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Abstract

In the field of Music Information Retrieval (MIR), the
automated detection of the singing voice within a given
music recording constitutes a challenging and important
research problem. The goal of this task is to find those
segments within a given recording where one or several
singers are active. In this study, we investigate the per-
formance of state-of-the-art approaches by considering
various music scenarios. First, we validate our singing
voice detection system, which incorporates well-known
techniques from audio signal processing and machine
learning, against a public benchmark. Second, we con-
sider a controlled yet instructive scenario using multiple
versions (interpretations by different musicians) of the
24 songs of the cycle “Winterreise” by Franz Schubert.
Within this cross-version scenario, which comprises var-
ious singers and pianists as well as different recording
conditions, we systematically address the following re-
search questions: Is bootstrapping a viable approach for
stabilizing the singing voice detection in difficult cases?
Can the results be improved by a cross-version fusion ap-
proach? Answers to these questions constitute the basis
for considering more complex scenarios such as detect-
ing the singing voices in multitimbral orchestral settings
including opera recordings.

1 State-of-the-Art

Singing voice detection aims to determine those regions
within a music recording where a singing voice is ac-
tive. Although this task seems to be simple for human
listeners, automatic singing voice detection poses a dif-
ficult research problem. The challenge arises from the
complex characteristics of singing voice as well as the
diversity of accompanying instruments. In the Music In-
formation Retrieval (MIR) literature, it is typically as-
sumed that the singer performs the melody and domi-
nates over the accompaniment being played in the back-
ground [1]. Singing voices that contribute to the accom-
paniment (e.g., a background choir) are usually not con-
sidered as target singing. Given these preconditions, au-
tomatic singing voice detection is often approached by
frame-wise classification into singing voice vs. accompa-
niment. Almost all procedures suggested in the literature
[1, 4, 6, 7, 8, 9, 10, 12, 13] employ machine learning for
this classification problem.

1.1 Baseline System

Our baseline system for singing voice detection closely
follows the state-of-the-art approach proposed by Lehner
et al. in [6, 7]. We took this procedure as starting point

for our investigations, since it is described in detail and
allows for a re-implementation. We only provide a sum-
mary and refer to the original publications for details
about the audio features devised by the authors. Most
notably, a feature referred to as Fluctogram captures
pitch fluctuating signal components without the need for
predominant pitch tracking. Random Forests (RF) [2]
are used as classification scheme. The RF classifier gen-
erates a frame-wise decision function which we interpret
as indicator for the singing voice activity. As will be de-
scribed in Section 2, post-processing of decision functions
is the main approach in our cross-version strategies.
We validated our re-implemented system using a subset
of the publicly available JAMENDO corpus. The exact
split into training and test set is given in [12]. We fixed
the following parameters: The hopsize between consec-
utive analysis frames is 200 ms (feature rate of 5 Hz)
and the analysis window size is 800 ms. In the RF clas-
sifier, we use 128 individual decision trees, each trained
with a randomly selected subset of 5 features from the
originally 146-dimensional feature space. The resulting
decision functions are smoothed by a median filter with a
kernel width of 1.4 s. The decision function threshold is
set to 0.5. Using the specified 16 test songs, we achieved
an averaged Accuracy of 87.3 and an averaged F-measure
of 0.87, which is on par with the results reported in [7].
In Section 2, we devise two post-processing strategies to
improve the baseline performance in a cross-version sce-
nario.

1.2 Related Work

The negative effect of accompaniment on singing voice
classification performance has been investigated in [4]. In
[14], the authors tried to circumvent some of these prob-
lems by separating the singing voice from the accompani-
ment prior to feature extraction. A comparable approach
is described in [9] with very promising results. However,
the proposed signal processing chain relies on predomi-
nant pitch tracking, which bears the potential of substan-
tial error propagation to all subsequent feature extrac-
tion and classification steps. As indicated above, singing
voice detection based on machine learning faces the prob-
lem of large acoustic variance within both singing voice
as well as accompaniment. An ideal classifier should be
trained with an extreme range of training data covering
all possible combinations of singing voices and accompa-
niment music. As an alternative, usage of training data
taken from the target recording itself was introduced as
unsupervised [10] and user-assisted [13] bootstrap strat-
egy. Post-processing of classifier decision functions was
described in [8] in the sense of a noise filtering operation.
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Figure 1: Illustration of the cross-version post-processing strategies as described in Section 2.2 and Section 2.3. The curves and annotations
are based on an excerpt corresponding to the first 33 measures of the song “Wasserflut” (No. 06) from the “Winterreise” song cycle. For
each case, the decision functions of the baseline (blue thin curve) and bootstrap (red bold curve) classifier are shown. The colored time-lines
below the decision curves show the automatically detected singing voice activity (red segments) vs. the ground truth (black segments).
(a): Performance by the singer Allen. (b): Performance by the singer Oliemans. Since this recording is performed at a slower tempo
than (a), the 33 measures cover a longer time-span. (c): Cross-version results based on four performances (including Allen and Oliemans)
after temporal alignment to a common, measure-based time axis and subsequent averaging across the individual decision functions. The
improved congruence of the classification to the ground truth becomes especially evident in comparison to (b).

2 Case-Study in a Cross-Version Scenario

As our main contribution, we introduce two post-
processing strategies that improve upon the singing voice
detection capabilities of the baseline system in this sec-
tion. We briefly discuss our test corpus which allows
us to investigate into the peculiarities of a cross-version
scenario. We will keep the explanations mostly on the
conceptual level and refer to Figure 1 for an illustration
of the main ideas.

2.1 Data

“Winterreise” (D. 911, published as Op. 89 in 1828) is
a song cycle for voice and piano by the composer Franz
Schubert from the Romantic era. The cycle, which is
based on a setting of 24 poems (numbers) by Wilhelm
Müller, was originally written for tenor voice but is fre-
quently transposed to suit other voices as well. In our ex-
periments, we use four different performances referenced
by the respective vocalist (Allan, Oliemans, Quasthoff,
Trekel). For evaluation purposes, we generated reference
annotations of the singing voice activity in these pieces.
This was achieved automatically by transferring singing
voice activity information from a reference MIDI version
of each number to the corresponding audio recording us-
ing music synchronization techniques [3]. This proce-
dure also yields an alignment of all performances based
on the measure grid of the MIDI version. In compari-
son to other data sets (e.g., JAMENDO), our test corpus
consists of homogeneous musical material. All numbers
in the four versions have instrumental piano accompa-

niment and male singers. Initial singing voice detection
experiments yielded F-Measures around 0.95 in a leave-
one-out cross-validation, i.e., taking one particular num-
ber as test item and training with the remaining songs.
This upper bound can not be reached if the RF is trained
with other training data (see Section 3).

2.2 Bootstrap Training

Inspired by the bootstrapping ideas in [10, 13], we pro-
pose to perform a second, specifically trained RF clas-
sification subsequent to the initial singing voice detec-
tion stage. The rationale is to create an automatically
adapted classifier model that is trained with features
taken from the current recording under analysis. In prac-
tice, no training assignment to ground truth classes is
available. Thus, a central question is how to discern the
extracted feature vectors into a training set for singing
voice vs. a training set accompaniment? Our idea is to
base this assignment on the shape of the decision func-
tion generated by the initial RF classifier. Looking at
the course of this decision function, we see some extreme
values in those frames where the observed features match
closely to the classifier model reflecting the initial train-
ing data. However, the shape is far from being ideal, as
many values reside in the middle of the range of values,
where an assignment to either side is questionable. If we
now select two subsets of the feature vectors, each cor-
responding to an upper and lower fraction (e.g., 20%) of
the range of decision function values, we can use these to
train a small RF classifier adapted to the feature space
spanned by the recording under analysis. The new deci-
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Figure 2: The average F-measures obtained in two different training scenarios and four different cross-version post-processing scenarios.
(a): Results obtained by training the initial classifier with popular music recordings. (b): Results obtained by training the initial classifier
with both popular music and classical opera recordings.

sion functions generated by classifying the current song
with the adapted classifier tend to be more binary. Fig-
ure 1 illustrates this concept by overlaying the decision
functions of the baseline system (blue thin curve) with
the bootstrap decision functions (red bold curve). It can
clearly be seen that the bootstrap decision functions be-
have less fuzzy.

2.3 Cross-Version Fusion

In [5], Konz et al. introduced the intuitive yet effective
idea to exploit the availability of different recordings of
the same piece of music for stabilizing automatic chord
recognition results. We now pursue the same idea in or-
der to perform a late fusion of decision functions obtained
from singing voice detection in each individual version of
the musical number in our test corpus. This is achieved
by resampling the functions to a version-independent rep-
resentation with a musical time axis given in measures
(resp. sub-divisions thereof) instead of seconds. To this
end, we us the measure annotations of the audio record-
ings (see Section 2.1). For the actual fusion, we use the
most straightforward approach and just take the arith-
metic mean of the decision values from the aligned deci-
sion functions. We expect to compensate for noise in the
individual decision functions by averaging. Figure 1(c)
illustrates the result of this operation by overlaying the
fused decision function derived from baseline classifica-
tion (blue thin curve) with the fused decision function
derived from bootstrap training (red bold curves). It
can be seen that the averaging leads to a more stable
decision function. An automatic classification obtained
by comparing the decision function against the decision
threshold (dashed black line) shows improved agreement
to the ground truth segmentation (black rectangles) in
comparison to Figure 1(a) and 1(b).

3 Experiments

The diagrams in Figure 2 illustrate the benefits of ap-
plying bootstrap training and cross-version fusion. The
bar plots show the average, frame-wise F-measures ob-
tained under varying combinations of classifier train-
ing and post-processing strategies. The vertical axis is
zoomed in to magnify the F-measure range between 0.4
and 1.0 for better visibility. Bias refers to the perfor-
mance achievable by just assigning each frame of one test
recording to the singing voice class. It can be seen that
the resulting F-measures are already quite high, thus in-

dicating that singing is the more frequent class in our
test recordings. Baseline Results refers to the results
obtained by the baseline singing voice detection system
as described in Section 1.1. Bootstrap Training refers
to the results obtained by a second classification run us-
ing an adapted RF classifier trained using the bootstrap-
ping strategy as described in 2.2. Cross-version Fusion
refers to the results of fusing the initial decision functions
of all available versions of each test recording as described
in Section 2.3. Finally, Bootstrap Fusion refers to the
results obtained by combining both the bootstrap classi-
fication based on training with the individual test record-
ings and the cross-version fusion of the resulting decision
functions. Besides showing the average results over all 24
songs, we also present a well-behaved example (Number
02) and an ill-behaved example (Number 07) which yield
the best resp. worst F-measures in the bootstrap fusion
scenario.
The results in Figure 2(a) were obtained by training the
initial RF classifier with a combined data set comprising
both the JAMENDO [12] and RWC [9] subsets that are
annotated for singing voice. Both corpora are dominated
by recordings of popular music. The resulting data set
drastically differs from the music content in our test cor-
pus, consisting of the “Winterreise” songs. This leads to
substandard singing voice detection performance close to
random guessing. Interestingly, even with such an unre-
liable initial estimate for the frames that likely contain
singing voice, the strategy of bootstrap training leads to a
substantial performance gain, surpassing the bias results.
In contrast, cross-version fusion of the unreliable initial
decision functions does not improve the result at all. The
combination of both bootstrap training and cross-version
fusion of the decision functions delivers the best results
in this training scenario.
The results in Figure 2(b) are obtained when comple-
menting the initial training data with recordings of clas-
sical opera. Specifically, we used all numbers from Karl
Maria von Weber’s Singspiel “Der Freischütz” [11] in a
1973 studio recording conducted by Carlos Kleiber. As
can be seen from the F-measure of the baseline RF clas-
sifier, this additional training data gives a considerable
performance boost. This is a bit surprising, since the
instrumental parts of this opera are played by a sym-
phony orchestra, whereas the instrumental parts in our
test corpus are solely played by piano. However, the vi-
brato heavy singing style seems to be very similar in the
Weber opera and the Schubert songs. The remaining



measures show that the proposed post-processing strate-
gies seem to help again, this time to a lesser extent than
in Figure 2(a). It should be noted that these results
reach the upper bound of 0.95 F-measure that was ob-
tained by leave-one-out training as described in Section
2.1. On first sight, bootstrap training could be recom-
mended as standard post-processing in singing voice de-
tection. Unfortunately, it has the important drawback
that it may produce erroneous decision functions when no
singing voice activity occurs at all throughout a record-
ing. If these cases can not be ruled out, bootstrap train-
ing would deteriorate the results. Cross-version fusion
will only be beneficial if there are no significant struc-
tural differences between the different versions and the
temporal alignment is reliable enough not to introduce
additional errors.

4 Conclusions and Future Work

In this paper, we presented two strategies to post-process
automatic singing voice detection in a cross-version sce-
nario. In our case-study involving multiple recorded
versions of Franz Schubert’s “Winterreise” song cycle,
we showed that combining bootstrap training and cross-
version fusion can lead to a substantial performance im-
provement. In principle, the presented strategies are
applicable for singing voice detection in various music
genres. However, only for classical music, it is likely to
have multiple, sufficiently similar versions. Future work
will be directed towards using these techniques as a pre-
processing step to improve music segmentation of operas
in the context of the Freischütz Digital project [11].
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