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ABSTRACT
Many tasks in music information retrieval (MIR) involve weakly
aligned data, where exact temporal correspondences are unknown.
The connectionist temporal classification (CTC) loss is a standard
technique to learn feature representations based on weakly aligned
training data. However, CTC is limited to discrete-valued target se-
quences and can be difficult to extend to multi-label problems. In
this article, we show how soft dynamic time warping (SoftDTW), a
differentiable variant of classical DTW, can be used as an alterna-
tive to CTC. Using multi-pitch estimation as an example scenario,
we show that SoftDTW yields results on par with a state-of-the-art
multi-label extension of CTC. In addition to being more elegant in
terms of its algorithmic formulation, SoftDTW naturally extends to
real-valued target sequences.

Index Terms— dynamic time warping, music processing, music
information retrieval, multi-pitch estimation, music transcription

1. INTRODUCTION

Many applications in music information retrieval (MIR) require
alignments between sequences of music data. Often, the sequences
given are only weakly aligned. For example, in audio-to-score tran-
scription, pairs of audio and score excerpts are easy to find but exact
temporal correspondences between these pairs are hard to estab-
lish [1]. Furthermore, music data sequences may involve different
levels of complexity. For instance, given a single-instrument mono-
phonic music recording, monophonic pitch estimation [2] aims at
finding a single pitch value per time step (see also Figure 1a). Other
scenarios with discrete, single-label targets include lyrics transcrip-
tion or lyrics alignment for songs with a single singer [3, 4]. More
complex sequences appear in multi-pitch estimation (MPE), where
multiple pitches may be active simultaneously (Figure 1b). Finally,
some scenarios involve alignment between real-valued sequences
(Figure 1c), e. g., audio–audio synchronization [5,6] or multi-modal
alignment problems such as synchronizing dance videos with mu-
sic [7].

The connectionist temporal classification (CTC) [8] loss, a fully
differentiable loss function initially developed for speech recogni-
tion, is commonly used for learning features from weakly aligned
data when the targets are sequences over a finite alphabet of labels.
Recently, CTC was extended to handle multi-label learning prob-
lems [9], where the main idea was to locally transform the multi-
label into the single-label case. However, in addition to its compli-
cated algorithmic formulation, this approach is unsuitable for target
sequences that do not originate from a discrete vocabulary.
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Fig. 1: Illustration of SoftDTW for aligning a learned feature se-
quence f(X) and a target sequence Y, where one may consider (a)
single-label, (b) multi-label, or (c) real-valued targets.

A common technique used in MIR for finding an optimal align-
ment between weakly aligned sequences is dynamic time warping
(DTW) in combination with hand-crafted features [10]. Such a
pipeline can provide good alignment results for tasks like audio–
audio synchronization [6], but the standard DTW-based cost func-
tion is not fully differentiable, which prevents its use in an end-
to-end deep learning context. To resolve this issue, Cuturi and
Blondel [11] proposed a differentiable variant of DTW, called Soft-
DTW, that approximates the original DTW cost. In recent work,
SoftDTW and related techniques have been successfully used in
computer vision applications such as action alignment [12, 13]. To
our knowledge, the only prior work applying SoftDTW in an MIR
context is by Agrawal et al. [17].

Our contributions are as follows: We demonstrate the use of
SoftDTW for MPE. In particular, we show that SoftDTW performs
on par with a multi-label extension of CTC, while being conceptu-
ally simpler. Furthermore, we show that the SoftDTW approach nat-
urally generalizes to real-valued target sequences, as illustrated in
Figure 1, making it applicable for a wide range of alignment tasks.

The remainder of the paper is structured as follows: In Section 2,
we review the current state of the art for multi-pitch estimation from
weakly aligned data with CTC. In Section 3, we formalize SoftDTW
for general sequences and, in Section 4, apply it for MPE. Section 5
demonstrates the potential of SoftDTW for learning with real-valued
targets. Finally, Section 6 concludes the paper with an outlook to-
wards future applications.

2. WEAKLY ALIGNED TRAINING FOR MPE

In recent years, automated music transcription has become a cen-
tral topic in MIR research, with deep learning techniques achieving
state-of-the-art results [14–16]. We here focus on MPE as a sub-
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problem of automated music transcription, where the goal is to trans-
form an input music recording X into a piano-roll representation Y
of pitches played. In particular, multiple pitches may be active at
the same time. Most learning-based approaches for MPE require
strongly aligned data for training, i. e., pitches are annotated for each
audio frame of the input recording. Since annotating data in such a
frame-wise fashion is very time consuming, most MPE datasets have
been generated (semi-)automatically, e. g., by using MIDI pianos or
by applying score–audio synchronization techniques (which may in-
troduce labeling errors). Techniques that allow learning from pairs
of X and Y that are not temporally aligned are therefore highly de-
sirable.

As discussed in the introduction, a common technique for deal-
ing with weakly aligned learning problems is CTC [8]. Here, the
target sequences Y consist of symbols from a discrete alphabet L,
including a special blank symbol necessary for distinguishing repe-
titions of symbols. For each frame in the input sequence X , a neural
network outputs a probability distribution over L. The CTC loss
then corresponds to the likelihood of Y given these network outputs,
taking into account all possible alignments between X and Y . Note
that CTC is agnostic about the durations of symbols in Y , i. e., even
if information about symbol durations is available, CTC is unable
to exploit this for alignment. An efficient dynamic programming al-
gorithm for computing the CTC loss exists (with time complexity
O(|L|2 · N), where N is the length of X), but it requires special
care in handling the blank symbol [8].

A naive extension of CTC towards multi-label target sequences
would introduce unique network outputs for all possible symbol
combinations, which leads to a combinatorial explosion. Instead,
the authors in [9] propose to locally reduce the multi-label to the
single-label case by only considering those symbol combinations
that occur within a single training batch (called multi-label CTC,
i. e., MCTC). This defines a “batch-dependent alphabet,” avoiding
the combinatorial explosion. The technical details of this process
are tricky and special care needs to be taken for handling the blank
symbol. In [1], this idea is adapted for MPE by considering pitches
as symbols and multi-pitch annotations as combinations of sym-
bols. This formulation allows them to train networks for MPE on
pairs of X and Y that are only weakly aligned, e. g., where X is
a music recording and Y is a MIDI representation derived from
the corresponding score. In this paper, using MPE from [1] as an
example application, we show how the technically intricate MCTC
can be replaced by a conceptually more elegant SoftDTW approach.
SoftDTW does not involve the need for a blank symbol, which may
be well-motivated in text applications but can be unnatural in MIR
problems such as MPE.

3. SOFT DYNAMIC TIME WARPING

The objective of DTW is to find an optimal temporal alignment be-
tween two sequences. SoftDTW [11] is a differentiable approxi-
mation of DTW that allows for propagating gradients through the
alignment procedure, making SoftDTW applicable for deep learn-
ing. Like classical DTW, SoftDTW admits an efficient dynamic pro-
gramming (DP) recursion for computing the optimal alignment cost.
Furthermore, there also exists a DP-algorithm for efficiently comput-
ing the gradient of that cost. In this section, we briefly summarize
the problem statement and DP recursion of SoftDTW for general se-
quences. We then apply this to our music scenarios in later sections.

Consider two sequences X = (x1, x2, . . . , xN ) and Y =
(y1, y2, . . . , yM ) of lengths N,M ∈ N with elements coming
from some feature spaces F1,F2 (i. e., xn ∈ F1, ym ∈ F2 for all

n ∈ [1 : N ] ,m ∈ [1 :M ]). Given some differentiable cost function
c : F1 × F2 → R defined on these feature spaces, we can construct
a matrix C ∈ RN×M of local costs where each entry

C(n,m) = c(xn, ym)

contains the cost of locally aligning xn with ym. To determine an
optimal global alignment1 between the sequencesX and Y one com-
putes an accumulated cost matrix Dγ ∈ RN×M using the recursion

Dγ(1, 1) = C(1, 1),

Dγ(1,m) =

m∑
k=1

C(1, k), for m ∈ [1 :M ] ,

Dγ(n, 1) =

n∑
k=1

C(k, 1), for n ∈ [1 : N ] ,

Dγ(n,m) = C(n,m) + µγ({Dγ(n− 1,m− 1),

Dγ(n− 1,m), Dγ(n,m− 1)}),

for n ∈ [2 : N ] ,m ∈ [2 :M ]. Here, µγ refers to a differentiable
approximation of the minimum function given by

µγ(S) = −γ log
∑
s∈S

exp

(
− s
γ

)
,

where S is some finite set of real numbers and γ ∈ R>0 is a temper-
ature parameter that determines the “softness” of the approximation.
One can show that µγ is a lower bound of the minimum function [12]
and converges towards the true minimum for γ → 0. As a con-
sequence, Dγ becomes the accumulated cost matrix from classical
DTW for γ → 0. Thus, SoftDTW becomes DTW in the limit case.

After evaluating the SoftDTW recursion, the entry DTWγ(C) =
Dγ(N,M) contains the approximate minimal cost of aligning the
sequences X and Y , given the local costs C. A similar recursion
exists for computing the gradient of DTWγ(C) with regard to any
matrix coefficient C(n,m) for n ∈ [1 : N ] and m ∈ [1 :M ] [11,
Algorithm 2]. The time and space complexity of the SoftDTW re-
cursion as well as the gradient computation is bothO(N ·M), which
is sufficiently fast for use in deep learning.

Note that SoftDTW requires no prior knowledge of the align-
ment between X and Y , which enables the use of DTWγ(C) as a
loss function for learning problems with weakly aligned data. Fur-
thermore, X and Y can come from arbitrary feature spaces, as long
as an appropriate cost function c can be defined.

4. APPLICATION TO MULTI-PITCH ESTIMATION

We now apply SoftDTW to multi-pitch estimation. For a given piece
of music, the sequence X corresponds to some representation of
an input recording, while Y corresponds to a multi-hot encoding of
pitches played. Note that Y does not need to be temporally aligned
with X and could arise, e. g., from a score representation of the mu-
sical piece. An element ym of the sequence Y is encoded as a vector
ym ∈ {0, 1}72 and the entries of ym correspond to the 72 pitches
from C1 to B6. In our experiments, rather than directly aligning Y
with some fixed representation X , we use a neural network f that
takes X as input and outputs a feature vector per frame in X . Thus,

1Subject to some constraints, namely, the first and last elements of both
sequences are aligned to each other (boundary constraint), no element is
skipped (step-size constraint), and the alignment is monotonous (monotonic-
ity constraint).
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we obtain a sequence f(X) = (z1, . . . , zN ) with the same length
N as X . We construct f such that zn ∈ R72 for the elements zn
of f(X). Thus, both sequences Y and f(X) contain elements from
the features space F1 = F2 = R72. We then align f(X) and Y , as
illustrated in Figure 1.

To our knowledge, SoftDTW has not previously been used
for MPE and is seldom explored in MIR. The authors in [4] used
the classical, non-differentiable DTW recursion inside an attention
mechanism for lyrics alignment, which led to training instabilities.
The work by Agrawal et al. [17] constitutes the first use of SoftDTW
for an MIR application. They successfully employ a variant of
SoftDTW to train a system for score-audio synchronization. In their
scenario, SoftDTW is applied to discrete-valued, one-dimensional,
and strongly aligned sequences. In contrast, we employ SoftDTW
for multi-dimensional sequences in weakly aligned settings.

4.1. Implementation Details and Evaluation Metrics

Since the focus of our work is on evaluating the efficacy of SoftDTW
for MIR tasks and in order to maintain comparability with the results
presented in [1], we adopt the same training setup and network ar-
chitecture. Thus, we use harmonic CQT (HCQT, [18]) excerpts of
roughly ten second lengths as input and pass them through a five-
layer convolutional neural network to obtain a sequence of per-frame
representations f(X) (see [1] for details on the network architecture
and HCQT representation).

We train our networks by minimizing the soft alignment cost
DTWγ(C).2 In all experiments, we use the squared Euclidean dis-
tance for c and set γ = 10.0. We did not see improvements for
alternative choices of c and obtained similar results for a wide range
of values for γ ∈ [0.5, 20.0]. Furthermore, we use a fast GPU im-
plementation of the SoftDTW recursion and gradient computation
which was implemented in [19].

To compare network predictions with the strongly aligned pitch
annotations of the test sets, we use common evaluation measures for
MPE, including cosine similarity between predictions and annota-
tions (CS), area under the precision-recall curve (also called average
precision, AP), as well as F-measure and accuracy (Acc., introduced
in [20]) at a threshold of 0.4 (which is a common choice in MPE
systems, see also [21]).

4.2. Comparison with MCTC

We begin by comparing our results with the main results reported in
[1], which are obtained on the Schubert Winterreise Dataset (SWD)
[22]. SWD provides strongly aligned annotations for all recordings.
Due to this, one can consider a baseline trained on the aligned an-
notations with a per-frame cross-entropy loss (CE). The first line
of Table 1 shows results for such an optimistic baseline (reprinted
from [1]), which yields an F-measure of 0.70 and AP = 0.764. To
train a network using MCTC instead, one must remove all informa-
tion about note durations from the label sequence Y (see Figure 2b).
The results obtained this way are just slightly lower at AP = 0.734,
even though only weakly aligned labels are used. When performing
the same experiment using SoftDTW (denoted by SoftDTWW1),
we obtain much weaker results with an F-measure of 0.00 and AP =
0.297.3 In this experiment, the label sequence Y may be signif-

2Note that we normalize DTWγ(C) by its value for the first training
batch. Thus, the loss is exactly 1 for the first batch and its value range remains
similar across training configurations, regardless of the sequence lengths N
and M or other factors.

3Note that the F-measure and Accuracy scores can be improved to 0.32
and 0.20, respectively, by choosing a more suitable detection threshold. Still,
these scores are notably worse compared to the results for MCTC.
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Fig. 2: (a) Strongly aligned pitch annotations for an audio excerpt,
(b) Annotations without note durations (as used by MCTC), (c) An-
notations without note durations, stretched to excerpt length, (d)
Score representation, not aligned to the audio excerpt, (e) Score rep-
resentation, stretched to excerpt length

Scenario F-measure CS AP Acc.

CE [1] 0.70 0.759 0.764 0.546
MCTC [1] 0.69 0.744 0.734 0.532

SoftDTWW1 0.00 0.465 0.297 0.002
SoftDTWW2 0.69 0.736 0.737 0.529

Table 1: Results for multi-pitch estimation on the Schubert Winter-
reise Dataset for SoftDTW compared with MCTC.

icantly shorter than the learned sequence f(X).4 We repeat the
experiment by temporally stretching the sequence Y to match the
number of frames in f(X) (illustrated in Figure 2c). When apply-
ing SoftDTW together with this trick (denoted by SoftDTWW2),
results are again very similar to MCTC (AP = 0.737). Thus, Soft-
DTW may be used to replace MCTC in this scenario.

4.3. Incorporating Note Durations

In contrast to MCTC, SoftDTW is able to incorporate (approxi-
mate) note durations during training. SWD, for example, contains
non-aligned score representations of the pieces performed. We now
use these score representations as target sequences Y (denoted by
SoftDTWW3, see Figure 2d for an illustration). Table 2 shows
evaluation results, which are slightly improved compared to training
without note durations (F-measure of 0.71 compared to 0.69 and
CS = 0.756 compared to 0.736 for SoftDTWW2). Here, there is
only a moderate difference between the lengths of excerpt and label
sequence and stretching the label sequence to the length of the input
yields nearly identical results (denoted by SoftDTWW4, see Fig-
ure 2e). Finally, we may also use SoftDTW using strongly aligned
label sequences (denoted by SoftDTWS). In this very optimistic
scenario, no alignment is necessary, but SoftDTW may compensate
for inaccuracies introduced by the dataset annotation procedures.
Indeed, this scenario yields best results (F-measure of 0.72 and
AP = 0.769), even slightly improving upon the cross-entropy
baseline in Table 1.

4.4. Cross-Dataset Experiment

We also perform a cross-dataset experiment (again following the
setup in [1]), where we train on the popular MAESTRO [23] and
MusicNet [21] datasets. Both contain strongly aligned pitch an-
notations for the training recordings, but they do not provide non-
aligned score representations of the pieces, so SoftDTWW3 and

4A large discrepancy in sequence lengths is well known to cause problems
for classical DTW. Further investigation is needed to understand how this
affects the training process with SoftDTW.
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Scenario F-measure CS AP Acc.

SoftDTWW3 0.71 0.756 0.755 0.552
SoftDTWW4 0.71 0.757 0.750 0.555
SoftDTWS 0.72 0.761 0.769 0.563

Table 2: Results on the Schubert Winterreise Dataset for incorporat-
ing note durations with SoftDTW.

Scenario AP
SWD Bach10 TRIOS Phenicx

Default network architecture
CE [1] 0.684 0.864 0.825 0.829
MCTC [1] 0.666 0.861 0.824 0.833
SoftDTWW2 0.665 0.835 0.812 0.788

Larger network architecture
CE [1] 0.701 0.886 0.863 0.846
MCTC [1] 0.677 0.871 0.849 0.850
SoftDTWW2 0.682 0.896 0.864 0.838

Table 3: Results for multi-pitch estimation in a cross-dataset exper-
iment. Here, MAESTRO and MusicNet have been used for training
while four different smaller datasets are used for testing.

SoftDTWW4 are not applicable here. We then evaluate on the four
smaller datasets SWD, Bach10 [24], TRIOS [25] and Phenicx Ane-
choic [26]. Note that the latter three datasets each contain less than
ten minutes of audio. This is a difficult scenario since some styles
and instruments in the test datasets are not present during training.
For example, Phenicx Anechoic contains orchestral instruments,
while MAESTRO and MusicNet contain piano and chamber music.

The results of this experiment are given in Table 3. Here, MCTC
and a cross-entropy baseline perform roughly on par. SoftDTW
yields slightly lower results, especially on Phenicx (AP = 0.788
compared to 0.833 for MCTC). Given that this evaluation scenario
is harder and the training datasets are larger, we also repeat this ex-
periment with a larger network architecture (increasing the number
of channels for all convolutional layers in the network). The re-
sulting architecture has roughly 600 000 parameters, compared to
50 000 parameters in the default architecture. Results are shown in
the lower half of Table 3. Average precision scores improve consis-
tently across all methods and datasets, e. g., AP = 0.896 for Soft-
DTW on Bach10 compared to 0.835 using the smaller architecture.
In particular, SoftDTW now outperforms MCTC on all test datasets
except for Phenicx, where the performance gap is now much smaller
(AP = 0.838 compared to 0.850 for MCTC).

All in all, we conclude that the results for MCTC and SoftDTW
are roughly comparable, even in a challenging cross-dataset evalua-
tion. Thus, MCTC may be replaced with SoftDTW without sacrific-
ing alignment quality. In addition, SoftDTW can generalize to other
kinds of target sequences, as discussed in the next section.

5. EXTENSION TO REAL-VALUED TARGETS

As explained in Section 3, the two sequences X and Y that are used
as input to SoftDTW may come from arbitrary feature spaces. In or-
der to illustrate the potential of using SoftDTW for learning from
arbitrary sequences, we now perform two experiments with real-
valued targets, i. e., yn ∈ R72 for the elements yn of Y . Note that
MCTC is unable to handle such a setting.

5.1. Pitch Estimation with Overtone Model

First, we consider a straightforward extension of MPE, where we
transform the binary, multi-hot target vectors of MPE to real-valued
vectors by adding energy according to a simple overtone model, see
Figure 1c. Here, we consider 10 overtones for each active pitch,
with amplitude (1/3)n for the n-th overtone. As a baseline utilizing
strongly aligned labels, we compare with a model trained using an `2
regression loss at each frame (similar to the cross-entropy baseline
in Section 4). To evaluate, we use the cosine similarity CS between
network outputs and annotations. Note that other MPE evaluation
metrics are not applicable for real-valued vectors.

When performing this experiment on the SWD dataset, we ob-
tain CS = 0.794 for per-frame training with strongly aligned labels,
which is higher than for MPE on SWD (cf. Table 1). Training with-
out strongly aligned labels using SoftDTWW2 yields only slightly
lower cosine similarities at 0.770. This illustrates that SoftDTW also
works for settings with real-valued target sequences.

5.2. Cross-Version Training

Second, as a scenario with more realistic target sequences, we
choose Y to be the CQT representation of another version (i. e.,
a different performance) of the piece played in X . In this case,
the two sequences f(X) and Y will not correspond temporally,
but SoftDTW can be used to find an appropriate alignment during
training. We perform this experiment using SWD, which provides
multiple versions of the same musical pieces. In particular, we
choose one version (OL06) as the target version and train our net-
work using SoftDTW to align input excerpts from other versions
to excerpts from OL06. Finally, we pass versions unseen during
training through the trained network and evaluate against excerpts
from OL06 using cosine similarity. As a learning-free baseline, we
also compute CS between the original CQT representations of the
test recordings and the OL06 representations. To compute the co-
sine similarities during testing, we use the ground truth alignments
between OL06 and all other versions provided by the dataset, but we
do not need ground truth alignments during training.

Directly comparing the CQT representations of input version
and target yields an average cosine similarity of 0.576. Training (us-
ing SoftDTWW3) yields much higher results at CS = 0.720. Thus,
the network trained using SoftDTW is able to produce real-valued
outputs that are similar to the target version.

6. CONCLUSION

In this paper, we have considered SoftDTW as a tool for dealing
with weakly aligned learning problems in MIR, in particular, multi-
pitch estimation. We showed that a network trained with SoftDTW
performs on par with the same network trained using a state-of-the-
art multi-label CTC loss. We further demonstrated that SoftDTW
can be used to learn features when the target sequences have real-
valued entries—something not possible with CTC.

In future work, SoftDTW may be applied to more diverse MIR
tasks, such as lyrics alignment, audio–audio synchronization, or
cross-modal learning from unaligned video–audio pairs. Further-
more, one may explore the possibility of combining both strongly
aligned and non-aligned data within the same training. All these
options are supported by the same algorithmic framework.
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Gómez, “A comparison of melody extraction methods based
on source-filter modelling,” in Proc. Int. Soc. Music Informa-
tion Retrieval Conf. (ISMIR), New York City, New York, USA,
2016, pp. 571–577.

[3] Ye Wang, Min-Yen Kan, Tin Lay Nwe, Arun Shenoy, and Jun
Yin, “Lyrically: automatic synchronization of acoustic musical
signals and textual lyrics,” in Proc. ACM Int. Conf. Multimedia,
New York, NY, USA, 2004, pp. 212–219.

[4] Kilian Schulze-Forster, Clement S. J. Doire, Gaël Richard, and
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