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ABSTRACT

A central challenge for a cappella singers is to adjust their into-
nation and to stay in tune relative to their fellow singers. During
editing of a cappella recordings, one may want to adjust local into-
nation of individual singers or account for global intonation drifts
over time. This requires applying a time-varying pitch-shift to the
audio recording, which we refer to as adaptive pitch-shifting. In
this context, existing (semi-)automatic approaches are either labor-
intensive or face technical and musical limitations. In this work,
we present automatic methods and tools for adaptive pitch-shifting
with applications to intonation adjustment in a cappella record-
ings. To this end, we show how to incorporate time-varying in-
formation into existing pitch-shifting algorithms that are based on
resampling and time-scale modification (TSM). Furthermore, we
release an open-source Python toolbox, which includes a variety
of TSM algorithms and an implementation of our method. Finally,
we show the potential of our tools by two case studies on global
and local intonation adjustment in a cappella recordings using a
publicly available multitrack dataset of amateur choral singing.

1. INTRODUCTION

A cappella singing is a wide-spread vocal performance practice
where one or multiple singers sing together without instrumen-
tal accompaniment. Without having an instrumental reference, it
becomes crucial that a cappella singers adjust their pitch relative
to their fellow singers [1, 2]. Performances (in particular of am-
ateur or semi-professional ensembles) can exhibit different kinds
of intonation inaccuracies, ranging from individual, local intona-
tion problems (e.g., singers singing a note too low or too high) to
global intonation drifts over time [1, 3, 4, 5]. Figure 1 exemplifies
such inaccuracies with an excerpt from an SATB (Soprano, Alto,
Tenor, Bass) quartet performance, showing fundamental frequency
(F0) trajectories on top of a reference derived from a musical score
(visualized in gray). The figure illustrates two phenomena: first,
the performance exhibits local intonation inaccuracies such as for
the tenor voice (green), which sings the beginning of the first note
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Figure 1: F0-trajectories of four-voice a cappella performance (so-
prano=orange, alto=red, tenor=green, bass=blue). The score refer-
ence is indicated in grey.

slightly too low. Second, the performance exhibits a global in-
tonation drift downwards over the course of the excerpt (all four
F0-trajectories lay below the gray score reference at the end of the
excerpt).

During postprocessing of a cappella recordings, one may want
to adjust local or global intonation deviations using pitch-shifting
techniques. Pitch-shifting is the task of changing an audio record-
ing’s pitch without altering its duration. Over the last decades,
several conceptually different approaches have been proposed in
the literature, ranging from time-domain algorithms [6, 7, 8, 9] to
frequency domain approaches [10, 11]. An overview on several
pitch-shifting approaches can be found in [12]. However, for ad-
justing local and global intonation in a cappella recordings, it is
not sufficient to apply a single fixed pitch-shift to the recording,
as Figure 1 demonstrates. Instead, it is necessary to apply a time-
varying pitch-shift to the audio recording, which we refer to as
adaptive pitch-shifting.

A naïve approach for adaptive pitch-shifting is to apply indi-
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vidual pitch-shifts to small sections of an audio signal, e.g., using
user-guided functionalities provided by most digital audio work-
stations. However, besides being labor-intensive, this approach
can lead to audible “clicking” artifacts at pitch-shift transitions due
to phase and other discontinuities. Previous research on adaptive
pitch-shifting has been conducted in the context of audio restora-
tion and “wow” reduction of gramophone and tape recordings [13,
14, 15]. Recently, a deep learning-based approach for adaptive
pitch correction of singing performances with instrumental accom-
paniment has been proposed in [16]. State-of-the-art commer-
cial tools such as Melodyne1 or Antares AutoTune2 offer semi-
automatic functionalities for pitch correction according to different
scales and tunings. However, due to the presence of global into-
nation drifts over time and a varying local intonation depending
on the musical context, the assumption of a fixed (time-invariant)
scale or tuning is problematic for a cappella music [1]. Popular
open-source music processing libraries such as librosa [17] are of-
ten limited to fixed pitch-shifting functionalities. As an excep-
tion, the C++ library Rubber Band3 provides an interface for real-
time pitch-shifting of an audio stream. Furthermore, the PyTSMod
package [18] includes an adaptive pitch-shift implementation de-
signed for monophonic audio.

In this article, we propose automatic methods and tools for
adaptive pitch-shifting with applications to intonation adjustment
in a cappella recordings. We base our work on an existing pitch-
shifting method, which makes use of resampling and time-scale
modification (TSM) [11]. As one contribution, we propose and
formalize an extension to this method, which enables time-varying
pitch-shifts. Furthermore, we release a Python re-implementation
of a Matlab TSM toolbox [19], which we extended with an imple-
mentation of our adaptive pitch-shifting method. In order to show
the potential of our method, we consider two case studies based on
Dagstuhl ChoirSet [20], a publicly available dataset of a cappella
performances. The first study targets the adjustment of global in-
tonation, whereas our second study targets the adjustment of local
intonation.

The remainder of this article is structured as follows. In Sec-
tion 2, we review pitch-shifting via resampling in combination
with TSM and introduce our adaptive pitch-shifting method.
In Section 3, we give details on our Python toolbox. Finally, we
address our two case studies in Section 4 and summarize our work
in Section 5.

2. PITCH-SHIFTING VIA RESAMPLING AND TSM

Pitch-shifting can be seen as the complementary task to TSM [11,
12]. While TSM attempts to alter the duration of an audio record-
ing without changing its pitch, pitch-shifting attempts to alter the
pitch of an audio recording without changing its duration. In the
following, we summarize existing TSM algorithms (Section 2.1),
explain the basic principle of fixed (time-invariant) pitch-shifting
using resampling and TSM (Section 2.2), and finally introduce our
adaptive pitch-shifting method (Section 2.3).

2.1. TSM Algorithms

Over the last decades, several TSM algorithms have been pro-
posed. In general, TSM algorithms can be subdivided into

1https://www.celemony.com/en/melodyne
2https://www.antarestech.com
3https://breakfastquay.com/rubberband/

Figure 2: Pitch-shifting via resampling and TSM illustrated using
power spectrograms. (a) Input signal. (b) Resampled signal. (c)
Pitch-shifted signal after TSM application.

time-domain and frequency-domain approaches. Time-domain
approaches typically rely on variants of the overlap-add (OLA)
principle. In this case, an input signal is first decomposed into
overlapping frames, which are relocated on the time axis in a sec-
ond step to achieve the actual time-scale modification. Examples
of time-domain algorithms are SOLA (Synchronized OLA) [21],
TD-PSOLA (Time-Domain Pitch-Synchronized OLA) [6, 22, 23]
or WSOLA (Waveform-Similarity OLA) [24]. A well-known
frequency-domain approach is based on the phase vocoder tech-
nique [25, 26]. In order to obtain a time-scaled version of the
input signal, the method relocates the frames of the input sig-
nal’s short-time Fourier transform (STFT) [27] and applies a
frequency-dependent phase correction. Recent works on TSM
propose modifications of the phase vocoder technique [28] or
use the phase vocoder in combination with non-negative matrix
factorization [29]. While time-domain TSM methods are known
to be well-suited for recordings with strong transient sound com-
ponents, frequency-domain approaches typically perform well
on recordings with strong harmonic sound components. This
observation has been exploited by the approach in [30], which
first conducts harmonic–percussive separation and then applies
OLA on the percussive component and the technique based on
the phase vocoder on the harmonic component. A more detailed
review of several TSM methods can be found in [11].

2.2. Fixed Pitch-Shifting

Resampling a given audio signal and playing it back at the origi-
nal sampling rate changes its duration and pitch at the same time.
In other words, resampling can be interpreted as a TSM proce-
dure that additionally modifies the pitch of an audio signal. Pitch-
preserving TSM algorithms, such as the ones mentioned in Sec-
tion 2.1, can be used to compensate for the change in duration
after resampling. Note that pitch-shifting can also be achieved by
processing in reverse order (first performing TSM and then resam-
pling) [12].

The processing steps for fixed (time-invariant) pitch-shifting
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via resampling and subsequent TSM are illustrated in Figure 2.
For illustrative purposes, we use a synthetic signal as input signal,
which contains three sequentially played sinusoidal tones. Fig-
ure 2a shows a power spectrogram of our input signal. Let us
assume our input signal is equidistantly sampled at a rate F in

s and
we are given a fixed pitch-shift p ∈ R in cents. In a first step,
we resample the given signal to have a new sampling rate F out

s

defined by
F out
s := F in

s · 2−p/1200. (1)
When playing back the resampled signal at the original sampling
rate F in

s , one can observe two effects. First, the signal’s duration
is scaled by a factor αRS ∈ R>0 defined as

αRS :=
F out
s

F in
s

= 2−p/1200. (2)

Second, the signal is pitch-shifted by p cents. These two effects
can be seen in Figure 2b for a pitch-shift of p = 1200 cents, which
is equivalent to an octave in musical terms or a doubling of fre-
quency in physical terms.

To compensate for the undesired time-scale modification, we
then use a suitable pitch-preserving TSM algorithm to scale the
signal to it’s original duration. To this end, we stretch the signal
with the factor αTSM ∈ R>0 defined by

αTSM := α−1
RS = 2p/1200. (3)

For a pitch shift of p = 1200 cents we obtain αTSM = 2. The
resulting pitch-shifted signal is depicted in Figure 2c.

2.3. Adaptive Pitch-Shifting

Adaptive pitch-shifting is the task of applying a time-varying pitch
shift to an audio signal. To this end, we extend the method for fixed
pitch-shifting from Section 2.2. More specifically, we combine
non-linear resampling with a technique referred to as non-linear
TSM [11]. In the following, we explain our approach along with
the example depicted in Figure 3.

Let us assume we are given an audio signal, which is equidis-
tantly sampled at a sampling rate of F in

s . As illustrative example,
we again consider an input signal with three sequential sinusoidal
tones, as visualized in Figure 3a. For the task of adaptive pitch-
shifting, we model the pitch-shift p as a continuous time-varying
function p : R → R, which maps a time instance t ∈ R in seconds
to a musical interval given in cents. Figure 3b shows p in our ex-
ample, which consists of three parts: in the first part (0 to 2 s), the
input signal should be left unshifted, in the second part (2 to 4 s),
the signal should be frequency modulated, and in the third part (4
to 6 s), a frequency sweep should be applied.

In a first processing step, we perform non-linear resampling
of our input signal. As explained earlier, resampling can be in-
terpreted as a kind of pitch-modifying TSM. In this light, we first
define a scaling factor function αRS : R → R>0 that maps a time
instance t to a scaling factor by

αRS(t) := 2−p(t)/1200. (4)

The resulting αRS(t) for our example is depicted in Figure 3c.
Subsequently, we introduce a non-linear and strictly monotonously
increasing time-stretch function τRS : R → R, which defines a
mapping between time instances of an input and an output signal,
by

τRS(t) :=

∫ t

0

αRS(t) dt. (5)

Figure 3: Adaptive pitch-shifting via non-linear resampling and
non-linear TSM. (a) Power spectrogram of input signal. (b) Pitch-
shift function. (c) Scaling factor function. (d) Time-stretch func-
tion. (e) Power spectrogram of resampled signal. (f) Inverse time-
stretch function. (g) Power spectrogram of pitch-shifted signal.
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The function τRS for our example is depicted in Figure 3d. As one
can see, the first part of the function has a slope equal to one. As a
consequence, this part of our example signal is mapped to the out-
put signal without modification. The overall slope of the function’s
second part is slightly larger than one, leading to an expansion of
this region in the output signal. The overall slope of the function’s
third part is slightly smaller than one, leading to a compression of
this region in the output signal. By performing non-linear resam-
pling according to the mapping defined by the function τRS, we
obtain the signal depicted in Figure 3e.

Note that in practice, non-linear resampling can be done in
many different ways [31, 32]. A comparison of resampling imple-
mentations in digital audio workstations can be found online4. Ad-
vanced resampling methods such as multirate filterbanks include
lowpass filtering to avoid aliasing artefacts, but also require a win-
dowing of the time-stretch function τRS. However, our goal is to
adjust intonation with pitch-shifts in the order of a few cents up to
roughly a semitone, where aliasing artefacts are less problematic.
For the sake of simplicity, we therefore use cubic interpolation to
non-linearly resample the input signal.

In a second processing step, we perform non-linear TSM on
the resampled audio signal to retain the signal’s original dura-
tion. To this end, we use a pitch-preserving TSM algorithm to
non-linearly stretch the signal with respect to τ−1

RS , which is de-
picted in Figure 3f. Further details on non-linear TSM can be
found in [11, Section 7.1]. The resulting pitch-shifted audio signal
is depicted in Figure 3g. As one can see, the adaptive pitch-shift p
has been applied to our input signal.

3. PYTHON TOOLBOX

The release of open-source implementations along with scientific
publications has become increasingly important in the field of mu-
sic signal processing [12, 33]. Besides allowing for reproducing
experimental results, publicly available implementations stimulate
and support further research activities. In this spirit, we ported
an exisiting Matlab TSM toolbox [19] to Python and expanded its
functionality with our adaptive pitch-shifting method. Python is
currently considered as the most used programming language in
data science and machine learning. Our Python TSM toolbox is
released an open source license5.

In our re-implementation of the toolbox, we ensured that the
naming conventions and usage of our Python implementation are
basically the same as in the Matlab version. Table 1 provides
an overview on the main algorithms, functions, and naming con-
ventions of the Matlab and the Python toolbox. Furthermore, we
tested all Python functions with respect to numerical identity to
the Matlab implementations. In the following, we demonstrate the
main functions of the Python toolbox using the code example in
Listing 1.

1 # Load packages
2 import libtsm
3 import librosa
4 import numpy as np
5

6 # Load Audio File
7 fn_in = ’data/three_sinusoidals.wav’
8 x, Fs = librosa.load(fn_in, sr=22050)

4https://src.infinitewave.ca/
5https://www.audiolabs-erlangen.de/resources/

MIR/2021-DAFX-AdaptivePitchShifting

9

10 # TSM Algorithms
11 alpha = 1.8 # scaling factor
12

13 y_wsola = libtsm.wsola_tsm(x, alpha)
14 y_pv = libtsm.pv_tsm(x, alpha)
15 y_hps = libtsm.hps_tsm(x, alpha)
16

17 # Fixed Pitch-Shifting (Figure 2)
18 p = 1200 # cents
19 y_psf = libtsm.pitch_shift(x, p)
20

21 # Adaptive Pitch-Shifting (Figure 3)
22 t = np.arange(0, len(x)/Fs, 1/Fs) # sec
23 N = len(t)
24 t_1 = t[0:N//3]
25 t_2 = t[N//3:2*N//3]
26 t_3 = t[2*N//3:]
27

28 p = np.concatenate((np.zeros(len(t_1)),
800*np.sin(2*np.pi*1*t_2),
np.linspace(0, 1200, len(t_3)))) # cents

29

30 y_psa = libtsm.pitch_shift(x, p, t)

Listing 1: Code example using functions of libtsm.

As one can see in line 2, the TSM toolbox can be imported as
a Python package libtsm. The toolbox includes short demo au-
dio files, including our synthetic audio example from Section 2.2
and Section 2.3, which is loaded in lines 7–8. Lines 11–15 demon-
strate the main TSM functions of the toolbox called with default
settings. Note that each of the functions provides various other in-
put arguments to tune the parameters of the algorithms. The input
arguments are documented in the functions’ docstrings.

Along with the TSM implementations, we added a function
pitch_shift() to the toolbox, which implements our fixed
and adaptive pitch-shifting algorithm. Lines 18–19 replicate the
fixed pitch-shift by 1200 cents, as visualized in Figure 2. Adaptive
pitch-shifting can be achieved using the same function by handing
over two arrays of equal length, as shown in lines 22–28. The
first array contains the pitch-shift values in cents, whereas the sec-
ond array contains the time axis in seconds. Our example repli-
cates the adaptive pitch-shift shown in Figure 3. A more detailed
demonstration of all toolbox functions can be found in the Jupyter
notebook demo_libtsm.ipynb, which is part of our toolbox.

4. APPLICATION: INTONATION ADJUSTMENT IN A
CAPPELLA RECORDINGS

In the previous sections, we have presented a method for adap-
tive pitch-shifting (Section 2.3) as well as a Python toolbox with
implementations of our method and a variety of TSM algorithms
(Section 3). In this section, we show the potential of our method
and our tools for adjusting global and local intonation in a cappella
recordings.

As indicated in Section 2, the technical realization of our adap-
tive pitch-shifting method, in particular, the choice of a suitable
resampling and TSM algorithm, depends on the acoustic prop-
erties of the input signal. In our application scenario, the ver-
satility of the human voice imposes additional challenges on our
pitch-shifting setup. Especially, an appropriate handling of frica-
tives, plosives, and formants is required to aviod a degradation of
the audio quality. In the following, we present an extension to
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Table 1: Main algorithms and implementations of the Matlab and Python TSM toolbox.

Algorithm Matlab Function Python Function

WSOLA/OLA [24] wsolaTSM() wsola_tsm()

Phase Vocoder TSM [25, 26] pvTSM() pv_tsm()

Harmonic–Percussive Separation TSM [30] hpTSM() hps_tsm()

Fixed Pitch-Shifting pitchShiftViaTSM() pitch_shift()

Adaptive Pitch-Shifting - pitch_shift()

Figure 4: Overview on our intonation adjustment setup.

our adaptive pitch-shifting method that accounts for these chal-
lenges. Our setup is depicted in Figure 4. Similar to the approach
in [30], we first apply harmonic–percussive separation [34] on the
input signal (also referred to as HPS). In a vocal recording, the
percussive component typically includes fricatives, plosives, and
other non-tonal background noise, whereas the harmonic com-
ponent contains tonal elements. In our setup, we apply adaptive
pitch-shifting only on the harmonic component. We use cubic in-
terpolation for non-uniform resampling and the technique based
on the phase vocoder for TSM. In order to avoid unnatural sound-
ing pitch-shifted voices (sometimes referred to as the “chipmunk
effect”), we include a formant preservation step [12, 22, 23] in our
setup for monophonic input signals (recordings where only one
voice is present). The formant preservation step first involves esti-
mating the spectral envelopes of the original and the pitch-shifted
signal from smoothed spectrogram representations. Subsequently,
using the approach outlined in [35], the envelope of the pitch-
shifted signal is corrected.

Note that this technical setup is only one possible way to real-
ize adaptive pitch-shifting for our application scenario. A compar-
ison of different pitch-shifting setups as well as a detailed evalua-
tion of the musical quality is beyond the scope of this article and
is left for future work. For an evaluation of the perceptual audio
quality of the HPS-TSM approach, we refer to [30].

Given this technical setup, we show in two case studies how
suitable pitch-shift functions p can be computed to achieve global

Figure 5: (a) Excerpt of F0-trajectories and score reference for
a performance of Locus Iste (DCS, Quartet B, Take 3, measures
30–34). (b) Detailed view of the notes on the first beat in mea-
sure 31. Horizontal lines represent 12-TET pitch of the note (dark
grey) and the median of the respective F0-trajectories (S=orange,
A=red, T=green, B=blue).

intonation adjustments (Section 4.1) and local intonation adjust-
ments (Section 4.2). Our studies are based on recordings from
the Dagstuhl ChoirSet (DCS) [20], a multitrack dataset of ama-
teur choral singing. The dataset includes quartet and choir per-
formances of two choir pieces. The singers were recorded using
a room microphone and several close-up microphones with lit-
tle cross-talk (dynamic, headset, and larynx microphones). Fur-
thermore, the dataset provides annotations of F0-trajectories for
all singers and time-aligned score information. Figure 5a shows
an excerpt of an SATB quartet performance of Locus Iste with a
global intonation drift and several local intonation issues, which
serves as a running example in our case studies. Figure 5b pro-
vides a detailed view on local intonation deviations and pitch fluc-
tuations. Accompanying audio examples for our case studies are
available online5.

4.1. Case Study 1: Global Intonation Adjustment

In this case study, the task is to compensate a global intonation drift
over the course of a performance. To this end, we first measure the
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Figure 6: Global intonation adjustment in performance of Locus
Iste (DCS, Quartet B, Take 3, measures 30–34). (a) Adaptive
pitch-shifting function. (b) Globally adjusted F0-trajectories. (c)
Detailed view of the notes on the first beat in measure 31.

intonation drift over time and then input the inverted drift as a func-
tion p to our adaptive pitch-shifting algorithm. One way to mea-
sure intonation drift is to compute the deviations of the singers’
F0-trajectories from the time-aligned musical score. Since the
singers in our recordings tuned to tones played on a piano right
before the performance, we compute the deviations to the notes’
MIDI frequencies using 440 Hz as reference frequency for the note
A4.

However, computing the deviations on a fine temporal level
leads to highly fluctuating drift curves, which result in an unnat-
ural “wobbling” in the pitch-shifted recording. Therefore, we in-
troduce a temporal quantization of the measured intonation drifts.
More precisely, we first compute the note-wise F0-median (see
vertical colored lines in Figure 5b), and then average the note-
wise deviations on a measure-level. After inverting the measured
intonation drift curve, we obtain the pitch-shift function p, as de-
picted in Figure 6a for our excerpt. As one can see, p increases
from roughly 77 cents to roughly 110 cents over the course of the
excerpt, since the quartet drifts downwards.

The intonation adjustment can now be conducted either by ap-
plying the adaptive pitch-shift defined by the function p on each
individual singer’s microphone signal or on the polyphonic room
microphone signal. The drift-corrected F0-trajectories for our ex-
ample are shown in Figure 6b and a detailed view is provided
in Figure 6c. As one can see, the drift is adjusted over the course
of the four bars, whereas the local intonation is still fluctuating
around the score reference. Furthermore, all note-internal pitch
fluctuations are preserved.

Figure 7: Local intonation adjustment in performance of Locus
Iste (DCS, Quartet B, Take 3, measures 30–34). (a) Adaptive
pitch-shifting functions for each voice. (b) Locally adjusted F0-
trajectories. (c) Detailed view of the notes on the first beat in mea-
sure 31.

4.2. Case Study 2: Local Intonation Adjustment

In our second case study, we show how to use adaptive pitch-
shifting to adjust local intonation. As opposed to Section 4.1, we
now compute an individual pitch-shift function p for each singer
in the performance. To this end, we again compute the note-wise
F0-median and its deviation from the aligned score reference, but
this time, the temporal quantization of our measured deviations re-
mains on a note-level. By inverting the measured deviations for
the individual voices, we obtain the pitch-shift functions depicted
in Figure 7a for our example. Note that adjusting local intonation
to MIDI pitches in 12-TET is musically problematic in the context
of western choral music [1]. In general, the task of measuring in-
tonation in a cappella music using computational tools is subject
to ongoing scientific discussions [3, 36, 37]. Therefore, the above
described strategy mainly serves illustrative purposes.

The locally adjusted F0-trajectories are depicted in Figure 7b,
while a detailed view is provided in Figure 7c. In contrast to the
global intonation adjustment in Figure 6c, we can see that after
pitch shifting, the note-wise F0-median now corresponds exactly
to the 12-TET reference. Pitch variations within notes (e. g. vibrati
and portamenti at the beginning of notes) are again preserved. In
order to adjust these fluctuations, one would have to apply pitch-
adjustments on a finer temporal level at the cost of an increasing
unnaturalness of the pitch-shifted recordings.

DAFx.6



Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

5. CONCLUSIONS

In this work, we presented an automatic method for adaptive pitch-
shifting of audio recordings based on non-linear resampling and
TSM. Furthermore, we created an open source toolbox that in-
cludes implementations of various TSM algorithms and our pro-
posed method. Finally, we showed the potential of our tools for
adjusting global and local intonation in a cappella music. In future
research, we plan to evaluate the perceptual quality of different
intonation adjustment setups and investigate methods for comput-
ing musically meaningful pitch-shifting functions for intonation
adjustments in a cappella recordings.
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