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Towards Leitmotif Activity Detection in Opera 
Recordings
Michael Krause, Meinard Müller and Christof Weiß

This paper approaches the automatic detection of musical patterns in audio recordings with a particular 
focus on leitmotifs, which are specific types of patterns associated with certain characters, places, items, 
or feelings occurring in an opera or movie soundtrack. The detection of such leitmotifs is particularly 
challenging since their appearance can change substantially over the course of a musical work. In our case 
study, we consider a self-contained yet comprehensive scenario comprising 16 recorded performances 
of Richard Wagner’s four-opera cycle Der Ring des Nibelungen, which is a prime example for the use of 
leitmotifs. Within this scenario, we introduce and formalize the novel task of leitmotif activity detection. 
Based on a dataset of 200 hours of audio with over 50 000 annotated leitmotif instances, we explore 
the benefits and limitations of deep-learning techniques for detecting leitmotifs. To this end, we adapt 
two common deep-learning strategies based on recurrent and convolutional neural networks, respectively. 
To investigate the robustness of the trained systems, we test their sensitivity to different modifications 
of the input. We find that our deep-learning systems work well in general but capture confounding 
factors, such as pitch distributions in leitmotif regions, instead of characteristic musical properties, such 
as rhythm and melody. Thus, our in-depth analysis demonstrates some challenges that may arise from 
applying deep-learning approaches for detecting complex musical patterns in audio recordings.
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1. Introduction
Within music information retrieval (MIR), detecting 
musical patterns in audio recordings is a fundamental 
task. These patterns can be characterized by any musical 
property, including rhythmic phrases, melodic shapes, 
or harmonic progressions. Across different occurrences, 
a pattern may vary considerably both in musical aspects 
and acoustic realization and may appear within different 
accompanying parts and other musical voices, thus 
being embedded in varying sound mixtures. In Western 
music tradition, such patterns play a crucial role for the 
narration, interpretation, and enrichment of dramatic 
plots in many genres—from Renaissance madrigals to 
movie soundtracks. In this context, composers have 
found creative ways of associating certain characters, 
places, items, or feelings with specific musical ideas, 
thus guiding their audience through the story. The use 
of such compositional techniques culminated in 19th 
century opera where these ideas became known as 
leitmotifs (Bribitzer-Stull, 2015), later adopted by movie 
soundtracks. A central role is attributed to Richard 

Wagner’s operas with their extensive usage of leitmotifs. 
In his theoretical writings, Wagner intended these 
motifs to be particularly memorable and to guide the 
listeners through the work (Wagner, 1995). Knowing, 
rediscovering, and understanding the usage of leitmotifs 
may therefore enrich the experience of an audience (Baker 
and Müllensiefen, 2017) and help musicologists analyze 
the compositional structure of the works (Zalkow et al., 
2017a). In this context, automated methods for detecting 
leitmotifs over the course of an opera (as illustrated by 
Figure 1) are of high interest for various applications 
such as the augmentation of recorded, virtual, and 
live performances and may serve commercial, didactic, 
and musicological research purposes. For instance, an 
automated leitmotif detection procedure may be used to 
display leitmotif names alongside a recorded performance 
of the work, thus enhancing the audience’s experience of 
the composition.

In this paper, we study leitmotif detection in the 
context of Richard Wagner’s four-opera cycle Der Ring des 
Nibelungen, for which a typical performance lasts about 15 
hours. To the best of our knowledge, this is the first work 
dealing with automated leitmotif detection. We explore 
this task using a novel dataset of the Ring involving over 
50000 annotated leitmotif instances. We design two typical 

Krause, M., et al. (2021). Towards Leitmotif Activity Detection in Opera 
Recordings. Transactions of the International Society for Music Information 
Retrieval, 4(1), pp. 127–140. DOI: https://doi.org/10.5334/tismir.116

International Audio Laboratories Erlangen, Am Wolfsmantel 33, 
91058 Erlangen, Germany
Corresponding author: Michael Krause  
(michael.krause@audiolabs-erlangen.de)

https://doi.org/10.5334/tismir.116
mailto:michael.krause@audiolabs-erlangen.de


Krause et al: Towards Leitmotif Activity Detection in Opera Recordings128 

deep-learning systems for detecting the activity of several 
leitmotifs in recordings of the Ring and investigate their 
robustness under different modifications of the input, 
thus simulating different types of musical variability. We 
find evidence that despite good numerical results on a 
held-out test set, our models capture confounding factors 
rather than relying on characteristic musical properties. By 
analyzing our systems in this complex leitmotif scenario, 
we aim for a deeper understanding of their properties 
and explore some of the challenges that may arise from 
applying standard deep-learning systems for detecting 
musical patterns in audio recordings.

A leitmotif may be subject to several musical 
variations across its different occurrences in the musical 
score (see Figure 1a), such as transposition, tempo 
changes, abridgment, prolongation, as well as melodic, 
harmonic, or rhythmic changes. Due to this variety, 
systems generally need to be informed about the specific 
leitmotifs to detect. Possible application scenarios may 
have different degrees of such side information. In 
the main scenario considered in this paper, we have 
annotations of all instances of the relevant leitmotifs 
(see  Figure 1b) for a specific recording. Based on this 
input, a system needs to detect the leitmotifs in other 
performances.

The remainder of the paper is organized as follows. 
In Section 2, we introduce the musical scenario of 
the Ring, outline our cross-performance dataset, and 
formalize the leitmotif activity detection task. In Section 
3, we summarize related work, outline our deep-learning 
approaches and evaluation procedure, and present first 
results. In Section 4, we analyze our models with regard 
to different input modifications. Section 5 presents an 
outlook to less-informed scenarios. Section 6 summarizes 
our findings.

2 Musical Scenario and Task Specification
This section outlines our musical scenario consisting of 
Wagner’s Ring cycle and its specific use of leitmotifs. We 
present an overview of our cross-performance dataset and 
provide a formalization of the leitmotif activity detection 
task.

2.1 Leitmotifs in Wagner’s Ring
The scenario of our case study is centered around 
Richard Wagner’s tetralogy Der Ring des Nibelungen, a 
musical work of extraordinary dimensions. As indicated 
by  Figure 2, the Ring consists of the four operas Das 
Rheingold, Die Walküre, Siegfried, and Götterdämmerung, 
spanning a continuous plot. Comprising 21 941 measures, 
this large work has been considered for several tasks 
within MIR such as audio-based harmony analysis (Zalkow 
et al., 2017a), symbolic pattern search (Kornstädt, 2001) or 
meta-analyses of audience experience (Page et al., 2015). 
For organizing this comprehensive material, we consider 
eleven parts of the Ring (first row in  Figure 2), which 
usually correspond to acts of individual operas (thus 
hereafter denoted as acts) with continuous measure count 
in the score.

The Ring cycle is well-known for its frequent use of 
leitmotifs—characteristic musical ideas associated with 
characters, places, items, or feelings. Most motifs are 
characterized by their melodic and rhythmic shape but are 
interwoven into the compositional structure. Therefore, 
a leitmotif may appear in different musical contexts, 
thereby varying in compositional aspects (such as melody, 
harmony, or rhythm) in order to fit the current key, meter, 
or tempo. Zalkow et al. (2017a) explored relationships 
between leitmotif usage and tonal characteristics of 
the Ring. Beyond that, leitmotifs may occur in different 
registers, voices, or instruments, and in abridged or 
extended versions with parts of the motif being repeated, 
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Figure 1: Illustration of a leitmotif (here the Ring motif 
L-Ri) and its manifestations as (a) leitmotif occur-
rences in the score, (b) leitmotif instances in several 
recorded performances (audio), (c) continuous leitmotif 
activity output by a detection system.

Figure 2: Structure of Richard Wagner’s Ring cycle and 
overview of 16 recorded performances, see also Zalkow 
et al. (2017a). Measure positions have been annotated 
manually for the topmost three performances (P-Ka, 
P-Ba, and P-Ha), which also constitute the test set in 
our performance split. The three middle performances 
(P-Sa, P-So, and P-We) constitute the validation set. 
All other performances are used for training.

P-Ka Karajan 1967–70
P-Ba Barenboim 1991–92
P-Ha Haitink 1988–91
P-Sa Sawallisch 1989
P-So Solti 1958–65
P-We Weigle 2010–12
P-Bo Boulez 1980–81
P-Bö Böhm 1967–71
P-Fu Furtwängler 1953
P-Ja Janowski 1980–83
P-Ke Keilberth/F. 1952–54
P-Kr Krauss 1953
P-Le Levine 1987–89
P-Ne Neuhold 1993–95
P-Sw Swarowsky 1968
P-Th Thielemann 2011
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altered, or left out. Despite these musical variations, 
listeners can often identify motifs when listening to a 
performance. This is in line with Wagner’s intention 
of using the motifs as a guideline and, thus, employing 
them in a clearly perceivable way (Wagner, 1995). This 
human ability to identify motifs has been analyzed from a 
psychological perspective (Baker and Müllensiefen, 2017; 
Morimoto et al., 2009; Albrecht and Frieler, 2014).

While Wagner mentioned the importance of such 
motifs for his compositional process (Wagner, 1995), 
there is no explicit specification of concrete leitmotifs 
by the composer. Whether a recurring musical idea 
constitutes a leitmotif or not is topic of debate among 
musicologists (Dreyfus and Rindfleisch, 2014). In line 
with our prior works (Zalkow et al., 2017a; Krause et al., 
2020), we follow the specification of 130 leitmotifs in the 
Ring by Julius Burghold (Wagner, 2013). A musicologist 
annotated the score-based segments (in measures/beats) 
for all occurrences of these motifs in the Ring. Contiguous 
repetitions of motifs are considered as individual segments, 
and abridged, extended, or varied occurrences are also 
included (with our annotator deciding on the amount of 
variation that can be considered as the same motif). Since 
many leitmotifs occur rarely or are musically ambiguous, 
we pursue a pragmatic approach, restricting ourselves to 
20 characteristic and frequent motifs, which are specified 
in Table 1. The motif L-Ho, for example, is associated 
with the hero Siegfried and is often used as a narrative 
device. It appears in its full heroic form when Siegfried 
is first introduced, changes to a diminished chord as the 
hero is fighting a great beast and is played again as other 
characters remember him following his demise. In total, 
our annotations comprise 3569 occurrences of these 20 
motifs.

2.2 Cross-performance dataset
As a peculiarity of Western classical music, several 
recorded performances of a work are usually available, 
varying in interpretation aspects (tempo, dynamics, 
intonation), timbral aspects of instruments and singers, 
and production aspects (mastering, acoustic conditions). 
For certain music analysis tasks that are independent of 
such aspects, the availability of multiple performances 
allows for systematically studying the robustness of MIR 
systems in cross-performance (also called cross-version) 
experiments, as done by Schreiber et al. (2020) and Zalkow 
et al. (2017a).

In this paper, we make use of a cross-performance 
dataset of the Ring, comprising the 16 audio recordings 
(both live and studio) listed in  Figure 2. Their duration 
varies between 13.5 and 15.5 hours. For the performances 
P-Ka, P-Ba, and P-Ha, the measure positions were 
manually annotated in the audio recordings (Weiß et 
al., 2016). For the remaining 13 performances, we made 
use of an automated transfer of measure positions from 
the manually annotated performances relying on highly 
accurate audio–audio synchronization methods (Zalkow 
et al., 2017b). As an indicator for this high accuracy, we 
analyzed measure positions obtained for one performance 
(P-Ba) using this transfer procedure and found that they 

deviate only marginally from the manually annotated 
measure positions (by 0.137 seconds on average).

Relying on these measure positions, we transferred the 
3569 leitmotif occurrence regions from the score to the 
16 recorded performances. For leitmotif boundaries not 
lying on measure boundaries, we used linear interpolation 
between measure positions. The resulting 57 104 leitmotif 
instance regions in the different recordings (see  Figure 1) 
represent the reference annotations for our detection task. 
We provide our annotations of occurrence and instance 
positions as a publicly available dataset.1

In a previous study (Krause et al., 2020), we used 
these instances (for ten selected motifs) for evaluating 
a leitmotif classification task, where presegmentation of 
relevant audio excerpts (containing a leitmotif) is assumed 
to be given. In this paper, we aim for detecting the activity 
of the leitmotifs in a continuous fashion (Figure 1c) 
without assuming any presegmentation. In consequence, 
our detection problem is substantially harder than the 
classification problem studied in Krause et al. (2020). 
Moreover, we extend the task to 20 leitmotifs in total.

To systematically test the generalization capabilities of 
MIR systems, musical datasets can be split across different 
dimensions. For example, Schreiber et al. (2020) observed 
differences between systems for detecting local key when 
generalizing to unknown performances versus unknown 
songs. For most experiments in this paper, we make use 
of a performance split (see  Figure 2), using the three 
recordings with manually annotated measure positions 
(P-Ka, P-Ba, P-Ha) for testing. The synchronization-
based measure transfer may introduce small deviations 
for the other performances, which may be unproblematic 
for training but quite relevant for testing purposes. The 
validation set comprises the performances P-Sa, P-So, 
and P-We. The remaining ten performances are used for 
training. In Section 5, we report preliminary results for 
detecting leitmotifs in unknown musical material using 
an opera split.

2.3 Leitmotif activity detection
We now want to formalize the leitmotif activity detection 
task motivated in the introduction. To this end, we consider 
a set of leitmotifs L that is indexed by ℓ ∈ [1 : L]: = {1,2,…, 
L} with L = |L|. In our dataset described in Section 2.2, 
we have L = {L-Ni, L-Ho,…} with L = 20, see Table 1. 
We further consider an audio recording with a discretized 
time axis given by the index set [1 : N]. Due to variations 
in tempo, the time axis [1 : N] is performance-specific 
and the value of N varies between performances of the 
same act. Then, a leitmotif activity function φℓ outputs  
probabilities for motif ℓ being active at each frame 
n ∈ [1 : N] of a specific performance, thus φℓ: [1 : N] → [0,1].

In our dataset, we consider audio recordings from 
16 performances of the eleven acts in the Ring (see  
Figure 2). As described in Section 2.2, the reference 
leitmotif annotations are given on a musical time axis 
specified in measures. For an act with S measures, we 
represent our reference annotations as a binary matrix 
𝒜Ref ∈ 𝔹L×M, for 𝔹 = {0,1} and M = S·B (see  Figure 3 for 
an illustration of an excerpt of such a matrix). Here, B is 
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a discretization factor. Setting B = 1, we evaluate on the 
level of whole measures. Setting B = 16, we subdivide each 
measure into 16 equidistant sub-segments and evaluate 
on sixteenth of a measure (e.g., in a 4/4 time signature, 
each sub-segment would correspond to a 16th note). M 
is then the total number of such measure sub-segments 
in the act and m ∈ [1:M] are indices on our musical time 
axis. We set B = 16 for all our experiments. 𝒜Ref can now 
be constructed from the annotations by assigning 

Ref 1m  

if and only if an occurrence of motif ℓ covers measure sub-
segment m.

In contrast to our reference annotations 𝒜Ref, which 
are defined on the musical time axis [1 : M] of an act, we 
define our leitmotif activity functions φℓ on the physical 
time axis [1 : N] of an audio recording. Therefore, to 
evaluate a leitmotif activity function, we first transfer its 
outputs onto a musical time axis by taking the maximum 
over all outputs for a measure sub-segment. Here, the 

Table 1: Overview of the 20 leitmotifs used in this study (the first ten of these motifs were previously used in Krause 
et al. (2020)). Score examples shown are adapted from Wagner (2013). Lengths are given as means and standard 
deviations over all annotated occurrences (in measures) or instances (in seconds) from all performances given in  
Figure 2. Counts and lengths differ from Krause et al. (2020), because we allow for concurrent motif activity in this 
study.

Name (English translation) ID Score # Occurrences Length

Measures Seconds

Nibelungen (Nibelungs) L-Ni  562  0.95 ± 0.24  1.72 ± 0.50 

Ring (Ring) L-Ri  297  1.50 ± 0.66  3.77 ± 2.46 

Nibelungenhass (Nibelungs’ hate) L-NH  252  0.96 ± 0.17  3.22 ± 1.20 

Mime (Mime) L-Mi  243  0.83 ± 0.25  0.84 ± 0.20 

Ritt (Ride) L-RT  228  0.66 ± 0.17  1.26 ± 0.38 

Waldweben (Forest murmurs) L-Wa  228  1.10 ± 0.30  2.65 ± 0.73 

Waberlohe (Swirling blaze) L-WL  194  1.21 ± 0.39  4.59 ± 1.70 

Horn (Horn) L-Ho  195  1.30 ± 1.02  2.34 ± 1.51 

Geschwisterliebe (Siblings’ love) L-Ge  158  1.32 ± 0.84  3.13 ± 2.65 

Schwert (Sword) L-Sc  148  1.88 ± 0.63  3.73 ± 1.99 

Jugendkraft (Youthful vigor) L-Ju  146  1.23 ± 0.57  0.96 ± 0.38 

Walhall-b (Valhalla-b) L-WH  143  1.10 ± 0.47  3.53 ± 2.14 

Riesen (Giants) L-RS  136  0.95 ± 0.39  2.83 ± 1.96 

Feuerzauber (Magic fire) L-Fe  112  1.18 ± 0.40  3.57 ± 1.09 

Schicksal (Fate) L-SK  94  2.02 ± 0.47  8.11 ± 2.64 

Unmuth (Upset) L-Un  92  1.87 ± 0.70  5.85 ± 3.21 

Liebe (Love) L-Li  89  1.78 ± 0.51  5.54 ± 2.47 

Siegfried (Siegfried) L-Si  86  2.88 ± 1.60  8.03 ± 5.46 

Mannen (Men) L-Ma  83  1.15 ± 0.50  1.37 ± 0.70 

Vertrag (Contract) L-Ve  83  2.29 ± 0.65  5.72 ± 2.12 
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correspondence between physical and musical time axes 
is given by our measure annotations refined with linear 
interpolation. Since φℓ has a continuous output, we then 
use a thresholding procedure (described in Section 3.2) to 
also obtain a binary matrix 𝒜Est ∈ 𝔹L×M. This matrix can be 
evaluated against 𝒜Ref using standard measures such as 
precision, recall, and F-measure (see Section 3.3).

Evaluating detection results on a musical time axis 
has two advantages: first, it allows us to quantitatively 
compare results obtained on different performances (for 
which the physical time axes might differ, but the musical 
time axis does not). Second, by defining our evaluation 
metrics in terms of measure sub-segments, we are able 
to relate evaluation scores to musical material rather 
than physical duration (thus e.g. equally considering 
faster and slower sections) and to introduce a musically 
informed tolerance parameter in our evaluation (see 
Section 3.4).

Conceptually, our leitmotif activity detection task can 
be considered as a special case of polyphonic sound 
event detection as illustrated by Virtanen et al. (2018, 
Fig 8.1d). For example, the task of environmental sound 
detection consists of detecting the activity of multiple 
parallel sound sources within an environmental sound 
scene. Similarly, multiple different leitmotifs may be 
active at the same time. However, the activity functions of 
different environmental sounds are typically independent 
from each other, i.e., uncorrelated, and from any other 
sound in the mixture. As opposed to this, we can expect 
correlations between motif activities.2 Furthermore, our 
leitmotifs are not independent of other musical parts 
(such as accompaniment or other motifs), since all musical 
parts have to fit into the larger harmonic context. These 
characteristics distinguish our task from other, more 
general sound event detection scenarios.

Concerning a coarsely related problem, the Music 
Information Retrieval Evaluation eXchange (MIREX)3 has 
run a task on Discovery of Repeated Themes and Sections, 
but this was limited to synthesized audio and prominent 
themes with little variation. In contrast, we deal with real-
world orchestral recordings and our leitmotifs may vary 
considerably or appear in the accompaniment.

3 Deep-learning-based Leitmotif Activity 
Detection
In this section, we present two approaches to leitmotif 
activity detection based on neural networks, introduce the 
evaluation measures used and report first results using 
our models. We start with a short discussion of related 
work on sound event detection.

3.1 Related work
Some years ago, traditional techniques such as non-
negative matrix factorization dominated the field of 
sound event detection (Stowell et al., 2015). In recent 
years, deep neural networks have become the dominant 
approaches for such tasks. Network architectures that 
have been considered include feed-forward, recurrent or 
convolutional neural networks, as well as combinations of 
these (Çakir et al., 2017). More recent approaches make use 
of techniques such as dilated convolutions (Li et al., 2020). 
Novel systems are proposed frequently and evaluated for 
standard (non-musical) sound event detection scenarios at 
the yearly DCASE challenges.4 We refer to a recent survey 
for a comprehensive overview of neural networks for 
sound event detection (Xia et al., 2019).

As for musical sound event detection, an example 
task considered in the literature is singing voice activity 
detection, where regions of singer activity constitute the 
sound events to be detected. This task has been approached 
through frame-wise classification using convolutional 
neural networks by Schlüter and Lehner (2018). Another 
task is beat tracking, where musical beats are considered 
as sound events. For this task, Böck et al. (2016) proposed 
a recurrent neural network that jointly detects beat and 
downbeat positions. Finally, one may also consider music 
transcription tasks as a variant of sound event detection. 
For instance, in drum transcription, individual drum 
hits are considered as sound events to be detected. For 
a comprehensive overview of recent drum transcription 
approaches, including ones using convolutional neural 
networks, we refer to Wu et al. (2018). For most of the 
mentioned tasks, sound events are usually short and only 
depend on very local context. In contrast, the leitmotif 
instances considered in our paper can last several seconds 
and a detection system must be able to process the 
appropriate amount of temporal context to identify them. 
Therefore, to implement a leitmotif activity detection 
function, an RNN-based approach can be considered 
appropriate. Such an architecture can, at least in theory, 
detect entities of arbitrary lengths (such as our leitmotif 
instances). As discussed above, however, convolutional 
architectures have been used more frequently in recent 
years. As a second approach, we therefore consider a CNN-
based system, paying special attention to the appropriate 
receptive field in time.

3.2 Methods
We begin by extracting audio excerpts of ten seconds’ 
length (containing leitmotif instances, but also excerpts 
where none of our motifs occur) from the ten training 
performances of the Ring described in Section 2.2. Here, 
ten second excerpts are long enough to completely cover 

Figure 3: Illustration of our ground truth occurrence 
annotations. Measures 112 to 390 from the first act of 
Siegfried are shown. For instance, L-Ni is active around 
measure 150, whereas L-SK is never active throughout 
this excerpt.

150 200 250 300 350
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L-Ri
L-NH
L-Mi
L-RT
L-Wa
L-WL
L-Ho
L-Ge
L-Sc
L-Ju
L-WH
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L-SK
L-Un
L-Li
L-Si
L-Ma
L-Ve
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the full leitmotif instance for nearly all instances in our 
dataset. For the 3569 leitmotif occurrence regions, we 
randomly add context before and after the instance in 
case the motif is shorter than ten seconds or randomly 
remove parts of the beginning and end of the instance in 
case it is longer. We further include 4000 examples where 
no motif occurs.

The audio excerpts are sampled at 22 050 Hz and 
converted to mono. Subsequently, we process the excerpts 
by a constant-Q transform (CQT) with twelve semitones 
per octave from C1 to B7 and a hop length of 512 samples, 
adjusted for tuning deviations (estimated automatically 
per performance and opera act). These steps are 
implemented using librosa.5 We only take the magnitude 
of the CQT. The resulting CQT frames with a frame rate 
of 43.1 Hz are then max-normalized individually (in order 
to obtain normalized network input and achieve some 
degree of loudness invariance) and used as input to our 
networks. Both networks process CQT frames and output 
frame-wise predictions per leitmotif.

3.2.1 RNN-based approach
For our experiments, adapting the approach from 
Krause et al. (2020), we use the network architecture as 
specified in Table 2. The input consists of 431 CQT frames 
(obtained from a ten-second audio excerpt), every frame 
being a vector of 84 CQT bins (one for each semitone 
in seven octaves), resulting in the input shape (431,84). 
The input is processed by three stacked long short-term 
memory (LSTM) layers, which are variants of RNN layers 
designed to be easily trainable (Goodfellow et al., 2016). 
Each LSTM uses 128 units for its internal operations. The 
third LSTM layer is followed by batch normalization and 
a dense layer (applied at each frame individually), which 
outputs one prediction per motif as well as an additional 
output indicating no motif activity (leading to 21 outputs 
in total). These predictions (logits) are converted to 
probabilities through a standard sigmoid activation. 
Based on these frame-wise outputs, our network models 
leitmotif activity functions φℓ for each motif ℓ ∈ L. Since 
this corresponds to a frame-wise multi-label classification 
problem, multiple outputs may be activated for the same 
frame (corresponding to simultaneous motif activity). 
Moreover, the procedure is causal, meaning that the 

output at any frame depends only on this frame and the 
preceding frames. We did not observe improvements for 
increasing the number of stacked LSTM layers, increasing 
their number of units, replacing them with gated 
recurrent unit (GRU) layers, or applying regularization 
such as weight decay or dropout.

3.2.2 CNN-based approach
As our second network, we consider a convolutional 
architecture as illustrated in Table 3. The input of shape 
(431,84) is identical to the RNN input. The subsequent 
architecture follows the paradigm of stacking convolution 

Table 2: Network architecture used for our RNN-based 
leitmotif activity detection system (adapted from Krause 
et al. (2020)).

Layer  Output Shape  Parameters

Input  (431, 84) 

LSTM  (431, 128)  109 056
LSTM  (431, 128)  131 584
LSTM  (431, 128)  131 584
Batch normalization  (431, 128)  512

Dense (per frame)  (431, 21)  2 709

Output: Sigmoid  (431, 21) 

Table 3: Network architecture used for our CNN-based 
leitmotif activity detection system (inspired by Schlüter 
and Lehner (2018)). Note that all operations have stride 
one in time and pitch, except for MaxPool2D, which has 
stride three in the pitch direction. Dilation rates in time 
increase after each max-pooling operation.

Layer (Kernel size), 
(Strides), (Dilations) 

Output Shape Parameters

Input  (431, 84) 

Expand  (431, 84, 1) 

Conv2D (3, 3), (1, 1), (1, 1)  (431, 84, 128)  1 152

Batch normalization  (431, 84, 128)  512

Conv2D (3, 3), (1, 1), (1, 1)  (431, 84, 64)  73 728

Batch normalization  (431, 84, 64)  256

MaxPool2D (3, 3), (1, 3), (1, 1)  (431, 29, 64) 

Conv2D (3, 3), (1, 1), (3, 1)  (431, 29, 128)  73 728

Batch normalization  (431, 29, 128)  512

Conv2D (3, 3), (1, 1), (3, 1)  (431, 29, 64)  73 728

Batch normalization  (431, 29, 64)  256

MaxPool2D (3, 3), (1, 3), (3, 1)  (431, 10, 64) 

Conv2D (3, 3), (1, 1), (9, 1)  (431, 10, 128)  73 728

Batch normalization  (431, 10, 128)  512

Conv2D (3, 3), (1, 1), (9, 1)  (431, 10, 64)  73 728

Batch normalization  (431, 10, 64)  256

MaxPool2D (3, 3), (1, 3), (9, 1)  (431, 4, 64) 

Conv2D (1, 4), (1, 1), (1, 1)  (431, 1, 64)  16 384

Batch normalization  (431, 1, 64)  256

Squeeze  (431, 64) 

Conv1D (3), (1), (27)  (431, 128)  24 576

Batch normalization  (431, 128)  512

Conv1D (3), (1), (27)  (431, 64)  24 576

Batch normalization  (431, 64)  256

MaxPool1D (3), (1), (27)  (431, 64) 

Dense (per frame)  (431, 21)  1 365

Output: Sigmoid  (431, 21) 
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and max-pooling operations (Goodfellow et al., 2016) and 
is inspired by the network used by Schlüter and Lehner 
(2018) for singing voice detection. In order to obtain a 
frame-wise output and a receptive field of appropriate 
size, we made two adjustments: first, all max-pooling 
operations have a stride of one in time such that the 
final output consists of 431 frames (same as the input). 
Consequently, all layers following the max pooling 
operations have appropriate dilation factors in time. 
Second, after the pitch axis has been pooled out, we add 
one-dimensional convolutions to increase the receptive 
field in time. Ultimately, the network has a receptive field 
covering the full pitch axis (all 84 CQT bins) and around 
5.5 seconds on the time axis (encompassing most motif 
instances in our dataset, see Table 1). All convolutional 
layers use a leaky ReLU activation function with α = 0.2. 
After the final convolution and max-pooling stage, we 
apply a dense layer at each frame and obtain leitmotif 
activity functions φℓ in the same fashion as the RNN 
system. Unlike the RNN, however, this system is not causal 
but operates in a centric fashion, so the output at any 
frame depends on the frame itself and an equal number 
of preceding and subsequent frames.

3.2.3 Training and post-processing
We consider both networks as representatives for 
their respective architectural paradigms (recurrent 
vs. convolutional). Thus, we abstain from proposing 
complicated improvement strategies to either model. 
For the same reason, we take care to keep the number 
of parameters in the same order of magnitude (375 445 
for the RNN and 440 021 for the CNN). This allows us 
to attribute any differences in network behavior to the 
architectural paradigms rather than the network size.

We train the networks by minimizing the average binary 
cross-entropy loss between predicted probabilities and 
correct labels at all frames using the Adam optimizer with 
a learning rate of 0.002 on mini-batches of 32 excerpts. 
We use the validation loss as a monitor for early stopping. 
After 30 epochs without decreasing loss, we reset the 
weights to the optimal epoch. These operations are 
implemented in Python using Tensorflow 2.6

After training, we obtain leitmotif activity predictions 
by pre-processing the test recordings and passing the 
resulting CQT frames through the model (from start to 
finish, i.e., including parts not containing leitmotifs). 
Essentially, the network layers are operating on entire 
test recordings, without restrictions due to their input 
shape (431,84). For the RNN-based model, this is achieved 
by passing on the internal LSTM states from frame to 
frame. Regarding the CNN-based model, we apply it on 
overlapping chunks of the test recordings with the overlap 
equal to its receptive field in time. This way, we can obtain 
predictions that are not affected by zero padding at the 
input edges. This yields the frame-wise activity functions 
φℓ for each ℓ. Then, we post-process φℓ using a median 
filter of length 0.5 seconds (applied in a centric fashion). 
Median filtering removes outliers (such as gaps and 
spikes) from φℓ that are much shorter than the typical 

length of a leitmotif instance (see Table 1). Such a post-
processing step is common for other detection procedures, 
e.g., for detecting singing voice (Schlüter and Lehner, 
2018). Finally, we apply binarization with an individual 
binarization threshold per motif (tuned to maximize 
motif F-measure on the validation set using grid search). 
We proceed with the post-processed network outputs as 
described in Section 2.3 (transferring predictions from a 
physical to a musical time axis) to obtain 𝒜RNN and 𝒜CNN.

3.3 Evaluation measures
After this conversion to a musical time axis, it is straightforward 
to use the resulting matrix 𝒜Est (i.e. 𝒜RNN,𝒜CNN, or any other 
model output) and the reference 𝒜Ref for computing the 
number of true positive, false positive, and false negative 
predictions for a motif ℓ ∈ [1 : L]:
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Based on these numbers, we derive standard metrics such 
as precision (P), recall (R), and F-measure (F) for motif ℓ. 
Finally, we take the mean over these values for all motifs 
in order to obtain what we call the class mean evaluation 
measures. Thus, for these mean values, all classes (i.e. 
motifs) are counted equally, regardless of the amount of 
leitmotif activity per class.

Furthermore, we also compute

 


  
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L
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(likewise for FP, FN) and then obtain precision, recall, 
and F-measure based on TP, FP, and FN, instead. Since we 
aggregate values from the whole matrices here (regardless 
of class), we call these the matrix mean evaluation 
measures. These values are subject to class imbalance on 
the level of measure sub-segments: motifs with more (and 
longer) activity regions affect the result more than rare 
(and short) motifs. For these values, all leitmotif activity is 
counted equally, regardless of class.

The metrics described here correspond to segment-
based precision, recall, and F-measure in their class-based 
(macro-averaged) and instance-based (micro-averaged) 
variant (Mesaros et al., 2016), respectively.

3.4 Evaluation with tolerance
Many applications of leitmotif activity detection may not 
require a very fine temporal granularity. For example, 
indicating a leitmotif one measure in advance may 
be sufficient for an application that draws a listener’s 
attention to a forthcoming leitmotif. Furthermore, our 
automated annotation transfer with linear interpolation 
described in Section 2.2 may have introduced small 
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errors, which should be accounted for in the evaluation. 
Motivated by such requirements, we introduce an 
additional tolerance parameter K in our evaluation. When 
comparing 𝒜Ref and 𝒜Est, we filter both matrices prior to 
thresholding using a moving maximum filter of length K 
for each motif. In the subsequent experiments, we set K 
= B so that the filter length corresponds to one measure. 
Thus, short interruption of a motif’s activity (less than 
a measure long) are considered as the motif still being 
active. As another consequence, each false positive sub-
segment leads to a minimal penalty in the evaluation, since 
the maximum filter enlarges false positive predictions to a 
duration of at least one measure (even if they are shorter). 
The same applies to false negative sub-segments, since 
any leitmotif activity in 𝒜Ref is also enlarged to a duration 
of at least one measure. In a similar fashion, each true 
positive prediction is enlarged to a duration of at least one 
measure, which can be thought of as a minimal reward for 
true positives. In this context, it is important to note that 
the median filter applied to the model outputs already 
eliminates very short positive predictions (of less than 
roughly 0.25 seconds).

3.5 Experimental results
We evaluate the trained models on the three test 
performances (see  Figure 2), post-process the output, and 
apply the evaluation procedure and metrics as described 
above. For the RNN-based system, we obtain the results 
given in the left block of Table 4. Precision, recall, and 
F-measure are given for each motif, e.g., for L-RT, P = 
0.85, R = 0.86, and F = 0.85. In this experiment based on 
the RNN model, precision values are usually higher than 
recall values, especially for L-Ju, where P = 0.82 and R = 
0.68. The effect is also evident in the class mean, where P 
= 0.83 and R = 0.79, implying that our model has more 
difficulties with false negatives than false positives.

We obtain the highest F-measure for L-Wa with F = 
0.92, while the lowest is F = 0.73 for L-Sc. The class mean 
F-measure (F = 0.81) and the matrix mean F-measure (F = 
0.80) are close to each other, which indicates that results 
for frequent and infrequent motifs (in terms of active 
measure sub-segments per motif) are similar. Overall, 
evaluation metrics for our RNN-based system for all motifs 
are above 0.7, with the mean results at around 0.8 for all 
evaluation metrics.

In  Figure 4, we visualize results for our RNN-based 
model on an excerpt of the first act of Siegfried. Here, black 
regions correspond to true positive predictions of our 
model (after thresholding), while light and dark red regions 
indicate false negative and false positives, respectively. 
White color indicates true negative predictions. In the 
excerpt in  Figure 4, most regions of leitmotif activity 
(and inactivity) are predicted correctly (black and white 
regions). Sometimes, only parts of a leitmotif instance are 
predicted as active (see, e.g., for L-Ri around measure 
220). There are also some clear outliers such as the false 
positive predictions for L-Ni at measure 300 and L-Ju 
around measure 310. Overall, the correctly predicted 
regions dominate the visualization.

The right block of Table 4 shows our results obtained 
with the CNN-based system. Overall, results are slightly 
better than for the RNN (see e.g. the class mean F-measure 
F = 0.83 compared to F = 0.81 for the RNN). Aside from 
this, we observe similar behavior as for the RNN. For 
example, L-Wa again yields the highest F-measure among 
motifs with F = 0.94. We conclude that it is unlikely that 
either architecture is strongly superior to the other in 
terms of evaluation scores on the test set.

Table 4: Results for our deep learning-based leitmotif 
activity detection systems on the test set.

RNN CNN

 P  R  F  P  R  F

L-Ni  0.87  0.76  0.81  0.85  0.79  0.82
L-Ri  0.80  0.73  0.76  0.82  0.76  0.79
L-NH  0.89  0.78  0.83  0.91  0.82  0.86
L-Mi  0.86  0.86  0.86  0.87  0.79  0.83
L-RT  0.85  0.86  0.85  0.80  0.83  0.82
L-Wa  0.94  0.90  0.92  0.93  0.95  0.94
L-WL  0.86  0.85  0.85  0.83  0.85  0.84
L-Ho  0.80  0.76  0.78  0.82  0.80  0.81
L-Ge  0.89  0.81  0.85  0.85  0.81  0.83
L-Sc  0.74  0.72  0.73  0.83  0.72  0.77
L-Ju  0.82  0.68  0.74  0.87  0.78  0.82
L-WH  0.79  0.77  0.78  0.78  0.76  0.77
L-RS  0.87  0.84  0.86  0.86  0.81  0.84
L-Fe  0.87  0.88  0.88  0.93  0.86  0.89
L-SK  0.75  0.72  0.74  0.81  0.75  0.78
L-Un  0.79  0.75  0.77  0.84  0.81  0.83
L-Li  0.89  0.81  0.85  0.82  0.84  0.83
L-Si  0.78  0.75  0.76  0.83  0.80  0.81
L-Ma  0.79  0.81  0.80  0.87  0.79  0.83
L-Ve  0.84  0.73  0.78  0.83  0.83  0.83

Class mean  0.83  0.79  0.81  0.85  0.81  0.83

Matrix mean  0.83  0.78  0.80  0.85  0.80  0.82

Figure 4: Illustration of results for our RNN-based leitmo-
tif activity detection system (shown for measures 112 to 
390 from the first act of Siegfried in P-Ba).
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4 Robustness to Input Modifications
We now want to gain a deeper understanding of the 
properties learned by our neural network-based models. 
To do so, we systematically modify the input to our models 
in different ways and investigate the impact this has on 
the model outputs.

 Figure 5, upper row, gives a qualitative overview of 
the modifications we consider in this section. Besides 
the unmodified model input (a), these modifications 
encompass (b) tempo changes, (c) pitch shifts, (d) 
replacement of leitmotif frames by noise, and (e) shuffling 
of leitmotif frames. The lower row of  Figure 5 illustrates 
the activity functions resulting from the RNN for an 
example (solid red line), together with the reference 
annotation (dashed blue line). From a musical point of 
view, we would expect our activity detection approach to 
be robust against tempo changes and pitch shifts, while 
it should be sensitive to shuffling and noise replacement 
of frames. Strikingly, however, we see that tempo change 
and shuffling do not seem to change the results much, 
while pitch shifting and noise affect them strongly. We can 
also observe that our model anticipates the motif instance 
before it actually begins (Figure 5a). Very similar behavior 
can be observed for the CNN (not shown here in the 
interest of space), although the CNN does not anticipate 
the motif instance in this example.

In the following we examine these qualitative 
findings in a quantitative fashion. To do so, we apply the 
modifications to all acts of all performances in the test set, 
detect leitmotif activity in these modified inputs using our 
networks, and then evaluate with our usual procedure.

4.1 Tempo changes
First, we simulate global tempo changes in our test 
recordings by stretching or compressing our CQT 
representation along the time axis using bilinear filtering 
(see also  Figure 5b).7 Figure 6a shows the matrix 
mean F-measure obtained by the RNN on the test set for 
different tempo changes. For example, at 50% tempo, the 

input is stretched to twice its original length (i.e. slower), 
whereas for 200% tempo, the input is compressed to 
half its original length (i.e. faster). The solid red curve in  
Figure 6 demonstrates the effect of this transformation 
on our model. The resulting F-measure steadily decreases 
for slower inputs (from F = 0.80 at 100% to F = 0.69 at 
50%). For faster inputs, the F-measure remains higher 
compared to slower inputs (e.g. F = 0.76 at 200%). 
Nevertheless, most results are above F = 0.70, meaning 
that our model can deal even with considerable tempo 
changes. It should be noted that all test performances 
are longer (i.e. slower) than an average performance in 

Figure 5: Results for our RNN-based leitmotif activity detection system on measures 117 to 123.5 of the first act of Sieg-
fried in P-Ba (see also  Figure 3 and  Figure 4; outputs of the CNN-based model are similar). A prominent instance 
of L-Sc is being played in the higher registers, accompanied by low-frequency tremolo. The model input is shown 
in the upper row. The respective output activations for the L-Sc class are plotted underneath in red (solid line). 
The dashed blue line corresponds to the ground truth annotations for L-Sc. The input is given to the network (a) 
unchanged, (b) slowed down to 175% of the original length, (c) with a pitch shift of eleven semitones, (d) with motif 
frames replaced by noise, and (e) with motif frames shuffled along the time axis.
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Figure 6: Results for our (a) RNN-based and (b) CNN-
based leitmotif activity detection systems on the test 
set under tempo changes. The CQT input is stretched in 
time (using bilinear resampling) by the given percent-
age.
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the training set. This may be the reason why our activity 
detection procedure is more robust to speeding up test 
performances while being more sensitive towards slowing 
them down.

A similar trend can be observed for the CNN-based 
model in  Figure 6b. Here, we observe a stronger drop 
in results for slower inputs (from F = 0.82 at 100% to F = 
0.48 at 50%). We hypothesize that this is due to the fixed 
size of the CNN’s receptive field, which means that its 
predictions are based on less musical content for inputs 
at slower tempos and on more musical content for inputs 
at faster tempos.

We now conduct the same experiment with an 
additional data augmentation strategy, as is common 
practice in deep learning (Goodfellow et al., 2016), by 
also simulating global tempo changes during training. 
The dashed blue curve in  Figure 6a shows the RNN’s 
results in this experiment. This way, training examples 
are randomly stretched or compressed to be at most 10% 
slower or faster. The solid red and dashed blue curves are 
almost identical, meaning that this augmentation does 
not affect results much. We repeat this experiment with 
training augmentations of up to 20% change in tempo, 
indicated by the dotted orange curve. Here, test F-measure 
increases for all amounts of tempo changes (including F = 
0.83 at 100%). For the CNN, we observe a similar behavior 
in  Figure 6b. Here, both augmentation experiments yield 
improved results, although there is still a drop for very slow 
inputs (F = 0.62 at 50% for augmentations up to 20%). 
From these experiments, we conclude that training on 
ten different performances of the Ring already introduces 
some robustness to minor tempo changes in our model, 
which may further be enhanced through augmentations.

4.2 Pitch shifts
Second, we simulate transpositions in our test recordings 
by shifting our CQT representations along the pitch axis 
(using nearest-neighbor padding at the boundaries, i.e., 
the value for the lowest/highest CQT bin is replicated), see 
also  Figure 5c.  Figure 7a (solid red curve) shows matrix 
mean F-measures obtained with the RNN after modifying 
the test recordings in this way. This curve demonstrates 
that pitch shifts have a dramatic effect. For example, the 
test results drop to F = 0.11 for a shift of one semitone 
upwards. Shifting by more semitones, the F-measure 
drops further. We conclude that our model crucially relies 
on absolute pitch information. Even though leitmotif 
instances of the same motif appear in different registers 
and keys, the model has not learned their properties in a 
transposition-invariant way. As such, the model can only 
detect transposed motifs seen during training and would 
fail to generalize to new, unseen transpositions.

Convolutional architectures such as our CNN-based 
model are usually ascribed a certain degree of translation-
invariance due to the weight-sharing and pooling 
operations (Goodfellow et al., 2016). Performing the pitch 
shift experiment for our CNN (Figure 7b), we can indeed 
observe better results than for the RNN when applying 
pitch shifting to the model input. For example, a shift of 
one semitone upwards now yields F = 0.26 and F-measures 

never drop below 0.1 for any considered shift. However, all 
shifts yield F-measures below 0.3, meaning that absolute 
pitch information is still highly important for our CNN-
based model.

We repeat this experiment with an augmentation 
strategy, using pitch shifting also for the training set. 
Here, training examples are randomly shifted at most two 
semitones in either direction along the pitch axis. The 
dashed blue curve in  Figure 7a shows the corresponding 
results for the RNN. We observe that applying this 
augmentation decreases results for the unmodified test 
inputs (i.e. F = 0.69 for a shift of 0), but increases results 
for transformations considered during training (shifts of 
-2 to +2 semitones). Larger shifts still cause the model 
to fail. The same effect is seen in the dotted orange 
curve, where shifts of up to ±6 semitones were applied 
as augmentation during training. Here, the result for 
unmodified model input drops to F = 0.46, but the model 
can now cope with pitch shifts within the same range 
as used for augmentation (e.g. F = 0.42 for a shift of +6 
semitones). In addition, the slopes of the F-measure curve 
are less steep, implying better generalization (e.g. F = 0.26 
for a shift of minus eight semitones, even though only 
shifts up to ±6 semitones were included during training).

Figure 7b shows the corresponding curves for 
the CNN. Here, results for unmodified model input 
(shift of 0 semitones) drop only slightly when adding 
augmentations (e.g. F = 0.79 for up to ±6 semitones 
pitch shift augmentation compared to F = 0.82 without 
augmentation). Additionally, the slopes of the F-measure 
curves are even less steep (e.g. F = 0.74 for a shift of minus 
eight semitones and up to ±6 semitones as augmentation).

Figure 7: Results for our (a) RNN-based and (b) CNN-
based leitmotif activity detection systems on the test 
set under pitch shifts. The CQT input has been shifted 
(using nearest-neighbor padding) on the pitch axis by 
the given number of semitones (corresponding to CQT 
bins).
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4.3 Noise
Third, we study the effect of completely removing all 
information in leitmotif regions from our test set. To 
do so, we replace all frames within a leitmotif instance 
by uniform noise (see  Figure 5d). The impact of this 
modification on the RNN’s results is shown in Figure 8a (1).  
When replacing all leitmotif frames (denoted as “All”), 
we obtain a much lower F-measure (F = 0.13) compared 
to the original model input (“Unchanged,” F = 0.80). In 
order to see whether our model responds to certain parts 
of leitmotif instances, we further modify only the first 
(“Start”), the middle (“Middle”), or the last third of frames 
(“End”) for each leitmotif instance. The drop in F-measure 
is most pronounced for the beginning of motif instances 
(leading to F = 0.42 when replacing the first third but 
preserving the rest, compared to F = 0.63 for the last 
third). Yet, the overall F-measure does not drop entirely 
even when replacing all frames by noise. This implies 
that context around the leitmotif instances can help in 
identifying motifs even when the actual motif frames are 
absent. Again, we observe similar results for the CNN in  
Figure 8b (1). Here, frames in the middle of each leitmotif 
affect results more strongly and results drop even further 
when replacing all leitmotif frames (F = 0.07). Overall, we 
can conclude that our CNN-based model exploits context 
around leitmotif regions in a similar fashion as the RNN 
does.

4.4 Shuffling
Fourth, we study the effect of removing the temporal order 
from the leitmotif activity regions. To do so, we shuffle 
the frames within a leitmotif instance along the time axis, 

see also  Figure 5e. The impact of this modification on 
the RNN is shown in  Figure 8a (2), again for different 
parts of a leitmotif instance. We can observe that shuffling 
has only a minor impact on results (giving F = 0.79 when 
shuffling only the first third or F = 0.67 for all frames). 
Since shuffling along the time axis destroys any rhythmic 
information as well as the temporal aspects of melody 
(the order of notes), we conclude that such rhythmic 
or melodic cues are largely ignored by our model. We 
hypothesize that our model instead captures the pitch 
distributions in leitmotif instances, which are related to 
harmony. These distributions are mostly preserved when 
shuffling leitmotif frames, explaining the high results 
even for shuffling all frames of a leitmotif instance. Our 
experiments on pitch shifting (see Section 4.2) further 
suggest that the model depends on absolute pitch 
distributions rather than relative harmonic relationships 
(since pitch shifting preserves relative pitch relationships 
but changes absolute pitch distributions, leading to worse 
results).

The CNN reacts more strongly to this input modification, 
see  Figure 8b (2). When shuffling all frames, for example, 
the F-measure drops to 0.42. F-measures remain high 
when only individual parts of the instances are shuffled 
(e.g. F = 0.77 when shuffling only the end). Therefore, we 
hypothesize that our CNN only weakly reacts to temporal 
relationships.

Summarizing the insights obtained from the input 
modifications, we find that our models are to some 
degree robust to global tempo changes, which is a 
desirable property. However, we also found that they rely 
on pitch distributions within leitmotif instances (which 
is undesirable since these distributions can be affected 
by other musical parts) instead of capturing many 
musical cues that human listeners would associate with 
specific leitmotifs (such as temporal aspects of melody 
and rhythm). We further found that our recurrent and 
convolutional architectures behave similarly under input 
modifications, with some slight differences. While the 
CNN is affected more strongly by slowed down input, 
it is more robust to pitch shifts, especially when using 
additional augmentation. In addition, the CNN is affected 
slightly more strongly by shuffling of leitmotif frames 
than the RNN.

5 Towards Less Informed Scenarios
This paper considers the task of detecting leitmotif 
activity in a continuous (frame-wise) fashion over the 
course of entire opera recordings. As a more informed 
scenario, our previous study considered classification 
of pre-segmented audio excerpts according to the 
leitmotif played (Krause et al., 2020). Additionally, we 
ruled out excerpts where multiple leitmotifs were played 
simultaneously. Compared to this constrained scenario, 
the leitmotif activity detection task is more challenging 
since no pre-segmented instances are given and inputs 
may contain no motif or simultaneously active motifs. In 
Krause et al. (2020), we report F-measures of about 0.9 for 
a leitmotif classification setting with the first ten motifs 
of Table 1. While our results cannot be compared directly 

Figure 8: Results for our (a) RNN-based and (b) CNN-
based leitmotif activity detection systems on the test set 
when (1) replacing leitmotif frames by noise or (2) shuf-
fling them along the time axis. The modifications have 
been applied to either the first, middle, or last third of 
each leitmotif instance (Start, Middle, End), for none 
(Unchanged), or for all leitmotif frames (All).
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(especially since we evaluate on a frame level instead of 
an excerpt level as in Krause et al. (2020)), we can see that 
the detection F-measures obtained with our deep-learning 
systems (Table 4) are lower, at roughly 0.8 on average.

To approach scenarios with an even lower degree of 
side information, our systems must be able to deal with 
previously unseen leitmotif occurrences. The classification 
experiments reported in Krause et al. (2020) demonstrate 
that generalizing to unseen leitmotif occurrences is more 
challenging than generalizing to unseen performances 
of known occurrences. To this end, different splits of the 
dataset were considered in Krause et al. (2020). In a similar 
way, we performed a preliminary experiment where we 
split the dataset across operas instead of performances. 
Here, we trained on all operas except for Das Rheingold 
in all 16 performances (Figure 2). We then evaluated on 
a test set containing only Das Rheingold, again in all 16 
performances. From this experiment, we obtained low 
evaluation measures with P = 0.17, R = 0.07 and F = 0.10 
(matrix mean) for the RNN-based system, as well as P = 
0.18, R = 0.13 and F = 0.15 for the CNN-based system.

The discrepancy between the performance and the opera 
split’s results may be explained with the models relying on 
confounding factors such as pitch distributions in leitmotif 
instances, while ignoring musically relevant aspects of 
leitmotifs such as rhythmic or melodic progressions. 
In other words, our models can be said to be overfitted 
towards the specific motif instances in the training set. 
In order to approach less informed scenarios such as the 
opera split (i.e. generalizing to unseen pattern occurrences) 
or the discovery of unknown leitmotifs (i.e. discovering 
unknown patterns in an unsupervised fashion), it becomes 
important to limit the impact of confounding factors. For 
this purpose, using more diverse data is recommended in 
the machine learning literature (Goodfellow et al., 2016). 
This could be realized, e.g., by adding more performances, 
considering data augmentation strategies, or utilizing 
artificial training data to expose the models to a larger 
variety of tempo, key, or timbre. As a different approach, 
one might annotate additional musical works and utilize 
transfer-learning techniques (Choi et al., 2017). Another 
improvement strategy could be the use of more elaborate 
neural network architectures by increasing the number of 
network parameters or by using convolutional-recurrent 
architectures (Çakir et al., 2017) and other recent models 
proposed for sound event detection tasks (Li et al., 
2020). Additionally, dedicated architectures introducing 
invariance to tempo (Di Giorgi et al., 2020), key (Elowsson 
and Friberg, 2019) or other properties (Lattner et al., 2019) 
may be useful.

6. Conclusion
In this paper, we approached the task of detecting 
leitmotif activity in opera recordings as a case study for 
the detection of complex musical patterns in audio. For 
our experiments, we considered a scenario comprising 
3569 annotated occurrences of 20 characteristic 
leitmotifs in Wagner’s Ring cycle, realized in 16 different 
performances and, thus, summing up to 57 104 activity 
regions within more than 200 hours of audio material. 

As our main contributions, we tested two deep-learning 
models for leitmotif activity detection and analyzed 
their behavior under different input modifications. 
Our deep-learning models obtained good numerical 
results on a held-out test set but captured confounding 
factors such as absolute pitch distributions, rather than 
relying on characteristic musical properties of leitmotifs 
such as rhythmic or melodic patterns. Thus, our study 
demonstrates the challenges faced by neural networks 
for detecting musical patterns. Future work may employ 
elaborate model architectures and dedicated training 
strategies in order to handle this task in a more robust 
way and to proceed towards approaching other, less-
informed scenarios.

Notes
 1 https://www.audiolabs-erlangen.de/resources/

MIR/2021-TISMIR-TowardsLeitmotifDetection.
 2 An example of motifs whose occurrences are possibly 

correlated are the motif for the horn of the hero 
Siegfried (L-Ho) and the motif for the character 
himself (L-Si).

 3 h t t p s : / / w w w . m u s i c - i r . o r g / m i r e x /
wiki/2017:Discovery_of_Repeated_Themes_%26_
Sections.

 4 http://dcase.community/challenge2020/.
 5 https://librosa.org/.
 6 https://www.tensorflow.org/.
 7 The experiments in this and the following section 

yield similar trends and conclusions when performed 
using a phase vocoding technique for time-scale 
modification.
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