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ABSTRACT

Multi-pitch estimation (MPE), the task of detecting active
pitches within a polyphonic music recording, has garnered
significant research interest in recent years. Most state-of-
the-art approaches for MPE are based on deep networks
trained using pitch annotations as targets. The success of
current methods is therefore limited by the difficulty of ob-
taining large amounts of accurate annotations. In this pa-
per, we propose a novel technique for learning MPE with-
out any pitch annotations at all. Our approach exploits
multiple recorded versions of a musical piece as surrogate
targets. Given one version of a piece as input, we train a
network to minimize the distance between its output and
time–frequency representations of other versions of that
piece. Since all versions are based on the same musical
score, we hypothesize that the learned output corresponds
to pitch estimates. To further ensure that this hypothesis
holds, we incorporate domain knowledge about overtones
and noise levels into the network. Overall, our method re-
places strong pitch annotations with weaker and easier-to-
obtain cross-version targets. In our experiments, we show
that our proposed approach yields viable multi-pitch esti-
mates and outperforms two baselines.

1. INTRODUCTION

Music transcription, i. e., converting music audio record-
ings into score representations, is a fundamental task in
music information retrieval (MIR). As a subtask of tran-
scription, one may estimate the pitches active at different
points in time throughout a recording of polyphonic mu-
sic, yielding a piano roll representation (without consider-
ing instrumentation, note values, or other score-based in-
formation). This goal is commonly referred to as multi-
pitch estimation (MPE). Recent years have seen signifi-
cant advances in MPE systems, mainly due to the use of
deep learning models [1–6]. These models are typically
trained with large amounts of aligned pitch annotations as
targets, see also Figure 1a. Creating such annotations may
involve an enormous effort. In particular, manually anno-
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Figure 1: Systems for multi-pitch estimation are typically
trained using pitch annotations (a), which are cumbersome
to create. In this work, we propose to use different ver-
sions of a piece as surrogate targets (b), which are much
easier to obtain. In both scenarios, a network input (I)
is passed through convolutional layers, producing an out-
put (O), which is compared to one or several targets (T)
using some loss function (L).

tating pitch activity in every frame of an audio recording
would be prohibitively time consuming. Many datasets are
thus annotated using semi-automatic methods like score–
audio synchronization (e. g., [7]), which introduces anno-
tation errors. Because of this, systems that can learn pitch
estimation without large amounts of pitch annotations are
highly desirable.

In this paper, we propose a novel approach for learn-
ing MPE without pitch annotations. As our key idea, we
use different versions (i. e., recorded performances) of a
musical piece as surrogate targets. To this end, we lever-
age cross-version music datasets, which contain several
versions per piece. Such datasets are especially common
for Western classical music, where the same compositions
are regularly performed by different musicians. Each ver-
sion exhibits unique timing, artistic expression, and vary-
ing acoustic conditions. All versions, however, are based
on the same musical score and thus contain the same com-
binations of pitches. We therefore hypothesize that a deep
network may produce pitch estimates by learning the com-
monalities between different versions of a piece.
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In our approach, we train a deep network that takes
a time–frequency representation of one version as input,
and whose output minimizes a certain distance to time–
frequency representations of other versions. This core idea
is illustrated in Figure 1b. Since versions vary in length
and the timing of pitch events may be different, we require
a distance measure that temporally aligns the network out-
put to the representations of other versions. To do so within
a deep learning setting, we use a differentiable variant of
dynamic time warping called SoftDTW [8]. Apart from
the fundamental frequencies of pitches played, all recorded
versions of a piece contain overtone structures and ambi-
ent noise. To increase the validity of our hypothesis and
to encourage the network to capture nothing but pitches,
we incorporate knowledge about overtones and noise us-
ing additional fixed processing blocks.

Overall, our proposed approach replaces the need for
strong pitch annotations (which are frame-wise, binary,
and difficult-to-obtain) with weaker cross-version targets
(not temporally aligned, real-valued, and easy-to-obtain).

In summary, we make the following contributions: We
propose a novel approach for weakly supervised MPE that
does not require pitch annotations, based on the hypothesis
that pitch estimation can be learned from multiple versions.
We further propose to incorporate extra layers for simulat-
ing overtones and noise levels to ensure that our hypothesis
holds. Finally, as a proof of concept, we show qualitatively
and quantitatively that our approach can be used for MPE
and outperforms two baselines. To aid reproducibility, we
release code and trained models for our approach. 1

The remainder of this paper is structured as follows: In
Section 2, we discuss related work on pitch estimation. In
Section 3, we describe our proposed approach. Section 4
covers the experimental setup, while Section 5 contains our
results. Section 6 concludes the paper with an overview of
possible directions for future work.

2. RELATED WORK

ON MULTI-PITCH ESTIMATION

The majority of work on MPE and music transcription in
general has focused on supervised training schemes, where
a dataset of music recordings with aligned pitch annota-
tions is given. Most recent papers utilize deep learning
models that are trained with pitch targets using standard
cross-entropy loss functions [1–5]. Often, these works fo-
cus on piano music, where annotations can be obtained us-
ing MIDI recording technology built into certain types of
pianos [9]. We refer to [6] for an overview of music tran-
scription research.

Some works have explored pitch estimation from data
without aligned pitch annotations. Weiß and Peeters [10]
proposed to utilize weakly aligned annotations, where
there may be temporal deviations between recorded per-
formance and annotations. This scenario is also explored
in [11]. However, in both cases, pitch annotations are re-
quired for the entire training dataset. Gfeller et al. [12] in-

1 https://www.audiolabs-erlangen.de/resources/

MIR/2023-ISMIR-WeaklySupervisedMPE

troduced a self-supervised approach for pitch estimation,
where a network learns to predict the relative differences
between pitch-shifted, monophonic recordings. Their ap-
proach requires only a small amount of data with pitch
annotations, but does not deal with polyphonic scenarios.
Berg-Kirkpatrick et al. [13] describe a system for MPE
on piano recordings that does not use pitch annotations.
Their approach solves an optimization problem, with con-
straints motivated by the sound production process in pi-
anos. In contrast, the method we propose in this paper uti-
lizes several versions of a musical piece and could be used
for recordings with arbitrary instruments.

3. PROPOSED METHOD

We now describe our proposed approach for learning
MPE using cross-version alignment. Here, we assume
that we have multiple corresponding recorded versions
for each musical piece in the training set. Let us de-
note the set of all corresponding versions for one piece by
V = {V1, V2, . . . }. Furthermore, given a version V ∈ V ,
we write InputRep(V ) for the audio representation of V

that our network takes as input. 1

Given an input I = InputRep(V ), we formulate
MPE as the problem of producing a binary piano roll
M̃ ∈ {0, 1}B×N that matches the pitch annotations
A ∈ {0, 1}B×N for that input. Here, B denotes the num-
ber of pitch bins, while N is the number of time frames
in the input. In the supervised case, deep networks for
MPE produce a real-valued output O ∈ [0, 1]

B×N that is
optimized using the binary cross-entropy loss LBCE with
T = A as targets (where the loss is averaged over all time–
pitch bins). The final pitch predictions M̃ are obtained from
O by applying a threshold τ . This threshold is often set
to a fixed value (e. g., τ = 0.4 in [7]) or optimized on a
validation dataset [14]. This supervised approach to MPE,
which crucially relies on the aligned pitch annotations A,
is illustrated in Figure 1a. In the following, we will refer
to it with the shorthand Sup.

Our proposed approach, illustrated in Figure 1b, also
takes an input representation I = InputRep(V ) for
some version V ∈ V . As before, our network yields
a real-valued output O ∈ [0, 1]

B×N . However, rather
than using pitch annotations A, we utilize a surrogate
target T = TargetRep(V ′) based on another version
V ′ ∈ V \ {V }. We choose a time–frequency representa-

tion TargetRep(V ′) ∈ [0, 1]
B×N

′

as target that is normal-
ized in the range [0, 1] and has the same number of bins
B as O, but a potentially different number of time frames
N ′, due to the temporal differences between versions. 1 As
explained in the introduction, T contains the same combi-
nations of pitches as I. 2 Intuitively, if O is close to the
target representations of all versions V \ {V }, we hypoth-
esize that O must correspond to pitch estimates for I. We

1 Details of InputRep and TargetRep are provided in Section 4.
2 Here, we assume that there are no structural differences between ver-

sions, i. e., performers do not deviate from the score. Versions performed
in different keys can be handled through pitch shifting, see Section 4.
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Figure 2: Detailed overview of the proposed cross-version alignment (CVA) method, see also Figure 1b. Before applying
the alignment loss (LSoftDTW), the intermediate output of the network (M) is optionally extended using a simple overtone
model (+Ov) and a bias value (+B) to address background noise. The final output O can thus arise from different configura-
tions (e. g., O = M,O = M+Ov, . . . ). Importantly, the MPE output of the system (M̃) is computed based on the intermediate
representation M, rather than the output O.

refer to our proposed approach with the shorthand CVA (for
“cross-version alignment”).

Note that we cannot directly apply a loss on time–pitch
bins here (as in the supervised case), since O and T are
not temporally aligned. For this reason, we use the dif-
ferentiable alignment loss LSoftDTW in our approach, see
Section 3.1. Furthermore, our hypothesis may fail to ap-
ply, since recorded versions of a piece contain overtone
structures and background noise in addition to the pitches
played. We thus extend our approach to account for these
properties of music recordings in Section 3.2.

3.1 Differentiable Alignment

In order to perform temporal alignment between O and a
target representation T in a differentiable fashion, we use
the SoftDTW loss [8]. SoftDTW is a differentiable approx-
imation of the classical dynamic time warping algorithm
that is often used to align music sequences [15]. SoftDTW
has originally been introduced for one-dimensional time
series but has also been adopted for computer vision tasks
like action recognition in video recordings [16,17]. Within
MIR, SoftDTW has previously been used in the context of
music synchronization [18] and MPE [11]. In [11], the au-
thors showed that SoftDTW can be used to replace strongly
aligned (i. e., frame-wise) pitch annotations with weakly
aligned pitches without a major impact on MPE perfor-
mance. Nevertheless, their approach requires pitch anno-
tations for training.

In our case, we crucially rely on the ability of SoftDTW
to align real-valued sequences such as time–frequency rep-
resentations of audio. In contrast, a commonly used alter-
native loss function called connectionist temporal classi-
fication (CTC) can only handle discrete target sequences.
To compute LSoftDTW, one needs to choose a local cost
function (for comparing individual frames of the time–
frequency representations) and set a temperature hyper-
parameter called γ (which determines the approximation
quality of SoftDTW). Here, we use the cosine distance for
comparing frames, which exhibited high training stability
in our experiments. We further set γ = 0.1, which corre-
sponds to a good approximation of DTW.

As a drawback, the time and space complexity of Soft-
DTW is quadratic in the lengths of the input sequences.
We thus train on short input excerpts (see Section 4).

3.2 Overtone and Noise Model

Aside from differentiable alignments, our proposed ap-
proach utilizes fixed processing layers that simulate over-
tone structures and background noise. In this way, our
method follows the analysis-by-synthesis paradigm [19],
where one estimates parameters from an audio recording
(pitches, in our case) by re-synthesizing the input. Choi
and Cho [20] utilized this idea for unsupervised drum tran-
scription. Their network consists of a transcription stage
and a fixed sample-based drum synthesizer. The transcrip-
tion network is trained by minimizing a reconstruction loss
on the synthesizer output. In recent years, such systems
have become more popular due to the release of the dif-
ferentiable digital signal processing (DDSP) library [21],
which has been used, e. g., in the context of unsupervised
monophonic pitch estimation [22]. In contrast to these
works, our proposed approach utilizes cross-version data.

A full overview of our CVA approach is given in Fig-
ure 2. We explicitly add overtones (denoted by +Ov) and
background noise (+B) to an intermediate output M of our
network via dedicated layers. In this way, the network may
learn a sparser and more piano roll-like representation M,
since overtones and noise are added afterwards. Crucially,
the final MPE results M̃ are obtained from M, before over-
tones and noise are applied. The output O, used for align-
ment with the cross-version targets, depends on the model
configuration used. For example, O = M+Ov+B if all mod-
ules are used, O = M+Ov if only overtones are added, etc.
In the basic system without extensions, O = M.

Here, we opt for very simple overtone and noise models
that serve to indicate the potential of our core idea. We esti-
mate the relative amplitudes of different harmonics from a
small internal dataset of single-note piano recordings. The
resulting estimates, used for our overtone model, are illus-
trated in Figure 3. We keep these values fixed for all sub-
sequent experiments. To apply this fixed overtone model
within our network in a differentiable fashion, we sum up
pitch-shifted versions of M. For each harmonic h, we shift
M along the vertical axis by a number of semitones corre-
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Figure 3: Amplitudes for the overtone model (+Ov) em-
ployed in our proposed approach.

sponding to h (e. g., 12 semitones for h = 2). We then
weight the shifted representation with the amplitude esti-
mated for h (see Figure 3). The final output is obtained by
summing the resulting representations for all h. 3 To ad-
dress the overall noise level in the target T, we add a fixed
bias term of δ = 0.2 after applying the overtone model.
As a result of this additional processing, we may obtain
outputs larger than 1. We therefore clip all values outside
the interval [0, 1] (corresponding to the value range of the
target representations T) to get the final output O.

4. EXPERIMENTAL SETUP

4.1 Model, Representations, and Training

In this work, we focus on demonstrating the potential of
our cross-version approach compared to traditional, fully
supervised training for MPE. Thus, we do not propose
complicated network architectures that require extensive
tuning. Instead, we use a relatively small convolutional
neural network for extracting the representation M from
I. For InputRep and TargetRep, we use time–frequency
representations based on the constant-Q transform (CQT),
which provides a frequency axis corresponding to semi-
tones. Note that we cannot train on entire (several min-
utes long) recordings in a single step. Instead, our training
batches contain short input excerpts and we use state-of-
the-art music synchronization techniques [23] to find the
corresponding sections in other versions.

Concretely, we use the network architecture, input rep-
resentation, and training setup from [10] (we refer to their
paper for details). Their network consists of five convolu-
tional layers with musically motivated kernel shapes and
roughly 50 000 learnable parameters. The network takes
a magnitude harmonic CQT (HCQT [24]) of an audio ex-
cerpt as InputRep, containing N = 500 frames computed
with a hop size of 512 from waveforms at 22 050 Hz (i. e.,
an excerpt of 11.6 seconds length). The network produces
outputs M of the same length, with a pitch axis containing
B = 72 bins (corresponding to the semitones from C1 to
B6). The final layer of the network contains a sigmoid acti-
vation, such that all values in M are restricted to the interval

3 Equivalently, the overtone model can be understood as a frame-wise
convolution in pitch direction, with a kernel based on the amplitudes in
Figure 3.

[0, 1]. For TargetRep, we use magnitude CQTs where the
center frequencies of different bins correspond to the same
B = 72 semitones. Column-wise max-normalization is
applied on T, such that the target values are also in [0, 1].

We train our network by minimizing the SoftDTW
loss over all training excerpts until the validation loss has
stopped improving for 12 epochs. In each training step,
we compute the loss on a batch of 16 inputs. Each input
excerpt is based on some version V ∈ V and aligned to
the corresponding excerpt in one randomly selected target
version V ′ ∈ V \ {V }. We use the Adam optimizer with
a learning rate of 0.001, which is reduced whenever the
validation loss has not improved for three epochs. Finally,
we employ an efficient CUDA implementation of the Soft-
DTW recursions by Maghumi et al. [25]. 4

4.2 Dataset and Split

To train our cross-version approach, we require a dataset
containing multiple versions per piece. For testing, we ad-
ditionally require aligned pitch annotations for the record-
ings. We opt for using the Schubert Winterreise Dataset
(SWD, [26]) for training, which contains nine versions of
the 24 songs in the cycle “Winterreise” composed by Franz
Schubert (in total, roughly 11 h of audio). Each song con-
stitutes one unique musical piece. The recordings consist
of a tenor or baritone singer accompanied by piano. There
are no structural differences between versions. Thus, all
recordings for a piece contain the same combinations of
pitches up to transposition (a global pitch shift), since some
musicians chose to perform some songs in different keys.
When training our CVA approach, we ensure that input and
target version are in the same key by appropriately shifting
the target CQT representation according to the key annota-
tions given in the dataset.

We train and evaluate our model using a challenging
split where the train and test sets contain both different
versions and different songs. We choose songs 1–13 for
training, 14–16 for validation, and 17–24 for testing. Fur-
thermore, versions HU33 and SC06 are used for testing,
while the remaining seven versions are used for training
and validation. Such a split is also referred to as a “neither
split”, since neither the same versions nor songs appear
during training and testing [27]. This split avoids over-
optimistic evaluation due to confounders such as the “al-
bum effect” [28].

4.3 Baselines

Aside from the supervised baseline Sup, which is trained
using strong pitch annotations, we compare our proposed
CVA approach to two additional baselines. With these,
we aim to evaluate our hypothesis that cross-version tar-
gets are useful for learning MPE-like representations (see

4 Note that, within one batch, the targets T may have different lengths.
In order to benefit from parallelization across the batch dimension, we
therefore rescale the targets T to a common length N

′
= 500 (a trick

referred to as W4 in [11]). This did not affect results negatively in early
experiments. Note that rescaling is not equivalent to temporally aligning
inputs and targets.
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Scenario CS AP
τ = 0.4 τ = τ

∗

F Acc. F Acc.

CQT 0.585 0.410 0.443 0.287 0.450 0.292
AE 0.588 0.500 0.336 0.203 0.511 0.345

CVA 0.632 0.589 0.585 0.416 0.592 0.423
CVA+Ov 0.664 0.639 0.553 0.384 0.623 0.455
CVA+B 0.633 0.563 0.560 0.392 0.592 0.424
CVA+Ov+B 0.682 0.646 0.625 0.458 0.627 0.460

Sup 0.748 0.753 0.700 0.543 0.703 0.546

Table 1: Results for multi-pitch estimation on the Schubert
Winterreise Dataset for the baselines and different config-
urations of our proposed approach.

Section 3). For the CQT baseline, we take the target rep-
resentations of our test recordings (which are normalized
to have values in the range [0, 1]) and obtain multi-pitch
estimates by directly thresholding these magnitude CQTs
with τ . This learning-free baseline was previously pro-
posed in [10] and, like CVA, does not require pitch anno-
tations. Furthermore, we consider a second baseline that
is very similar to CVA but does not utilize cross-version
targets. Therefore, for each input excerpt, we choose the
same version V ∈ V for both I and T. Thus, the network
needs to effectively recreate its input, similar to an auto-
encoder. We refer to this baseline with the shorthand AE.
Intuitively, we expect CQT and AE to yield similar results.
However, AE allows us to verify that any improvements
observed for CVA stem from the cross-version targets and
not from the model architecture or training setup. Note that
Sup and AE use the same network architecture as CVA.

4.4 Evaluation Metrics

We evaluate the multi-pitch estimates of our proposed ap-
proach and all baselines using standard metrics on the test
set. For this, we utilize the strongly aligned pitch annota-
tions provided in the test data. As metrics, we use the co-
sine similarity (CS) between predictions and annotations,
averaged over all frames and files in the test set. Further-
more, we compare the average precision (AP, computed as
the area under the precision-recall curve), F-measure (F),
and the accuracy (Acc.) metric introduced in [29]. For
these measures, we average over all pitches. Note that F
and Acc. are evaluated on M̃ and thus depend on the thresh-
old τ , while CS and AP are threshold-free evaluation met-
rics that directly compare M and A.

5. RESULTS

The main results of our study are summarized in Table 1.
Rows correspond to different baselines or configurations of
our proposed approach. We write +Ov when adding over-
tones and +B when including the bias term to account for
background noise. Our model including all proposed mod-
ules is thus referred to as CVA+Ov+B. Columns contain
the evaluation metrics. For the thresholding-based metrics
F and Acc., we provide both results based on a fixed thresh-
old (τ = 0.4) and a threshold chosen to optimize F on the
validation set (τ = τ∗).
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Figure 4: F-measures on the test set for different MPE ap-
proaches, depending on the choice of threshold τ . Markers
show the optimal threshold τ∗ as determined on the vali-
dation set.

Our proposed approach CVA outperforms the two base-
lines CQT and AE across all metrics, demonstrating the ef-
fectiveness of using different versions of a piece to capture
pitches in M. For example, CS=0.632 for CVA compared
to CS = 0.588 for AE, and AP = 0.589 for CVA com-
pared to AP = 0.410 for CQT. Furthermore, our proposed
overtone and noise models are effective. By adding over-
tones (CVA+Ov), we can further increase AP from 0.589
to 0.639. Adding a fixed bias term (CVA+B) does not
yield improvements by itself. However, by combining both
modules (CVA+Ov+B), we achieve the best results for our
approach, further increasing AP to 0.646 and CS to 0.682.

Despite these encouraging results, there remains a gap
between the best results for our proposed approach and
those for the supervised baseline Sup. We emphasize
again that—unlike CVA—Sup requires strong pitch anno-
tations for training.

5.1 Impact of Threshold τ

When using the standard value of τ = 0.4 for threshold-
ing M, our CVA approach also outperforms both baselines
in terms of F-measure and accuracy (e. g., F = 0.553 for
CVA+Ov compared to 0.443 for CQT).

A fixed threshold may be sub-optimal, especially for
methods that are not explicitly trained for MPE. When
evaluating using the optimized threshold τ∗, we observe
increased results for all approaches. CVA and its extensions
continue to outperform the two baselines. The F-measure
for CVA+Ov, for example, further increases to F = 0.623.
For that model, the optimal threshold as determined on the
validation set is τ∗ = 0.28. In this case, our method re-
quires at least a few pitch annotations to determine τ∗ and
is no longer relying solely on the cross-version targets.

Figure 4 further demonstrates the impact of the param-
eter τ . F-measures (vertical axis) are shown for different
MPE approaches (colored lines), depending on the choice
of τ (horizontal axis). Markers indicate τ∗. As shown in
this figure, a poor choice of τ may strongly affect test re-
sults. Moreover, τ∗ as found using the validation set may
not always give the highest scores on the test set. For in-
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Figure 5: Qualitative results on a test excerpt from SWD.

stance, a choice of τ = 0.5 would yield an even higher
F-measure of 0.634 for CVA+Ov+B.

5.2 Training Stability

The metrics reported in Table 1 are computed from a single
training run per method. When repeating the experiment,
results may deviate slightly due to random network ini-
tialization, dataset shuffling, or dropout. For CVA+Ov+B,
we repeat the experiment five times and find low standard
deviation σ in results (σ(CS) = 0.004, σ(AP) = 0.009,
σ(F) = 0.008, and σ(Acc.) = 0.009 for τ = τ∗).

5.3 Qualitative Results

To complement the quantitative evaluation, we also pro-
vide qualitative results on an exemplary excerpt in Fig-
ure 5. The first row shows an input excerpt (I) and corre-
sponding pitch annotations (A), while the remaining rows

show multi-pitch estimates before (M) and after threshold-
ing (M̃, computed using τ = τ∗).

For CQT and AE, the resulting M correspond to the input
representation and thus lead to poor multi-pitch estimates.

When training our approach without overtones or noise
model (CVA), the output representation M emphasizes the
fundamental frequencies of many of the actual pitches be-
ing played. However, M also contains a lot of energy from
overtone structures and background noise. As a conse-
quence, the resulting M̃ contains many spurious pitch pre-
dictions, especially for higher pitches.

With +Ov and +B, we see a reduced impact of over-
tones or background noise in M, respectively. In both cases,
many erroneous predictions remain after thresholding. By
including both modules (CVA+Ov+B), we obtain a promis-
ing representation that bears visual resemblance to the re-
sults for Sup. We also observe fewer spurious activations
in M̃ compared to the basic CVA. Overall, the proposed ex-
tensions are effective in encouraging the model to produce
MPE predictions in M.

6. CONCLUSION

In this paper, we presented a novel approach for MPE that
does not require pitch annotations for training. Instead,
our method utilizes multiple versions of the same musical
piece as surrogate targets. We train a network that takes a
time–frequency representation of one version as input and
minimizes an alignment-based distance to time–frequency
representations of other versions. We hypothesized that
this would result in outputs corresponding to pitch esti-
mates. We further incorporate knowledge about overtones
and noise levels into our system to support this hypothesis
and improve results. In our experiments, we showed that
our approach outperforms two baselines and that our pro-
posed extensions to the model are effective. Overall, our
work demonstrates the use of weak cross-version targets to
replace strong pitch annotations.

This paper serves as a proof of concept for our core idea,
which could be extended in future work. First, better re-
sults may be obtained by utilizing larger model architec-
tures and bigger training datasets than in the present study.
Here, we also abstained from excessive model and hyper-
parameter tweaking. In the future, larger and more exten-
sively tuned models may close the gap between fully su-
pervised approaches and the proposed cross-version train-
ing. Second, one may extend our approach to align one in-
put excerpt to multiple versions simultaneously within the
same training step (rather than choosing one target version
at a time). This may further regularize the model output.
Finally, future work may explore more elaborate synthe-
sis models that could replace the simplistic overtone and
noise models used here. For example, one may incorpo-
rate knowledge about the sound production processes of
different instruments into the network [13]. In this con-
text, results might also be improved by estimating the syn-
thesis parameters (e. g., amplitudes of the overtone model)
from the input recording, rather than using fixed process-
ing steps.
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