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ABSTRACT

Beat tracking is a central topic within the MIR commu-
nity and an active area of research [1–3]. The scientific
progress in this area is mainly thanks to recent machine
learning techniques. However, some machine learning ap-
proaches are black boxes, hard to understand, and often
without direct control over the parameters to adjust the
beat tracker. For this demo, we choose a model-based ap-
proach that is easy to understand, good for interactions,
and well suited for educational purposes [4]. In particular,
we present a system for real-time interactive beat track-
ing based on predominant local pulse (PLP) information,
as first described in Grosche et al. [5]. In the first section,
we show how the PLP-based algorithm can be transformed
from an offline procedure to a real-time procedure. In the
second section, we present the implementation of a system
that uses this real-time procedure as the centerpiece of an
interactive beat tracking application.

1. PLP-BASED ALGORITHM

Before discussing how to convert the PLP-based approach
into a real-time procedure, we first look at the original
offline procedure. All the essential steps for calculating
the PLP are illustrated in Figure 1. First, the audio sig-
nal (Figure 1a) is converted into a spectrogram (Figure 1b)
by computing a short-time Fourier transform (STFT) with
a hop size H and a window length N. From the STFT, we
compute a novelty function (Figure 1c) that measures spec-
tral changes over time. The peak positions of this novelty
function indicate possible note onset candidates. For beat
tracking, there are two general assumptions. Firstly, beat
positions go along with note onsets, and, secondly, beat
positions are periodically spaced. These assumptions are
exploited by comparing local sections of the novelty func-
tion with windowed sinusoidal kernels of a defined kernel
size, as shown in Figure 1e. In particular, for each time
position one chooses a kernel that optimally matches the
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Figure 1. Illustration of the PLP computation pipeline and
its real-time implementation. (a) Waveform. (b) Spectro-
gram. (c) Novelty. (d) Tempogram. (e) Kernels. (f) PLP.

local tempo structure of the signal within a given tempo
range, as illustrated with colored dots in Figure 1d. To
complete the original offline procedure, the last step con-
sists in overlap-adding all optimal pulse kernels over time
to form a global PLP function.

This original offline procedure can now be converted
into a real-time procedure, by using the superimposed
pulse kernels to predict the next future pulse position, as
illustrated in Figure 1f. Due to the centric nature of the lo-
cal pulse kernels, there are always two halves of the kernel
window to work with. The left half of the kernel window
is used to calculate the pulse structure based on the cur-
rent data. The right half of the kernel window is used to
extrapolate this pulse structure to predict future pulse po-
sitions. In this real-time approach, the pulse kernels serve
as local beat trackers and can be used as an engine to drive
an interactive real-time system, as described in Section 2.



2. REAL-TIME SYSTEM

In Figure 2 we present our real-time system named Beat
Command Line Interface (beatcli.py). It is written in
Python and based on the PLP algorithm described in Sec-
tion 1.
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Figure 2. A block diagram of the beatcli.py terminal appli-
cation. (A) Input arguments. (B) Audio input. (C) Audio
analysis. (D) Terminal output. (E) Network output. (F)
Receiving software. (G) Receiving hardware.

beatcli.py takes input arguments (A) to select a de-
vice/channel of the audio input (B) and to set several pa-
rameters needed for the audio analysis (C). The applica-
tion keeps running a complete PLP computation pipeline to
predict future pulse positions for every new block of audio
from the real-time audio input. If there is a pulse predic-
tion at the current time, there is both a terminal output (D)
and a network output (E) with corresponding pulse infor-
mation. Those network outputs can be received either by
software clients (F) such as DAWs 1 or hardware devices
(G) such as microcontrollers to apply the send-out pulse
information.

Figure 3. The help function of the beatcli.py application
with information about input arguments.

Figure 3 shows the help function of beatcli.py to explain
the input arguments in more detail. The processing of the
real-time audio input is based on the Python module sound-
device 2 . It receives the first four arguments from beat-
cli.py to set the sound device of choice. Each audio de-
vice has its own unique ID and a NUMBER of channels to

1 Digital Audio Workstations
2 https://pypi.org/project/sounddevice/

choose from. Other important settings are the samplerate,
given as frequency FS in Hz, and the blocksize, given in
SAMPLES. The blocksize, however, does not only set the
buffersize of the audio hardware, but also corresponds with
both the hop size H and half the window length N of the
spectrogram as shown in (1).

blocksize = buffersize = H = 1
2N (1)

The next three arguments are needed to control the settings
of the pulse analysis. The tempo range of the tempogram
(see Figure 1d) is set with a LOW and a HIGH tempo value
given in BPM. The argument lookahead takes a number
of FRAMES to look ahead in time and get the next pre-
dicted pulse some frames earlier. This method is helpful
to compensate for latency effects that might occur when
sending and receiving pulse information over the network.
The kernel SIZE, given in seconds, determines the dura-
tion of the local pulse kernels as illustrated in Figure 1e.
Finally, there are two more arguments to set the parame-
ters of the network output: beatcli.py acts as OSC 3 client
to send messages with pulse information into the network.
Another client with a specific IP address and a selected
PORT number can receive those messages.

Figure 4. The terminal output of the beatcli.py application
showing the system in action.

Figure 4 shows the terminal output of beatcli.py to explain
the send-out pulse information in more detail. By starting
the application, you get an overview of all (default) settings
it is running on. Below, you can find a table of detected
pulses, where each row contains several different columns
with pulse information. First, there is the IP address and
PORT of the send-out OSC message. Next, there is a time
value that gives a timestamp of when the pulse is detected.
After that, there is a tempo value that shows the tempo
of the current local pulse kernel, which corresponds with
the last (red) dot in Figure 1d. Finally, there is a stability
value to indicate how stable the beat estimation was over
the last few seconds, specified by the duration of the kernel
size. A value of 1.0 represents a beat with a steady tempo
and maximum stability. Values close to zero represent a
rather unstable tempo and beat structure. This wraps up
our demo, where we introduced a real-time beat tracking
system based on predominant local pulse information.
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