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ABSTRACT

In 1948, Barlow and Morgenstern released a collection of about
10,000 themes of well-known instrumental pieces from the corpus
of Western Classical music [1]. These monophonic themes (usually
four bars long) are often the most memorable parts of a piece of
music. In this paper, we report on a systematic study considering a
cross-modal retrieval scenario. Using a musical theme as a query,
the objective is to identify all related music recordings from a given
audio collection. By adapting well-known retrieval techniques, our
main goal is to get a better understanding of the various challenges
including tempo deviations, musical tunings, key transpositions, and
differences in the degree of polyphony between the symbolic query
and the audio recordings to be retrieved. In particular, we present
an oracle fusion approach that indicates upper performance limits
achievable by a combination of current retrieval techniques.

Index Terms— Music Information Retrieval, Query-by-Example

1. INTRODUCTION

There has been a rapid growth of digitally available music data in-
cluding audio recordings, digitized images of scanned sheet music,
album covers, and an increasing number of video clips. The huge
amount of readily available music requires retrieval strategies that
allow users to explore large music collections in a convenient and
enjoyable way. In the last decades, many systems for content-based
audio retrieval scenarios that follow the query-by-example paradigm
have been suggested. Given a fragment of a symbolic or acoustic
music representation used as a query, the task is to automatically re-
trieve documents from a music database containing parts or aspects
that are similar to the query [2–5]. One such retrieval scenario is
known as query-by-humming [6, 7], where the user specifies a query
by singing or humming a part of a melody. The objective is then
to identify all audio recordings (or other music representations) that
contain a melody similar to the specified query. Similarly, the user
may specify a query by playing a characteristic phrase of a piece of
music on an instrument [8,9]. In a related retrieval scenario, the task
is to identify an audio recording by means of a short symbolic query,
e.g., taken from a musical score [10–12]. In the context of digital
music libraries, content-based retrieval techniques are used to iden-
tify pieces in large archives which have not yet been systematically
annotated [13, 14].

The retrieval scenario considered in this paper is inspired by the
book “A Dictionary of Musical Themes” by Barlow and Morgen-
stern [1], which contains roughly 10,000 musical themes of instru-
mental Western classical music. Published in the year 1948, this
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dictionary is an early example of indexing music by its prominent
themes. It was designed as a reference book for trained musicians
and professional performers to identify musical pieces by a short
query fragment. Most of the 10,000 themes listed in the book [1]
are also available as machine-readable versions (MIDI) on the inter-
net [15].

In this paper, we consider a cross-modal retrieval scenario,
where the queries are symbolic encodings of musical themes and the
database documents are audio recordings of musical performances.
Then, given a musical theme used as a query, the task is to identify
the audio recording of the musical work containing the theme. The
retrieved documents may be displayed by means of a ranked list.
This retrieval scenario offers several challenges.

• Cross-modality. On the one hand, we deal with symbolic sheet
music (or MIDI), and with acoustic audio recordings on the other.

• Tuning. The tuning of the instruments, ensembles, and orchestras
may differ from the standard tuning.

• Transposition. The key of a recorded performance may differ
from the original key notated in the sheet music (e.g., transposed
versions adapted to instruments or voices).

• Tempo differences. Musicians do not play mechanically, but
speed up at some passages and slow down at others in order to
shape a piece of music. This leads to global and local tempo de-
viations between the query fragments and the performed database
recordings.

• Polyphony. The symbolic themes are monophonic. However, in
the database recording they may appear in a polyphonic context,
where the themes are often superimposed with other voices, coun-
termelodies, harmonies, and rhythms.

Additionally, there can be variations in instrumentation, timbre, or
dynamics. Finally, the audio quality of the recorded performances
may be quite low, especially for old and noisy recordings.

The main motivation of this paper is to demonstrate the perfor-
mance of standard music retrieval techniques that were originally de-
signed for audio matching and version identification [16, Chapter 7].
By successively adjusting the retrieval pipeline, we perform an error
analysis, gain a deeper understanding of the data to be matched, and
indicate potential and limitations of current retrieval strategies. We
think that this kind of error analysis using a baseline retrieval system
is essential before approaching the retrieval problem by introducing
more sophisticated and computationally expensive audio processing
techniques, such as [9]. The remainder of the paper is structured as
follows. In Section 2, we summarize the matching techniques and
formalize the retrieval task. Then, in Section 3, we conduct exten-
sive experiments and discuss our results. Further related work is
discussed in the respective sections.
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Fig. 1. Illustration of the matching procedure. (a) Sheet music representations of a musical theme. (b) Chromagram of the query. (c) Music
collection as a concatenated waveform. (d) Chroma representation of the recordings in the music collection. (e) Matching function ∆.

2. MATCHING PROCEDURE

In this section, we summarize the retrieval procedure used here, fol-
lowing [16]. Similar procedures for synchronizing polyphonic sheet
music and audio recordings were described in the literature [10,12].

2.1. Chroma Features

Chroma features have been successfully used in solving different
music-related search and analysis tasks [16, 17]. These features
strongly correlate with tonal (harmonic, melodic) components for
music whose pitches can be meaningfully categorized (often into
12 chromatic pitch classes) and whose tuning approximates to the
equal-tempered scale [18]. In particular, chroma features are suited
to serve as a mid-level feature representation for comparing and re-
lating acoustical and symbolic music, see Figure 1b and Figure 1d.

In our experiments (Section 3), we use the Chroma Toolbox [19]
which uses a filterbank to decompose the audio signal in the afore-
mentioned pitch classes. In particluar, we use a chroma feature vari-
ant called CENS features. Starting with a feature rate of 10 Hz, we
apply a temporal smoothing over nine frames and a downsampling
by a factor of two. This results in chroma features at a rate of 5 Hz,
as used in our experiments (Section 3).

2.2. Matching Technique

To compare a symbolic query to an audio recording contained in a
music collection, we convert the query and recording into chroma
sequences, sayX := (x1, x2, . . . , xN ) and Y := (y1, y2, . . . , yM ).
Typically, the length M ∈ N of Y is much larger than the length
N ∈ N of the query X . Then, we use a standard technique known
as Subsequence Dynamic Time Warping (SDTW) to compareX with
subsequences of Y , see [20, Chapter 4]. In particular, we use the co-
sine distance (for comparing normalized chroma feature vectors) and
the step size condition Σ1 := {(1, 0), (0, 1), (1, 1)} in the SDTW.
Furthermore, for the three possible step sizes, one may use additional
weightswv , wh, andwd, respectively. In the standard procedure, the
weights are set to wv = wh = wd = 1. In our later experiments,
we use the weights to further penalize certain steps. As the results
of SDTW, one obtains a matching function ∆ : [1 : M ] → R. Lo-
cal minima of ∆ point to locations with a good match between the
query X and a subsequence of Y , as indicated by the red circle in
Figure 1e. For the details of this procedure and its parameters, we
refer to [20, Chapter 4].

2.3. Retrieval Task

In the following, we formalize our retrieval task. Let Q be a col-
lection of musical themes, where each element Q ∈ Q is regarded
as a query. Furthermore, let D be a set of audio recordings, which
we regard as a database collection consisting of documents D ∈ D.
Given a query Q ∈ Q, the retrieval task is to identify the semanti-
cally corresponding documents D ∈ D. In this setting, we are only
interested in the associated audio recording of a given theme and not
in its exact position within the recording. Therefore, we compute a
matching function ∆Q

D for Q and each of the documents D ∈ D.
Then, we define δQD = minm ∆Q

D(m) to be the distance between Q
andD. Finally, we sort the database documentsD ∈ D in ascending
order according to the values δQD . The position of a document D in
this ordered list is called the rank of D.

Figure 1 illustrates the matching procedure by using Beetho-
ven’s “Fate-Motif” as query. First, the given sheet music is trans-
formed into a sequence of chroma features (see Figure 1a-b). In
this example, our database consists of two audio recordings (see
Figure 1c), which are also converted into chroma-based feature se-
quences (see Figure 1d). The matching functions ∆Q

D are shown in
Figure 1e. Red circles indicate the positions of the minima δQD for
each documentD. In this example, the matching function yields two
distinct minima in the first document (Beethoven) at the beginning
and after roughly 100 s. This is due to the fact that the motif, which
is used as query, occurs several times in this work. In our document
level scenario, both minima are considered to be correct matches as
we are only interested in the entire recording and not in the exact
position of the queried theme.

3. EXPERIMENTS

We now report on our experiments using queries from the book by
Barlow and Morgenstern, where we successively adapt the described
matching procedure. Our main motivation is to gain a better under-
standing of the challenges regarding musical tuning, key transposi-
tions, tempo deviation, and the degree of polyphony.

3.1. Test Datasets

The symbolic queries as given in the book by Barlow and Morgen-
stern [1] are available on the internet as MIDI files [15] in the “Elec-
tronic Dictionary of Musical Themes” (in the following referred to as



Queries #Themes Database #Recordings Duration

Q1 177 D1 100 ∼11 h
Q2 2046 D2 1113 ∼120 h

Table 1. Overview of the datasets used for our experiments.

EDM). We denote the 9803 themes from EDM by Q. Furthermore,
let D be a collection of audio recordings D ∈ D.

We created two query test datasets, as shown by Table 1. The
first dataset Q1 consists of 177 queries and serves as a development
testset. The second test datasetQ2 contains 2046 queries and is used
to investigate the scalability of the matching technique. In both test
datasets, the durations of the queries ranges roughly between 1 s and
19 s with a mean of 7.5 s.

Additionally, we design two collections D1 and D2, which con-
tain exactly one audio recording representing a true match of the
queries contained in Q1 and Q2, respectively. Note that the num-
ber of queries is higher than the number of recordings because for
a given musical piece, several themes may be listed in the book by
Barlow and Morgenstern; e.g., there are six musical themes listed
for the first movement of Beethoven’s 5th Symphony.

3.2. Evaluation Measures

In our evaluations, we compare a query Q ∈ Q with each of the
documents D ∈ D. This results in a ranked list of the documents
D ∈ D, where (due to the design of our test datasets D1 and D2)
one of these documents is considered relevant. Inspired by a search-
engine-like retrieval scenario, where a user typically looks at the top
match and then may also check the first five, ten or twenty matches,
we evaluate the top K matches for K ∈ {1, 5, 10, 20}. For a
given K, the query is considered to be correct if its retrieved rank
is at most K. Considering all queries at question, we then com-
pute the proportion of correct queries (w.r.t. K). This results in
a number ρK ∈ [0 : 100] (given in percent), which we refer to as
Top-K matching rate. Considering different values for K gives us
insights in the distribution of the ranks and the system’s retrieval
performance.

3.3. Experiments usingQ1 and D1

We start with a first series of experiments based on Q1 and D1,
where we systematically adapt various parameter settings while
reducing the retrieval task’s complexity by exploiting additional
knowledge. We then aggregate the obtained results by means of
an oracle fusion. This result indicates the upper limit for the per-
formance that is achievable when using the suggested matching
pipeline. Table 2 gives an overview of the results, which we now
discuss in detail by exemplarily considering the results for ρ1 and
ρ10.
Baseline. As a preliminery experiment, we use Σ1 for the step size
condition and wv = wh = wd = 1 as weights. This yields Top-K
matching rates of ρ1 = 38.4 % and ρ10 = 62.7 %. To increase
the system’s robustness, we restrict the SDTW procedure by us-
ing a different step size condition Σ. In general, using the set Σ1

may lead to alignment paths that are highly deteriorated. In the
extreme case, the query X may be assigned to a single element
of Y . Therefore, it may be beneficial to replace Σ1 with the set
Σ2 = {(2, 1), (1, 2), (1, 1)}, which yields a compromise between a
strict diagonal matching (without any warping, Σ0 = {(1, 1)}) and
the DTW-based matching with full flexibility (using Σ1). Further-

Top-K 1 5 10 20

Baseline 45.2 62.1 70.1 76.8
Tu 46.9 64.4 72.9 81.9
Tr 52.0 68.9 79.1 87.6
Tu+Tr 53.7 72.3 83.1 91.0
Tu+Tr+Ql 68.4 79.1 88.1 93.2
Tu+Tr+Ql+Df 37.3 57.6 67.8 74.6

Oracle Fusion 72.3 84.7 92.1 97.7

Table 2. Top-K matching rate for music collection D1 with corre-
sponding musical themesQ1 used as queries. The following settings
are considered: Tu = Tuning estimation, Tr = Annotated transposi-
tion, Ql = Annotated query length, Df = Dominant feature band.

more, to avoid the query X being matched against a very short sub-
sequence of Y , we set the weights to wv = 2, wh = 1, and wd = 1.
Similar settings have been used, e. g., in [21]. With these settings,
we slightly improve the Top-K matching rates to ρ1 = 45.2 % and
ρ10 = 70.1 % (see also “Baseline” in Table 2). In the following, we
continue using Σ2 and the weights wv = 2, wh = 1, and wd = 1.
Tuning (Tu) and Transposition (Tr). Deviations from the standard
tuning in the actual music recording can lead to misinterpretations of
the measured pitch. Estimating the tuning used in the music record-
ing beforehand can reduce these artifacts [17]. Instead of using a
dedicated tuning estimator, we simply test three different tunings
by detuning the filterbank by ±1/3 semitones used to compute the
chroma features (see Section 2.1). We then pick the tuning which
yields the smallest minimum δQD . For a detailed descripton of a
similar procedure, we refer to [17, 22]. This further improves the
matching rates to ρ1 = 46.9 % and ρ10 = 72.9 %. As the musical
key of the audio recording may differ from the key specified in the
MIDI, we manually annotated the required transposition. Using this
information in the matching procedure (by applying suitable chroma
shifts [23]), the results improve to ρ1 = 52.0 % and ρ10 = 79.1 %.
Combining both, the tuning estimation and the correct transposition,
we get Top-K matching rates of ρ1 = 53.7 % and ρ10 = 83.1 %.
Query Length (Ql). We observed that the tempo events in some of
our MIDI queries are set to an extreme parameter, which results in
a query duration that strongly deviates from the corresponding pas-
sage in the audio recording. When the tempo information deviates
too much from the audio recording, SDTW based on Σ2 is unable to
warp the query to the corresponding audio section. Furthermore, the
features may lose important characteristics. For instance, the begin-
ning theme of Beethoven’s Pathétique has a MIDI duration of 3.5 s,
whereas the corresponding section in the audio recording has a dura-
tion of 21 s. To even out tempo differences, we manually annotated
the durations of the audio sections corresponding to queries and used
this information to adapt the duration of the query before calculat-
ing the chroma features. This further increases the matching rate to
ρ1 = 68.4 % and ρ10 = 88.1 %.
Dominant Feature Band (Df). In the next experiment, we want to
compensate for the different degrees of polyphony. Looking at the
chromagram of the monophonic musical theme in Figure 1b reveals
that only one chroma band is active at a time. For database docu-
ments as shown in Figure 1d, however, the energy is spread across
several chroma bands due to the instruments’ partials and accompa-
niments. A first method to reduce the polyphony on the audio side
is to only take the dominant chroma band (the band with the largest
value) for each time frame. This can be thought of as “monofying”
the database document in the mid-level feature representation. Us-
ing this monofied chroma representation results in a matching rate
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Fig. 2. Example of Chopin’s Prélude Op. 28, No. 15 (“Raindrop”).
(a) Chromagram of monophonic query. (b) Chromagram of the cor-
responding section in the audio recording. (c) Sheet music represen-
tation of the corresponding measures.

of ρ1 = 37.3 % and ρ10 = 67.8 %. Even though this procedure
works for some cases, for others it may pick the “wrong” chroma
band, thus deteriorating the overall retrieval result. Further experi-
ments showed that more refined methods (by extracting the predomi-
nant melody as described in [24]), may lead to slightly better results.
However, Figure 2a shows a typical example where the advanced
methods still fail, since the salient energy is located in the A[-band
(see Figure 2b), which is the accompaniment played with the left
hand (see Figure 2c) and not the part we would perceive as being the
main melody.
Oracle Fusion. In this experiment we assume having an oracle
which can tell us, for each query, which setting performs best (in
the sense that the relevant document is ranked better). The results
obtained from oracle fusion yield a kind of upper limit which can be
reached by using the suggested matching pipeline. Performing the
oracle fusion for all queries leads to matching rates of ρ1 = 72.3 %
and ρ10 = 92.1 % (see Table 2). Oracle fusion shows that our
matching pipeline may yield good retrieval results. However, a good
prior estimate of transposition and tempo is important. Also, as we
see in our next experiment, the results do not scale well when con-
sidering much larger datasets.

3.4. Experiments usingQ2 and D2

We now expand the experiments using the larger datasets Q2 (con-
sisting of 2046 musical themes) and D2 (consisting of 1113 audio
recordings). In this case, we do not have any knowledge of trans-
position and tempo information. One strategy to cope with differ-
ent transpositions is to simply try out all 12 possibilities by suit-
ably shifting the queries’ chromagrams [23]. This, however, also
increases the chance of obtaining false positive matches. Analyzing
the annotations from D1, it turns out that most of the transpositions
lie within [−2 : 2] semitones. Therefore, in subsequent experiments,
we only use these five transpositions, instead of all twelve possible
chroma shifts. As for the query length, the durations of the annotated
sections in D1 are within 3 s and 30 s. To cover this range, the dura-
tion of each query (EDM MIDI) is set to 5 s, 10 s, and 15 s, respec-
tively. The results of the Top-K matching rates are shown in Table 3.
For example, when using a query length of 5 s, the the matching rates
are ρ1 = 14.9 % and ρ10 = 25.8 %. Using different query lengths
(10 s and 15 s) does not substantially improve the retrieval results.
However, using an oracle fusion over the different query lengths, the

Top-K 1 5 10 20 50 100 200 500

Tu+Tr+5 s 14.9 21.8 25.8 29.2 35.5 43.0 54.1 76.1
Tu+Tr+10 s 18.3 25.1 28.3 32.6 38.7 46.1 56.1 76.2
Tu+Tr+15 s 13.6 19.5 22.7 26.1 31.6 38.9 49.7 72.4

Oracle Fusion 25.0 34.1 39.0 43.5 51.0 59.6 70.2 86.9

Table 3. Top-K matching rate for music collection D2 with corre-
sponding musical themesQ2 used as queries. The following settings
are considered: Tu = Tuning estimation, Tr = Annotated transposi-
tion, {5, 10, 15} s = Fixed query length.

retrieval results substantially improve, leading to matching rates of
ρ1 = 25.0 % and ρ10 = 39.0 %. In other words, even when us-
ing alignment methods to compensate for local tempo differences,
a good initial estimate for the query duration is an essential step to
improve the matching results.

Concluding these experiments, one can say that the retrieval of
audio recordings by means of short monophonic musical themes is
a challenging problem due to the challenges listed in the introduc-
tion (Section 1). We have seen that a direct application of a stan-
dard chroma-based matching procedure yields reasonable results for
roughly half of the queries. However, the compensation of tuning is-
sues and tempo differences is of major importance. The used match-
ing procedure is simple to implement and has the potential for ap-
plying indexing techniques to speed up computations [25].

Differences in the degree of polyphony remain one main prob-
lem when matching monophonic themes against music recordings.
In this context, simply taking the dominant feature band, as in our
experiment in Section 3.3, turned out to even worsen the matching
quality. (This was also the reason why we did not used this strategy
in our experiment of Section 3.4.) One promising approach, as sug-
gested in [9], is to use NMF-based techniques to decompose the au-
dio recording into monophonic-like components. These techniques,
however, are computationally expensive and do not easily scale to
recordings of long duration and large datasets. The development
of scalable techniques to match monophonic and polyphonic music
representations remain a research direction with many challenging
problems.

4. CONCLUSION AND FUTURE WORK

In this paper, we have presented some baseline experiments for iden-
tifying audio recordings by means of musical themes. Due to musi-
cal and acoustic variations in the data as well as the typically short
duration of the query, the matching task turned out to be quite chal-
lenging. Besides gaining some deeper insights into the challenges
and underlying data, we still see potential of the considered retrieval
techniques—in particular within a cross-modal search context. For
example, in the case of the Barlow–Morgenstern scenario, the book
contains textual specifications of the themes besides the visual score
representations of the notes. Similarly, structured websites (e.g.,
Wikipedia websites) often contain information of various types in-
cluding text, score, images, and audio. By exploiting multiple types
of information sources, fusion strategies may help to better cope
with uncertainty and inconsistency in heterogeneous data collections
(see [26]). For example, in [27], such a fusion approach was pre-
sented for identifying musical themes (given in MIDI format) based
on corrupted OMR and OCR input. The further investigation of such
cross-modal fusion approaches, including audio, image, and text-
based cues, constitutes a promising research direction.
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content-based music retrieval,” in Multimodal Music Pro-
cessing, Meinard Müller, Masataka Goto, and Markus Schedl,
Eds., vol. 3 of Dagstuhl Follow-Ups, pp. 157–174. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Ger-
many, 2012.

[4] Colin Raffel and Daniel P. W. Ellis, “Large-scale content-based
matching of MIDI and audio files,” in Proceedings of the Inter-
national Conference on Music Information Retrieval (ISMIR),
Málaga, Spain, 2015, pp. 234–240.

[5] Rainer Typke, Frans Wiering, and Remco C Veltkamp, “A sur-
vey of music information retrieval systems.,” in Proceedings of
the International Conference on Music Information Retrieval
(ISMIR), London, UK, 2005, pp. 153–160.

[6] Matti Ryynänen and Anssi Klapuri, “Query by humming of
MIDI and audio using locality sensitive hashing,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Las Vegas, Nevada, USA, 2008, pp. 2249–
2252.

[7] Justin Salamon, Joan Serrà, and Emilia Gómez, “Tonal rep-
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