comparing MUSC
with two general-purpose AMT methods. Tests are con-
ducted on all violin stems from the datasets. Bach10 repre-
sents the fair evaluation in a dataset unseen to all models.
URMP was involved in the training dataset of the MT3,
whereas it is unseen to both BP and MUSC.

URMP Bach10
P R F1 F1no P R F1 F1no

Iter1 84.6 82.5 83.6 92.9 63.1 63.5 63.2 75.3
Iter2 86.5 83.1 84.6 93.0 65.0 64.8 64.8 77.0

Table 3: Violin transcription results (%) before (Iter1) and
after (Iter2) fine-tuning the proposed MUSC model with
the iterative alignment.

cents, and the RPA10 metric, which has a more strict 10-
cent threshold.

5.3 Results

We compare MUSC with two recent general-purpose
AMT baselines: Our first baseline is the Basic Pitch [1]
(BP), which is a lightweight model for instrument-agnostic
AMT. The postprocessing method of BP is optimized for
F1no, and MUSC also shares the same postprocessing
script with their default parameters. The second baseline
we consider for transcription is the MT3 [3], which is a
multi-instrument transcription model that predicts instru-
ment labels alongside transcription. Since we only test on
violin recordings, we combine their output without the in-
strument labels for fair evaluation.

Table 2 summarizes the results for the transcription ex-
periments. At a first glance, the proposed violin-specific
model MUSC outperforms MT3 and BP on both datasets,
indicating that it is a more effective method for violin tran-
scription. Even though the training set of MT3 included the
test samples in the URMP dataset, MUSC yields the best
F1-score value among the three AMT systems. Further-
more, the performance gap between MUSC and MT3 is
greater for the Bach10, which was not included the training
set of any method. The results indicate that the all the mod-
els yield rather poor scores on the Bach10 dataset when
evaluated using the conventional P, R, and F1 metrics.
Since the offsets in the Bach10 dataset are not manually-
corrected, the F1no scores can be viewed as a better indi-
cator of the transcription performance for this dataset.

We also compare our model’s transcription performance
before and after fine-tuning with alignments generated us-
ing its own feature representations. The Table 3 shows that
some of the improvements in our model’s transcription per-
formance can be attributed to the iterative training strategy.

For the pitch estimation experiments, we compare
MUSC with four well-known pitch estimators: the pre-

URMP Bach10
RPA50 RPA10 RPA50 RPA10

MUSC 98.3 89.0 98.3 86.9
vMUSC 98.6 89.4 98.4 87.0
CREPE 96.4 87.2 98.6 88.1
vCREPE 97.3 88.4 98.6 88.1
YIN 95.3 88.4 97.1 81.7
pYIN 97.2 88.6 97.4 80.3
SWIPE 97.2 89.3 97.7 84.3

Table 4: Violin Raw Pitch Accuracy (RPA, %) results.
Note that the training set of CREPE involved the Bach10
dataset. vMUSC and vCREPE contain an additional
Viterbi decoding stage.

trained CREPE model [29] from its official repository 3 ,
pYIN [33], and YIN [42] from librosa 4 , and SWIPE [43]
from the libf0 library 5 . We use the same F♯3 (min) to E8
(max) frequency range for a fair evaluation.

Table 4 summarizes the pitch estimation results. First,
all the pitch estimators achieve high accuracies on both
datasets. For the URMP dataset which is unseen to all
the models, vMUSC (MUSC with Viterbi decoding) out-
performs the common state-of-the-art pitch estimators in
terms of RPA50 and RPA10. For the Bach10 dataset,
which is included in the training samples of the pre-trained
CREPE model, the CREPE expectedly yields the best RPA
values. Note that even though our model was not trained
with these test samples from Bach10, MUSC remains to be
competitive (e.g., 98.4% versus 98.6% RPA50 in Bach10).

6. CONCLUSION

In this paper, we introduced MUSC, an AMT system tai-
lored for violin transcription through high-precision pitch
bend estimation, and the capability of learning from piece-
wise weak labels. We showed that, by only utilizing 120
scores, we were able to obtain state-of-the-art transcription
and pitch estimation results for the violin. We also shared
our descriptive violin transcription dataset to the MIR com-
munity. In the future, we will focus on improving the note
postprocessing and alignment stages of the MUSC in or-
der to specialize better for the string repertoire, and use
it as a large-scale dataset curation tool for strings music,
ethnomusicology, and music education research. We be-
lieve that the descriptive music transcription capabilities of
the MUSC will accelerate the research in music education,
ethnomusicology, and expressive performance generation.
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