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There has been a long-standing discussion about the connections between music and mathe-
matics. Music involves patterns and structures that may be described using mathematical lan-
guage. Some compositions are even constructed around certain mathematical ideas, and 
composers have used various kinds of  symmetries and transformations to shape their works. 
Many concepts from music theory can be expressed using some basic mathematical formal-
isms. And of  course, in the study of  musical sounds, the relation between music and mathe-
matics becomes quite obvious. In his book From Music to Mathematics, Gareth Roberts explores 
some of  the connections between these two disciplines. Organized into eight chapters, the book 
covers a range of  topics starting with well-known relationships such as the Pythagorean theory 
of  musical scales and simple ratios, harmonic consonance and overtones series, as well as musi-
cal symmetries and group theory. More curious connections exist in scenarios such as change 
ringing, twelve-tone music, or mathematically inspired modern music.

The book is written with care, and in it Roberts reveals his passion for both music and math-
ematics. Each chapter starts with a certain musical aspect which leads to a mathematical prob-
lem. This problem is then formalized and treated in more detail. Reading through the book is 
like listening to a pleasant medley, in which one encounters some favorite tunes as well as new, 
surprising perspectives. Beyond simply pointing out interesting connections between music 
and mathematics, Roberts notes that one main goal of  this book is to use music in order to illu-
minate important mathematical concepts. By doing so, the author tries to overcome the first 
hurdle many students are confronted with when studying abstract mathematics. Although this 
book is not meant to replace a proper textbook on algebra, number theory, combinatorics, trigo-
nometry, or differential calculus, it does not refrain from using proper mathematical notation, 
all the while giving students a glimpse into the mathematical realm and its beauty. Rather than 
giving elaborate introductions in the different mathematical fields, Gareth Roberts covers dif-
ferent topics in an anecdotal and elementary form, which makes the book accessible for a wide 
readership including undergraduate and even advanced high school students. The following 
paragraphs will address the individual chapters of  the book.

Music is typically organized into temporal units or pulses, referred to as beats. Repeating 
sequences of  stressed and unstressed beats and sub-beats, in turn, form higher temporal pat-
terns, which are related to what is called the rhythm of  music. In Chapter 1, the book relates the 
musical notions of  beat and rhythm to the fundamental mathematical concept of  counting. 
First it discusses the role of  note durations, which are specified in terms of  rational numbers 
multiplied by the underlying beat duration.

Looking at the basic note types (whole, half, quarter, eighth, etc.) leads the writer to the 
mathematical concept of  geometric series, which is then discussed in greater detail. Furthermore, 
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the notion of  a time signature (or meter), which is specified by two numbers that indicate the 
dominating note type and the number of  beats per measure, is introduced. Superimposing two 
different rhythms creates polyrhythms, which are often encountered in African or Indian music. 
Determining relative note positions in polyrhythmic music recalls the mathematical concepts 
of  least common multiple and greatest common divisor. Finally, counting the number of  specific 
beat patterns that occur in Indian classical music results in the famous Fibonacci numbers. The 
chapter is nicely complemented by the discussion of  numerous musical examples. For readers 
who want to dive deeper into the topic of  this chapter the book Rhythm and Transforms by 
William Sethares (2007) is a good complementary source.

In Chapter 2, some fundamental aspects from harmony and counterpoint theory are sum-
marized. Starting with some basics on Western sheet music notation, the author then reviews 
the fundamental concepts of  scales, keys, intervals, and chords. Based on the circle of  fifths, 
tonal proximity and the relation between major and minor, various musical keys are discussed. 
The chapter closes with a synopsis of  the evolution of  polyphony in the Western music tradi-
tion. Most of  the material covered in this chapter can be found in standard introductory text-
books on music notation and harmony theory.

Music can be represented in many different ways and formats. For example, a composer may 
write down a composition in the form of  a musical score, where musical symbols are used to 
visually encode notes and show how these notes are to be played by a musician. When musi-
cians start delving into the music, the playing instructions recede into the background. The 
musical meter turns into a rhythmic flow; the different note objects melt into harmonic sounds 
and smooth melody lines; and the instruments communicate with each other (Müller, 2015). 
From a physical point of  view, performing music results in sounds or acoustic waves, which are 
transmitted through the air as pressure oscillations. While the first two chapters cover musical 
aspects that can be described on the symbolic level, Gareth Roberts discusses in Chapter 3 some 
basic material on musical sounds and their properties. In particular, he explains the attributes 
of  loudness, pitch, duration, and timbre from both a physical and perceptual point of  view. 
Human perception of  sound intensity is logarithmic in nature, which motivates the logarithmic 
decibel scale. The standard unit to measure frequency, or the number of  cycles a wave makes in 
a second, is a Hertz. A sinusoid is the simplest type of  periodic waveform, which leads into a 
branch of  mathematics known as trigonometry. Using fundamental trigonometric identities, 
phenomena such as beating are explained. Furthermore, Roberts shows how sound production 
via vibrating objects leads to the realm of  partial differential equations. The study of  such equa-
tions yields a natural approach to sinusoids and also explains the phenomenon of  overtones – 
sound components that are integer multiples of  the fundamental frequency. The chapter closes 
with an instructive experiment that investigates the relation between length and pitch of  a 
one-stringed instrument.

The experiment at the end of  Chapter 3 and the overtone series naturally lead to another 
important and well-studied topic, tuning and temperament, which is covered in Chapter 4. The 
oldest known tuning system was introduced by the Greek philosopher and mathematician 
Pythagoras. Based only on the frequency ratios 2:1 (octave) and 3:2 (perfect fifth), all other 
intervals in the Pythagorean tuning are derived from these ratios by suitably adding and sub-
tracting fifths and octaves. Defining a twelve-tone scale using only perfect fifths results in a 
small inconsistency known as Pythagorean comma. This fact can be nicely explained by consid-
ering the spiral of  fifths – a never-ending extension of  the circle of  fifths. Besides the Pythagorean 
tuning, there are many more tuning systems that may be used for defining intervals in terms of  
frequency ratios. Another such system is known as just intonation, where intervals are defined 
by ratios that are well aligned with the overtone series. Similar to the Pythagorean tuning, just 
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intonation also results in an inconsistency expressed by the syntonic comma. The twelve-tone 
equal-tempered scale, in which an octave is subdivided into twelve scale steps, can be considered 
as a compromise to address the deficiencies in the Pythagorean tuning and in just intonation. 
The fundamental frequencies of  these twelve-scale steps are equally spaced on a logarithmic 
frequency axis. Even though equal temperament discards the harmonically pleasing ratios of  
integers, it results in a practical tuning system with consistent half  steps and a closed circle of  
fifths. In this detailed chapter, the author also takes the opportunity to discuss rational and 
irrational numbers. Considering the special scenario of  Strähle’s Guitar, he introduces the 
mathematical concepts of  linear fractional transformations and discusses the fascinating 
approximation properties of  continued fractions. This nicely written chapter, which sheds new 
light on some well-known topics, is one of  the highlights of  the book.

In Chapter 5, going back from sounds to the symbolic music domain, Roberts discusses uni-
versal structures based on symmetry – principles that can be found in various musical forms 
and styles. In particular, he emphasizes the transformations known as translation, retrograde, 
inversion, and retrograde-inversion and illustrates these principles with a number of  concrete 
music examples, including Bach’s Musical Offering. Analyzing abstract properties of  symmetry 
operations leads to the notion of  a group, which is a fundamental concept in a mathematical 
branch known as algebra. After giving a formal definition, he discusses various geometrically 
motivated groups, including the so-called dihedral group and the one defined by the musical 
symmetries based on retrograde and inversion. As another universal structure, the golden ratio 
and its relation to the Fibonacci numbers are discussed. It is shown that these principles may 
have some relevance for Bartók’s Music for Strings, Percussion, and Celesta.

Chapter 6 introduces a rather unusual, yet intriguing connection between a musical activ-
ity and algebra. The art of  change ringing refers to ringing a set of  particular bells in a system-
atic manner to produce variations in their sounding order. A change is a specific arrangement 
of  the bells so that each bell is rung exactly once. This leads to the mathematical notion of  a 
permutation, which relates to the act of  rearranging the distinct bells into some sequence or 
order. As detailed in this chapter, one of  the primary goals in change ringing is to perform a 
number of  changes that conform to a given set of  rules. In particular, starting with an initial 
change, each possible change (or permutation) should be covered exactly once while imposing 
restrictions between successive changes before returning to the initial change. These rules 
cause challenging combinatorial problems, which are discussed explicitly for some specific 
examples. Motivated by this musical scenario, Roberts then resumes the topic of  abstract 
group theory. The set of  all permutations of  a fixed size (corresponding to the number of  dis-
tinct bells) forms one of  the most important mathematical groups known as the symmetric 
group. Its importance is founded in the famous theorem by Cayley stating that every finite 
group is isomorphic to a subgroup of  some finite symmetric group (an explanation that 
Roberts does not mention in this book). As a special case, it is shown how the dihedral group 
introduced in the previous chapter appears as a subgroup of  the symmetric group of  order 
four. In regards to the combinatorial problems occurring in change ringing, it is important at 
this point to mention another mathematically insightful approach not covered in this book. 
The permutations may be interpreted as the vertices of  a graph, where two vertices are con-
nected by an edge if  there is a permitted transition (according to change ringing rules) that 
transforms one change into the other. Then a full transit through all possible changes corre-
sponds to a so-called Hamiltonian cycle, a path that starts and ends at the same vertex while 
visiting each vertex in the graph exactly once (except the first and last one).

Chapter 7 is dedicated to a specific method of  composition known as the twelve-tone tech-
nique. This technique, first proposed by Arnold Schoenberg, has had a great influence on many 
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musical styles in the 20th and 21st centuries. Roberts introduces the main idea of  the twelve-
tone technique, in which a tone row consisting of  a specific arrangement of  the twelve chro-
matic pitch classes serves as the basic building block for a composition. Continuing the 
discussion from Chapter 5, he presents the tone row matrix as a concept for generating different 
transformations of  a tone row. Then, the application of  the twelve-tone concept is outlined by 
analyzing examples from Schoenberg’s Suite für Klavier Op. 25. Finally, the chapter discusses 
invariance properties of  tone rows under certain transformations. By carefully explaining cer-
tain symmetries in a step-by-step fashion, Roberts shows how to calculate the total number of  
distinct rows.

In the final Chapter 8, Roberts presents specific examples from modern music, which are 
constructed by explicitly using mathematical concepts. First, the music of  the British composer 
Sir Peter Maxwell Davies is considered. In many of  his works, so-called magic squares serve as 
construction principle. These are symmetrical matrices consisting of  consecutive natural num-
bers, in which the sum of  the elements in each row, each column, and in the two diagonals is 
the same. The numbers are used to determine pitches and note durations. By following contigu-
ous paths in the magic squares, Davies generates rhythms and melodic lines used as building 
blocks in his compositions. In the next section, a work named Clapping Music by the composer 
Steve Reich is considered. This purely percussive piece for two musicians clapping their hands is 
generated from a single rhythmic pattern. Through a technique known as phase shifting, the 
pattern is repeated using different offsets to be applied by the two clapping musicians. Roberts 
highlights the composer’s choice of  the specific pattern by discussing its uniqueness. As a final 
example, two pieces by the Greek architect and composer Iannis Xenakis are presented. The 
first piece called Metastasis uses glissando elements to create a special surface. The other piece 
called Pithoprakta employs random processes – a principle from the field of  stochastics – to gen-
erate clouds of  sounds. The chapter closes with an instruction for students to compose their 
own music using mathematical concepts.

As discussed in the previous paragraphs, the book offers a selection of  different topics in 
which music and mathematics intersect. Using music as a springboard, Roberts touches on 
various mathematical disciplines, such as algebra, number theory, combinatorics, trigonom-
etry, and differential calculus. He does not hold back from using a mathematically clean for-
malism. At the same time, he confines himself  to introducing only a small number of  
mathematical concepts, which serve as appetizers, giving a glimpse into the various mathe-
matical disciplines. Furthermore, by discussing numerous explicit musical examples, Roberts 
manages to always connect back to the music domain. The selection of  the book’s topics is 
based on the author’s teaching experience and his desire to provide a sufficiently comprehen-
sive and practical source for instructors and students. Many of  the chapters can be used mod-
ularly, which allows instructors in various disciplines to easily include material from the book 
within their courses.

A drawback of  the modular structure is that a common thread throughout the book is not 
easy to find. Also, the fundamental question, to which extent music and mathematics are actu-
ally connected, remains unanswered. Surely, basic mathematics may help to better understand 
music theory – and some music may have been inspired by mathematics. One may argue that 
music and mathematics are intellectually related. However, does mathematics really help to 
better understand or appreciate music? How deep is the relation between music and mathemat-
ics? Is a composer really aware of  mathematical structures when composing music? Is the rela-
tion between music and mathematics special, going beyond the connections between physics 
and mathematics, architecture and mathematics, or visual arts and mathematics? A deeper 
discussion of  such questions would have further rounded off  the book.
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Of  course, selecting topics for a textbook is always a matter of  taste, reflecting an author’s 
teaching experience and preferences. Still, in view of  recent developments in the music indus-
try and the way music is produced and consumed, a number of  important topics that would 
have nicely fit into the scope of  the book are missing. For example, the book does not cover 
important topics such as digitization and digital representations of  music – issues that are 
closely connected to both music and mathematics. Also, electronic tools used to synthesize and 
process music are based on mathematical tools and transformations that could have been dis-
cussed in this book. Maybe the most important and well-known tool is the Fourier transform, 
which converts a musical signal that depends on time into a representation that depends on 
frequency. This topic could have been perfectly added after Chapter 3 on The Science of  Sound, in 
which the connection between a musical sound and a sine function is discussed. These are pre-
cisely the building blocks used in Fourier analysis, where a musical signal is compared with 
sinusoids of  various frequencies. This results in a decomposition that unfolds the frequency 
spectrum of  the signal – similar to a prism that can be used to break light up into its constituent 
spectral colors.

Even though references to relevant literature are given for each chapter individually, a 
broader discussion of  related work and links for further reading would have been desirable. 
There are numerous books that establish connections between music and mathematics. For 
example, many topics addressed in this book (e.g., music notation, scales, tuning, intonation, 
consonance, sound generation, acoustics, vibrating systems, wave equations, and computa-
tional methods for composition) are also covered by the more comprehensive two-volume 
work, Musimathics: The Mathematical Foundations of  Music by Gareth Loy (2011a, 2011b). 
Similar to the book by Gareth Roberts, Mathematics and Music by David Wright (2009) covers 
rational numbers and musical intervals, scales and tuning, chromatic scales, and modular 
arithmetic. In his book The Geometry of  Musical Rhythm, Godfried Toussaint (2013) provides a 
systematic and accessible computational geometric analysis of  musical rhythms. Music: A 
Mathematical Offering by Dave Benson (2006) covers topics such as sound and Fourier analy-
sis, consonance and dissonance, scales and temperaments, music synthesis, and symmetries 
in music. Topics such as tuning and temperament, Helmholtz’ theory on consonance, or 
geometry of  music can also be found in the book Music and Mathematics: From Pythagoras to 
Fractals edited by Fauvel, Flood, and Wilson (2006). The now-classical text Gödel, Escher, Bach: 
An Eternal Golden Braid by Douglas Hofstadter (1999) explains the connections of  form, geom-
etry, logic, recursion, formal systems, and artificial intelligence. Where Gareth Roberts’ book 
stands among existing books remains unclear. Furthermore, From Music to Mathematics would 
have benefited by pointing out relations to more advanced literature and other disciplines such 
as computational mathematics, audio processing, or music information retrieval. For exam-
ple, in his book The Topos of  Music, Guerino Mazzola (2002) establishes connections between 
music, cognition, composition, and deep mathematical concepts from algebra and category 
theory. Interesting relations between music, mathematics, and computer science have become 
relevant in fields such as Music Information Retrieval (MIR), which systematically deals with 
a wide range of  computer-based music analysis, processing, and retrieval topics. Certain chap-
ters of  Roberts’ book offer suitable foundations for MIR textbooks such as Fundamentals of  
Music Processing by Meinard Müller (2015).

Overall, From Music to Mathematics is a pleasing and well-written book that is accessible for 
everyone who wants to explore the connections between music and mathematics. Gareth 
Roberts does a great job of  making numerous suggestions on how music can be used to illumi-
nate mathematical concepts. The selection of  music examples covering a wide range of  musical 
styles is appropriate for illustrating the relation between the two fields. Containing homework 
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exercises as well as links to relevant literature at the end of  each chapter, the book provides 
excellent material that can be easily included in more advanced courses in various disciplines. 
In this sense, the book makes some substantial pedagogical contributions. And last but not 
least, From Music to Mathematics is very enjoyable to read – not only for students, but for anyone 
who loves music and mathematics.
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