
CLASSIFYING LEITMOTIFS IN RECORDINGS OF OPERAS BY
RICHARD WAGNER

Michael Krause, Frank Zalkow, Julia Zalkow, Christof Weiß, Meinard Müller
International Audio Laboratories Erlangen, Germany

{michael.krause,meinard.mueller}@audiolabs-erlangen.de

ABSTRACT

From the 19th century on, several composers of Western
opera made use of leitmotifs (short musical ideas referring
to semantic entities such as characters, places, items, or
feelings) for guiding the audience through the plot and il-
lustrating the events on stage. A prime example of this
compositional technique is Richard Wagner’s four-opera
cycle Der Ring des Nibelungen. Across its different occur-
rences in the score, a leitmotif may undergo considerable
musical variations. Additionally, the concrete leitmotif in-
stances in an audio recording are subject to acoustic vari-
ability. Our paper approaches the task of classifying such
leitmotif instances in audio recordings. As our main con-
tribution, we conduct a case study on a dataset covering 16
recorded performances of the Ring with annotations of ten
central leitmotifs, leading to 2403 occurrences and 38448
instances in total. We build a neural network classification
model and evaluate its ability to generalize across differ-
ent performances and leitmotif occurrences. Our findings
demonstrate the possibilities and limitations of leitmotif
classification in audio recordings and pave the way towards
the fully automated detection of leitmotifs in music record-
ings.

1. INTRODUCTION

Music has long been used to accompany storytelling, from
Renaissance madrigals to contemporary movie sound-
tracks. A central compositional method is the association
of a certain character, place, item, or feeling with its own
musical idea. This technique culminated in 19th century
opera where these ideas are denoted as leitmotifs [1, 2]. A
major example for the use of leitmotifs is Richard Wag-
ner’s tetralogy Der Ring des Nibelungen, a cycle of four
operas 1 with exceptional duration (a performance lasts up
to 15 hours) and a continuous plot spanning all four op-
eras. As many characters or concepts recur throughout the

1 While Wagner referred to his works as music dramas instead of op-
eras, we choose the more commonly used latter term.
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Figure 1. Illustration of example leitmotifs (red for the
Horn motif, blue for the Ring motif) occurring several
times in the Ring cycle and across different performances.

cycle, so do their corresponding leitmotifs. This allows the
audience to identify these concepts not only through text or
visuals, but also in a musical way. While all these different
occurrences of a leitmotif in the score share a characteris-
tic musical idea, they can appear in different musical con-
texts and may vary substantially in compositional aspects
such as melody, harmony, key, tempo, rhythm, or instru-
mentation. When considering recorded performances of
the Ring, another level of variability is introduced due to
acoustic conditions and aspects of interpretation such as
tempo, timbre, or intonation. In the following, we denote
the concrete realization of a leitmotif in an audio record-
ing as an instance of the motif. This paper approaches
the problem of classifying such leitmotif instances in au-
dio recordings, as illustrated in Figure 1. In particular, we
study generalization across occurrences and performances.

Cross-version studies on multiple performances have
been conducted regarding the harmonic analysis of
Beethoven sonatas [3] or Schubert songs [4], but also for
the Ring [5, 6]. Beyond harmonic aspects, the Ring sce-
nario was considered for capturing audience experience us-
ing body sensors and a live annotation procedure [7] or for
studying the reliability of measure annotations [8, 9]. Re-
garding leitmotifs, several works have focused on the hu-
man ability to identify motifs [10–12]. In particular, [13]
found that distance of chroma features correlates with dif-
ficulty for listeners in identifying leitmotifs. In [6], Zalkow
et al. presented a framework for exploring relationships be-
tween leitmotif usage and tonal characteristics of the Ring.
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Name (English translation) ID Score # Occurrences Length
Measures Seconds
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#
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œ ™ ˙ ™ 172 1.38 ± 1.05 2.44 ± 1.57

Geschwisterliebe (Siblings’ love) L-Ge &
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j
˙ ™ œ œ 155 1.31 ± 0.83 3.03 ± 2.55
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˙

134 1.89 ± 0.55 3.68 ± 1.88

Table 1. Overview of the leitmotifs used in this study. Lengths are given as mean and standard deviations over all annotated
occurrences (in measures) or instances (in seconds) from all performances given in Table 2.

From a technical perspective, our scenario entails the
task of automatically detecting leitmotifs within an au-
dio recording. This paper represents a first step towards
this goal by considering a simplified classification scenario
with pre-segmented instances (see Figure 1).

Due to the multiple sources of variability described
above, we opt for a data-driven approach. Neural networks
have emerged as the dominant classification models. In
particular, recurrent neural networks (RNNs) are able to
handle input sequences of varying length. Our study shows
that despite the difficulties of the scenario, an RNN classi-
fier is surprisingly effective in dealing with the variability
across occurrences and performances.

The main contributions of our work are as follows: We
conduct a case study on classifying leitmotif instances in
audio recordings of the Ring. For this, we describe the task
of leitmotif classification and provide a dataset of more
than 38000 annotated instances within 16 performances
of the Ring (Section 2). We further build an RNN model
for classifying leitmotifs in audio recordings (Section 3).
We carefully evaluate our model with respect to variabili-
ties across performances and leitmotif occurrences over the
course of the Ring. Moreover, we investigate the effect of
adding temporal context and critically discuss the potential
limitations and generalization capabilities of our classifier
(Section 4). Finally, we suggest new research directions
that may continue our work (Section 5).

2. SCENARIO

We now discuss the dataset and leitmotif classification sce-
nario underlying our experiments.

2.1 Leitmotifs in Wagner’s Ring

While Wagner mentioned the importance of motifs for his
compositional process [14], he did not explicitly specify
the concrete leitmotifs appearing in the Ring. Whether a
recurring musical idea constitutes a leitmotif—and how to
name it—is a topic of debate even among musicologists,
see, e. g., [15] where differences in leitmotif reception are
discussed. In line with [6], we follow Julius Burghold’s
specification of more than 130 leitmotifs in the Ring [16].

For our experiments, we selected ten central motifs fre-
quently occurring throughout the Ring (see Table 1 for an
overview including the number of occurrences per motif).
These motifs constitute the classes of our classification
task. The selection comprises motifs associated with an
item such as the sword (L-Sc), with characters such as
the dwarf Mime (L-Mi), or with emotions such as love
(L-Ge). All occurrences of these motifs were annotated
by a musicologist using a vocal score of the Ring as a ref-
erence, resulting in 2403 occurrences.

As discussed in Section 1, a leitmotif may occur in dif-
ferent shapes over the course of a drama. These musical
variations may be necessary to fit the musical context in
which the occurrences appear and, thus, be adjusted to the
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ID Conductor Year hh:mm:ss

P-Ba Barenboim 1991–92 14:54:55
P-Ha Haitink 1988–91 14:27:10
P-Ka Karajan 1967–70 14:58:08

P-Sa Sawallisch 1989 14:06:50
P-So Solti 1958–65 14:36:58
P-We Weigle 2010–12 14:48:46

P-Bo Boulez 1980–81 13:44:38
P-Bö Böhm 1967–71 13:39:28
P-Fu Furtwängler 1953 15:04:22
P-Ja Janowski 1980–83 14:08:34
P-Ke Keilberth/Furtwängler 1952–54 14:19:56
P-Kr Krauss 1953 14:12:27
P-Le Levine 1987–89 15:21:52
P-Ne Neuhold 1993–95 14:04:35
P-Sw Swarowsky 1968 14:56:34
P-Th Thielemann 2011 14:31:13

Table 2. Recorded performances of the Ring used in this
study (see also [6]). Measure positions have been anno-
tated manually for the topmost three performances (P-Ba,
P-Ha and P-Ka), which also constitute the test set in our
performance split. The three middle performances (P-Sa,
P-So and P-We) constitute the validation set.

current key, meter, or tempo. Moreover, occurrences of
leitmotifs may appear in different registers, musical voices,
or instruments. In addition to this, motifs can also occur in
abridged or extended shape, with parts of the motif being
repeated, altered, or left out. Despite these diverse musical
variations across occurrences, listeners can often identify
motifs easily when listening to a performance. This is in
line with Wagner’s intention of using the motifs as a guide-
line, thus forming the musical surface of the Ring [17].

2.2 Recorded Performances

As mentioned in the introduction, we do not attempt to
classify leitmotifs within a score representation but on the
basis of a performance given as an audio recording. To
be more concrete, our work relies on 16 recorded per-
formances of the Ring that have been used before in [6].
For three of these performances, the positions of measures
from the score were manually annotated in the audio [8].
For the remaining 13 performances, the measure posi-
tions were transferred from the manually annotated per-
formances using automatic audio-to-audio synchronization
[9]. Table 2 specifies the performances. We automati-
cally located the 2403 leitmotif occurrence regions from
the score in each of the 16 recorded performances using
linear interpolation between measure positions. This way,
we obtained the 38448 instances used for our experiments.
The occurrence and instance positions are made publicly
available as a dataset for further research. 2

2.3 Leitmotif Classification Task

In this paper, we consider the task of leitmotif classifica-
tion. We define this as the problem of assigning a given
audio excerpt to a class according to the occurring leitmo-
tif. Here, we consider ten classes corresponding to the mo-

2 https://www.audiolabs-erlangen.de/resources/MIR/
2020-ISMIR-LeitmotifClassification
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Figure 2. Variability of L-Ho across occurrences and per-
formances. Six instances (two occurrences for three per-
formances) are shown in a CQT representation, which is
also used as input to our classification model.

tifs in Table 1. We further make the simplifying assump-
tion that only a single leitmotif is played at a time. Thus,
we omit excerpts where multiple motifs occur simultane-
ously. Our classification task therefore becomes a multi-
class, single-label problem.

Our dataset allows us to approach the leitmotif classi-
fication task from two perspectives, each of which incor-
porates its own types of variabilities. First, the perfor-
mance perspective concerns variabilities across different
performances, resulting from different instrumental tim-
bres, tempi, or other decisions made by the artists. Fur-
thermore, this perspective encompasses technical proper-
ties such as acoustic, recording, and mastering conditions,
which can lead to the so-called “album effect” [18]. Sec-
ond, the compositional or occurrence perspective concerns
diverse musical variabilities of leitmotif occurrences in the
score (as discussed in Section 2.1). Figure 2 shows the
Horn motif L-Ho for different performances and occur-
rences. The variability is evident in different durations of
the instances as well as different energy distributions due to
other musical events sounding simultaneously. These vari-
abilties make our classification task a challenging prob-
lem. In our experiments, we investigate the generalization
across these two perspectives, similar to the study in [4].

3. RECURRENT NEURAL NETWORK FOR
LEITMOTIF CLASSIFICATION

Neural networks have previously proven to be useful for
classification tasks in the music domain, see, e. g., [19–21].
As we are dealing with variable length inputs (leitmotif
instances may last from less than one to over ten seconds
in a performance), recurrent neural networks (RNNs) are a
natural choice for our scenario.

As input to our system, we take audio excerpts contain-
ing leitmotif instances from our 16 performances of the
Ring, sampled at 22050 Hz. These excerpts are processed
by a constant-Q-transform (CQT) [22, 23] with semitone
resolution over six octaves and a hop length of 512 sam-
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475



Layer Output Shape Parameters

Input (V, 84)

LSTM (V, 84) 109056
LSTM (V, 128) 131584
LSTM (V, 128) 131584
Take last (128)
Batch normalization (128) 512
Dense (10) 1290

Output: Softmax (10)

Table 3. Architecture of our RNN for leitmotif classifica-
tion. V indicates variable length.

ples, where we adjust for tuning deviations (estimated au-
tomatically per performance and opera act). These steps
are implemented using librosa [24]. Finally, all CQT
frames are normalized using the max-norm and the result-
ing representations serve as inputs to our network.

Table 3 gives an overview of the network structure. We
use an RNN-variant, the long short-term memory (LSTM)
proposed in [25]. We stack multiple LSTM layers and,
after the final LSTM output, append batch normalization
[26] as well as a single fully connected classification layer
to obtain leitmotif predictions. We set the number of
LSTM layers and the size of their internal representation
to 3 and 128, respectively. We train this network for 50
epochs by minimizing the cross-entropy loss between pre-
dictions and correct classes using the Adam optimizer [27]
with a learning rate of 0.001 on mini-batches of 32 ex-
cerpts. Since the excerpts in a batch may have different
lengths, we need to zero-pad them to the maximum num-
ber of frames among excerpts in that batch. During com-
putation, we then use masking to ignore zeros added to
shorter inputs. We further avoid overfitting by selecting
the weights of the epoch that yields the highest mean F-
measure on the validation set (as described in Section 4.2).
The network is implemented in Python using Tensorflow.

4. EXPERIMENTS

4.1 Setup and Splits

We follow the common machine learning approach of par-
titioning our dataset into training, validation, and test sub-
sets to train, tune hyperparameters, and estimate the results
on unseen samples, respectively. In contrast to standard
procedures, we partition the data according to musical as-
pects as motivated in Section 2.3. We will consider two
splits: the performance and occurrence splits.

For the performance split, we select the three recordings
with manually annotated measure positions (P-Ba, P-Ha
and P-Ka, see Table 2) for the test set and three perfor-
mances with automatically transferred measure positions
for the validation set (P-Sa, P-So and P-We). The re-
maining ten performances are used for training. In this
split, all subsets comprise all occurrences of all motifs. Re-
sults on the performance split are given in Section 4.3.

In contrast, for the occurrence split, we randomly
choose 80% of the occurrences for training and 10% each

Context Strict Variable Fixed (10 sec.)
P R F P R F P R F

L-Ni 0.94 0.95 0.94 0.90 0.95 0.92 0.93 0.93 0.93
L-Ri 0.93 0.92 0.93 0.84 0.93 0.88 0.86 0.89 0.87
L-Mi 0.96 0.95 0.96 0.95 0.93 0.94 0.92 0.98 0.95
L-NH 0.94 0.92 0.93 0.96 0.88 0.92 0.97 0.87 0.92
L-RT 0.95 0.94 0.95 0.94 0.90 0.92 0.96 0.95 0.96
L-Wa 0.94 0.98 0.96 0.98 0.96 0.97 0.96 0.99 0.98
L-WL 0.98 0.93 0.96 0.93 0.93 0.93 0.95 0.94 0.94
L-Ho 0.90 0.89 0.89 0.93 0.85 0.89 0.92 0.91 0.91
L-Ge 0.94 0.94 0.94 0.93 0.91 0.92 0.97 0.94 0.96
L-Sc 0.91 0.96 0.93 0.94 0.89 0.92 0.84 0.86 0.85

Mean 0.94 0.94 0.94 0.93 0.91 0.92 0.93 0.92 0.93

Table 4. Main results of our method on the test set of the
performance split for different strategies of using temporal
context.

for the validation and test set. 3 We further ensure that the
proportions of occurrences for each motif is the same in all
subsets. In this split, each subset contains all instances of
the occurrences in that subset. Results on the occurrence
split are given in Section 4.4.

4.2 Evaluation Measures

We adopt standard measures from information retrieval for
evaluating our models. For a given class (i. e., motif),
we treat the classification problem as a retrieval problem,
yielding class-dependent precision (P), recall (R), and F-
measure (F) as usual, see, e. g., [28].

We also report the mean precision, recall, and F-
measure over all classes. This gives a general impression
of the classification quality. Note that these averages are
not affected by class imbalance. Therefore, low results on
an infrequent class will influence the mean results as much
as low results on a frequent class.

4.3 Results on the Performance Split

Basic Experiment. The left block in Table 4 (Strict) sum-
marizes results for our model on the test subset of the per-
formance split. We obtain high classification results with a
mean F-measure of 0.94. Results are similar across motifs.
Highest precision (P = 0.98) is obtained for L-WL, while
highest recall (R = 0.98) is reached for L-Wa. Recall and
precision per motif are often similar. We conclude that it
is indeed possible to classify leitmotif instances in previ-
ously unseen performances, provided that all occurrences
were seen before in other performances. In the following,
we expand on this result by considering other classification
and split scenarios.
Temporal Context. In our basic experiment, we consid-
ered isolated leitmotif instances as input to our classifica-
tion model, i. e., the audio excerpts to be classified start and
end strictly at instance boundaries. We therefore call this
the Strict scenario. Identifying leitmotifs when instance
boundaries are not known in advance could pose an addi-
tional challenge. However, the temporal context before and

3 The same occurrences are chosen in all experiments for comparabil-
ity.
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Figure 3. Mean F-measures for our model when using
different input lengths in the Fixed scenario.

after the instance boundaries might also be helpful in iden-
tifying the class of an excerpt. Next, we analyze the effect
of temporal context on the leitmotif classification results.

To this end, we compare the Strict scenario with an al-
ternative, called Variable, where we add a randomly cho-
sen amount of temporal context to the input excerpts. Con-
text may be added before and after the motif instance.
More specifically, the excerpt length is at most doubled
and the instance in question is not constrained to be in the
excerpt center. Such use of context also prevents our model
from relying on length and boundary properties of the leit-
motif instances. The center block in Table 4 gives results
for this scenario. Compared to the Strict case, the mean
F-measure decreases slightly to 0.92.

We also perform experiments on fixed input lengths,
which we call the Fixed scenario. Here, we randomly take
subsections of an instance if it is longer than the fixed input
length or add context before and after in case it is shorter.
Mean F-measure values for different fixed input lengths
are shown in Figure 3 (solid red line). The plot indicates
that results decrease for lengths that are shorter than most
instances, 4 e. g., one second. When a fixed length of ten
seconds is chosen, which encompasses almost all instances
in the dataset, results are comparable to the Strict case
(see also the right block in Table 4). Longer inputs again
yield lower results, which may be attributed to the diffi-
culty posed by additional context. However, one should
note that for such large durations, input excerpts are no
longer guaranteed to contain instances of a single motif
only and thus, our initial assumption on a single label per
input may be violated.

In Section 5, we discuss how the results for different
amounts of temporal context may be interpreted in the con-
text of a leitmotif detection scenario.
Potential for Overfitting. Deep learning models often
rely on features of the input that would be deemed task-
irrelevant by human experts, see, e. g., [29, 30]. In our
case, the correct class for each input may be inferred not
only from musically relevant aspects of leitmotifs such as
melody or rhythm (as given in Table 1), but also from con-
founding features of the excerpts such as instrument activ-

4 Statistics on instance lengths are given in Table 1 (rightmost column).

Context Strict Variable Fixed (10 sec.)
P R F P R F P R F

L-Ni 0.67 0.80 0.73 0.67 0.86 0.75 0.80 0.91 0.85
L-Ri 0.36 0.41 0.38 0.44 0.43 0.43 0.49 0.67 0.56
L-Mi 0.79 0.87 0.83 0.82 0.80 0.81 0.97 0.96 0.97
L-NH 0.72 0.20 0.31 0.62 0.25 0.36 0.92 0.32 0.47
L-RT 0.57 0.65 0.61 0.60 0.77 0.68 0.71 0.91 0.80
L-Wa 0.87 0.80 0.84 0.81 0.88 0.84 0.95 0.95 0.95
L-WL 0.25 0.21 0.23 0.23 0.17 0.20 0.52 0.20 0.28
L-Ho 0.46 0.57 0.51 0.52 0.57 0.54 0.61 0.91 0.73
L-Ge 0.28 0.30 0.29 0.38 0.43 0.40 0.58 0.68 0.63
L-Sc 0.52 0.50 0.51 0.64 0.53 0.58 0.76 0.58 0.66

Mean 0.55 0.53 0.52 0.57 0.57 0.56 0.73 0.71 0.69

Table 5. Main results of our method on the test set of the
occurrence split for different strategies of using temporal
context.

ity or volume. This is especially true for the performance
split, where a classification model may predict correct out-
puts on the test set by merely memorizing all occurrences
during training instead of distinguishing musically relevant
features of the leitmotifs (we will revisit this possibility
in Section 4.6). In contrast, for the occurrence split, the
model needs to generalize to previously unseen realiza-
tions of the leitmotif classes and therefore needs to rely
on their common musical characteristics.

4.4 Results on the Occurrence Split

Table 5 presents results for the occurrence split with dif-
ferent strategies for adding temporal context. Overall re-
sults are lower than for the performance split. In the Strict
scenario, the obtained mean F-measure of 0.52 is substan-
tially lower than for the performance split, but still well
above chance (which corresponds to 0.1 mean F-measure).
Results vary considerably among motifs, with F-measures
ranging from 0.23 for L-WL to 0.84 for L-Wa. In addition,
the differences between precision and recall per motif can
be large as in the case of L-NH (P = 0.72 and R = 0.20).
We conclude that classifying leitmotif instances for un-
known occurrences is challenging but possible.

We further observe that—in contrast to the performance
split—context is beneficial in the occurrence split. Mean
F-measures of the Variable and Fixed scenarios increase to
0.56 and 0.69, respectively. Figure 3 shows F-measures for
different amounts of context in the occurrence split (dot-
ted blue line). Results increase for excerpt lengths up to
ten seconds and then stabilize. We see two potential rea-
sons for this. Firstly, by training with temporal context,
the classifier may learn to identify features that indicate
instance starts and ends, which could be helpful for iden-
tifying instances in the test set. Secondly, however, longer
temporal context also means that instances from the train-
ing set may occur in the context added to validation and test
instances. Indeed, we observed that for a context length of
10 seconds, 67% of test excerpts overlap with a training in-
stance of the same class, while 8% overlap with a training
instance of another class. Predicting the class of known
training occurrences would therefore yield good results on

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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Split Performance Occurrence
P R F P R F

Noise 0.90 0.87 0.89 0.32 0.36 0.34

L-Ni 0.90 0.95 0.93 0.63 0.74 0.68
L-Ri 0.89 0.89 0.89 0.28 0.32 0.30
L-Mi 0.94 0.93 0.94 0.78 0.75 0.76
L-NH 0.95 0.88 0.91 0.52 0.28 0.37
L-RT 0.93 0.93 0.93 0.54 0.73 0.63
L-Wa 0.93 0.96 0.94 0.79 0.79 0.79
L-WL 0.94 0.93 0.94 0.17 0.12 0.14
L-Ho 0.89 0.87 0.88 0.40 0.45 0.42
L-Ge 0.91 0.91 0.91 0.20 0.18 0.19
L-Sc 0.90 0.95 0.93 0.68 0.38 0.49

Mean 0.92 0.92 0.92 0.48 0.46 0.46

Table 6. Results of our method when incorporating a noise
class in the performance and the occurrence split. No tem-
poral context is added (Strict scenario).

the test set. The results for adding temporal context may
thus partly be explained by overfitting to the training set.

4.5 Noise Class

So far, we only considered excerpts that contain one of
ten leitmotifs. However, the Ring also contains regions
with other or with no leitmotifs at all. Because of this, we
also perform experiments with an additional Noise class,
denoting excerpts where none of the leitmotifs in our se-
lection are being played. We evaluate whether our model
is able to correctly classify our selection of leitmotifs in
the presence of this noise class, both for the performance
and the occurrence split. To do so, we randomly select
400 Noise occurrences from the Ring, leading to 6400
Noise instances. The model described in Section 3 re-
mains unchanged except for the final classification layer,
which now has eleven outputs.

Results are given in Table 6. For the performance
split, the additional noise class does not change results
by much. Leitmotif classes obtain somewhat lower results
(e. g., P = 0.90 for L-Ni compared to P = 0.94 in Table 4)
while the noise class yields an F-measure lower than most
leitmotif classes (F = 0.89). For the occurrence split, re-
sults for the leitmotif classes again decrease slightly (e. g.
P = 0.63 for L-Ni compared to P = 0.67 in Table 5),
while the noise class itself is especially hard to distinguish
(F = 0.34). In both splits, the noise class does not lead to
a complete deterioration of results. Section 5 discusses the
implications of this for the task of leitmotif detection.

4.6 Random Labels

In all experiments, our model has consistently obtained
higher results on the performance than on the occurrence
split. As discussed at the end of Section 4.3, the latter split
requires generalizing to new musical realizations of a mo-
tif. In contrast, the performance split could be tackled by
memorizing all leitmotif occurrences, which is not possi-
ble on the occurrence split.

To further investigate the gap in results between perfor-
mance and occurrence split, we now evaluate our model’s
capability to memorize input features on the performance

split. To do so, we create a variant of the performance
split where we assign a random class label from one to ten
to each occurrence. Thus, while occurrences are labeled
consistently across performances, their classes no longer
correspond to leitmotifs. In this variant of the performance
split, the class of a test excerpt can only be obtained by
memorizing classes for occurrences during training and not
by learning common properties of all occurrences for a mo-
tif. This random-labeling experiment is inspired by [31].

When training our model on this variant, we obtain a
mean F-measure of 0.54 on the test set after 50 epochs,
which is much lower than the 0.94 obtained for the origi-
nal labels (see Table 4). We observed that training for this
experiment had not converged after 50 epochs and trained
for an additional 75 epochs, leading to an F-measure of
0.57. The faster convergence and higher results on the
original labels suggest that our model does learn some rel-
evant characteristics of leitmotifs. Our experiment shows,
however, that memorizing excerpts may also contribute to
the results.

5. SUMMARY AND FUTURE WORK

In this work, we evaluated the capability of a neural net-
work classification model for identifying leitmotifs in au-
dio excerpts. Despite the complex musical variabilities in
this scenario, our RNN-based classification model is able
to differentiate between a fixed set of motifs and to dis-
tinguish them from non-motif excerpts. Generalization
is strong across performances and—to a lesser extent—
across occurrences. Using temporal context is helpful in
the latter case, although the improvement may partly be
the result of overfitting.

Our results encourage the development of a system
for automated detection of motif instances in full perfor-
mances. Unlike the classification task, no pre-segmented
instance boundaries would be available for detection. We
therefore expect this to be a more challenging scenario.

In our experiments, we have already explored the use of
fixed input lengths. Using these, our model may be applied
to all positions in an audio recording in a sliding window
fashion [32]. This way, we can obtain leitmotif predictions
for an entire performance of the Ring and not just indi-
vidual excerpts. Additionally, a model used for automated
leitmotif detection from audio would also need to deal with
input excerpts that do not contain any leitmotifs at all. Our
experiments with a noise class suggest that this may lead
to somewhat lower but still useful results.

Furthermore, a detection system would need to handle
a much larger number of motifs (around 130 for the com-
plete Ring) as well as excerpts containing multiple mo-
tifs played simultaneously. Multi-label extensions of our
model on fixed input lengths may be suitable for this.

As an even more advanced scenario, one may imagine
an informed detection setting in which instances of a pre-
viously unseen motif must be identified given only a few
exemplary instances of that motif.
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