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Introduction

The piano concerto, composed for a pianist accompanied
by an orchestra, is a genre of great importance in West-
ern classical music. Even though most pianists practice
piano concertos (also as an essential part of their piano
education) in their careers, only first-class pianists have
the opportunity to actually play with an orchestra. In
this contribution, we propose a computational pipeline
that allows pianists of any level to create their own mixes
with an orchestra track coming from an existing record-
ing. In particular, this pipeline consists of four compo-
nents using techniques from music information retrieval
(MIR) (see Figure 2). First, starting with a complete
piano concerto recording, we apply data-driven source
separation techniques to separate the piano and the or-
chestra. Second, we alleviate separation artifacts (e.g.,
musical noise) in a post-processing step. Third, we use
music synchronization techniques to temporally align the
separated orchestra track with the pianist’s own record-
ing. Finally, we apply time-scale modification to warp
the orchestra track and create the final mix. While in-
troducing a novel dataset used for training and testing
our overall procedure, we discuss the various MIR tech-
niques involved.

Source Separation of Piano Concertos

As a first step of the pipeline, our goal is to separate pi-
ano and orchestra tracks in a music recording using mu-
sic source separation (MSS). Being an essential task in
music information retrieval (MIR), MSS seeks to recover
individual musical sources in audio recordings. Gener-
ally, a musical source can refer to singing, an instrument,
or an entire group of instruments providing an accom-
paniment [1]. Here, we consider the separation of piano
concertos into piano and orchestra tracks, which can be
regarded as a lead-accompaniment separation task [8].

MSS proves to be a challenging task in music process-
ing due to the non-stationary spectro–temporal charac-
teristics of musical signals, as well as their high correla-
tion in both time and frequency. In the last years, deep
neural networks (DNNs) have led to substantial improve-
ments in separating musical sources. One disadvantage of
data-driven deep models is their need for a large training
dataset, which in the case of MSS consists of multitrack
recordings with (isolated) individual sources or stems.
Most of the open-source datasets involving isolated stems
are limited to popular music, e.g., MUSDB18 [9]. How-
ever, professionally produced multitrack recordings are
rare for Western classical music.

Figure 1: While practicing piano concertos is a crucial aspect
of a pianist’s education, it is only the first-class pianists who
have the chance to perform alongside an orchestra. In this
contribution, we propose a computational approach to create
orchestra tracks for piano concertos.

For training deep MSS models, generating random mixes
of solo instrument recordings may improve the separa-
tion quality [11, 13]. In case multitrack recordings are
not available, random mixing for data generation and
augmentation has opened up new paths for separating
instrument mixtures. In this paper, we closely follow our
previous work [6] to address the separation of existing pi-
ano concerto recordings into piano and orchestra tracks.
Our MSS model is trained using an artificial training
dataset through randomly mixing samples from the solo
piano repertoire (e.g., piano sonatas, mazurkas, etc.) and
orchestral pieces without piano (e.g., symphonies) to sim-
ulate piano concertos. As an example, Figure 3 shows the
separation of an excerpt from the first movement of Piano
Concerto in D minor (KV 466) by Wolfgang Amadeus
Mozart.

While random mixes cannot simulate the harmonic and
rhythmic relationships between various instruments in a
real recording, it guides the model to distinguish tim-
bral characteristics of the constituent musical sources.
However, the acoustic properties of recordings (includ-
ing reverberation, and background noise) play an essen-
tial role when upmixing and separating different musical
tracks. For instance, in the case of poor recording con-
ditions, (e.g., historical recordings) the properties of the
test data may not be reflected well in the training set (as
known as inductive bias), thus leading to a poor separa-
tion quality. Finetuning a pre-trained MSS model in the
testing phase using a few samples drawn from the test
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Figure 2: The proposed pipeline for creating orchestra tracks of piano concertos.

Figure 3: An excerpt from the first movement of the Piano Concerto in D minor (KV466) by Wolfgang Amadeus Mozart. The
spectral-based MSS model estimates the magnitude spectrograms of the piano (red) and orchestra tracks (blue). (Figure taken
from [6].)

data (also called test-time adaptation (TTA) [12]) can
improve the separation quality by capturing the specific
acoustic features found in a music recording. Depending
on the period in which a piano concerto was composed,
these compositions often comprise long piano-only (e.g.,
in the cadenza) and orchestra-only parts (e.g., in the ex-
position, also called opening ritornello). Using these sec-
tions, one can create artificial mixes which are extracted
from the audio material of the given test item. As a re-
sult, the mixes share the same recording conditions as
the test data. For further details about the improvement
of qualitative and subjective separation quality via TTA,
we refer to [6].

Signal Reconstruction

Separated sources need to be clean and acoustically sat-
isfactory to achieve a high-quality orchestra track for
the pianists. However, MSS models may introduce un-
desired or distorted sounds that are introduced during
the process of isolating individual musical sources from
a mixture. These artifacts can manifest in various ways,
such as residual sounds from other sources, musical noise,
phase cancellation, spectral smearing, and unnatural-
sounding audio. In our current pipeline, we use soft-
masking to obtain the waveforms from learned magni-
tude spectrograms, which may lead to phase inconsisten-
cies in the reconstructed piano and orchestra tracks (see
Figure 4).

SoftmaskingPhase from
mix

Figure 4: Signal reconstruction from the predicted magni-
tude spectrogram to audio waveform via softmasking.

In future work, we aim to enhance the non-optimal sep-
aration results as the second step of our pipeline. To
this end, we are planning to investigate waveform-based
MSS models (e.g., [2, 10]), which are able to capture
fine temporal details in the input signal that are im-
portant for separating sources with fast transients, such
as piano onsets. Furthermore, we consider using Gen-
erative Adversarial Networks (GANs) as post-processing
following source separation. Following the approach by
SEGAN [7], we can improve the quality of the separated
sources and alleviate the artifacts, such as musical noise
and interference from other instruments.
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Figure 5: The alignment between the played piano record-
ing and separated orchestra track is computed using music
synchronization techniques.

Music Synchronization

The first two steps of our pipeline allow pianists to se-
lect a piano concerto recording and extract the orchestra
track to play along with. However, this is insufficient
for a pleasant user experience since classical music inter-
pretations can vary greatly in tempo and dynamics. In
particular, the performers’ global or local tempo choices
make their interpretations unique and enrich their perfor-
mances. In a real-life recording process, the pianist and
conductor interact for optimal synchronization and cohe-
sion between the piano and orchestra. In our scenario,
however, playing along with a pre-recorded accompani-
ment would be challenging for the performer.

To address this issue, we propose the following solution.
Pianists play and record the piano part of their desired
piano concerto freely. Then, we align the recorded pi-
ano by the pianists with the separated orchestra track,
which comes from the original piano concerto recording
(see Figure 5). For synchronization, we use the open-
source Python package Sync Toolbox [5]1, which provides
all components needed to realize a music synchronization
pipeline that is robust, efficient, and accurate.

Time-Scale Modification and
Postprocessing

As our pipeline’s fourth and final step, we use time-
scale modification (TSM) to align the separated orches-
tra track with the piano recording. Using the alignment
path acquired from the synchronization algorithm as an
input for the TSM Algorithm, we speed up or slow down
the separated orchestra track without affecting the fre-
quency content. Figure 6 shows the creation of the final
mix using the piano recording by the pianist and sepa-
rated, clean, and warped orchestra track.

For TSM, we use the approach by Driedger et al. [3],
which combines harmonic–percussive source separa-
tion (HPSS) and classical algorithms, such as phase
vocoder [4] and WSOLA [14]. The TSM approaches are
available as open-source Python2 and MATLAB3 pack-
ages.

1https://github.com/meinardmueller/synctoolbox
2https://github.com/meinardmueller/libtsm
3https://www.audiolabs-erlangen.de/resources/MIR/TSMtoolbox/
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Figure 6: The piano recording by the pianist (red) is mixed
with the warped orchestra track (blue) using time-scale mod-
ification (TSM).

Following the TSM, we apply a postprocessing step to
create the final mix. To this end, we first apply equal-
ization to the piano recordings to ensure consistent tim-
bral qualities without overcompensating the differences
between piano and orchestra. Then, we apply artificial
reverberation to both tracks simultaneously using the
FabFilter Pro-R2 algorithmic reverb software to increase
the coherence between the piano part and the orchestra
track.

Piano Concerto Dataset (PCD)

In [6], we reported on the separation results using ran-
dom mixes of piano-only and orchestra-only parts sam-
pled from publicly-available piano concertos as test data.
In this scenario, the lack of multitrack recordings made
a realistic quantitative evaluation of the MSS model dif-
ficult. To enable the subjective and quantitative evalu-
ation of MSS models addressing the separation of piano
concertos, we proposed a multitrack dataset: Piano Con-
certo Dataset (PCD). The dataset comprises a collection
of excerpts with separate piano and orchestra tracks from
piano concertos ranging from the Baroque to the Post-
Romantic era.

For the creation of PCD, we used the backing tracks pro-
vided by Music Minus One (MMO)4 and recorded ex-
cerpts from 14 different piano concertos played by five
different performers on various instruments in diverse
acoustic environments. In this scenario, achieving precise
synchronization between the performer and pre-recorded
orchestra accompaniments poses a significant challenge.
For guiding the pianists to obtain high synchronization
accuracy, we incorporated additional click tracks using
measure and beat annotations of the orchestral tracks,
which are also included in the PCD.

PCD is relevant for various MIR tasks, including music
source separation, automatic accompaniment, music syn-
chronization, editing, and upmixing. We released PCD
via an interactive web-based interface5 to provide a con-
venient access.

4https://www.halleonard.com/series/MMONE
5https://www.audiolabs-erlangen.de/resources/MIR/PCD/
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Conclusion

In this paper, we proposed a computational approach
that will allow pianists of any level to create their own
piano concerto mixes using existing recordings. The
pipeline consists of four essential tasks in MIR: source
separation, signal reconstruction and enhancement of
separated sources, music synchronization, and TSM. We
also presented the PCD, which constitutes a dataset for
various applications in MIR, particularly for quantitative
and subjective evaluation of source separation models.
Our pipeline offers a concrete and practical application
and paves the way for exploring new research questions
in various MIR techniques.
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