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ABSTRACT

In the field of Music Information Retrieval (MIR), the au-
tomated detection of the singing voice within a given mu-
sic recording constitutes a challenging and important re-
search problem. In this study, our goal is to find those seg-
ments within a classical opera recording, where one or sev-
eral singers are active. As our main contributions, we first
propose a novel audio feature that extends a state-of-the-
art feature set that has previously been applied to singing
voice detection in popular music recordings. Second, we
describe a simple bootstrapping procedure that helps to im-
prove the results in the case that the test data is not reflected
well by the training data. Third, we show that a cross-
version approach can help to stabilize the results even fur-
ther.

1 Introduction

In classical opera, singing voice is considered to be one of
the most important musical aspects. Locating vocal seg-
ments in an opera recording is an important prerequisite
for applications such as singing voice separation or music
structure analysis. The task of singing voice detection
(also known as vocal detection) comprises automatic
segmentation of a music recording into vocal (one or
more singers) and non-vocal (accompaniment or silence)
parts. A typical example of such a temporal segmentation
is shown in Figure 1, where the black rectangles below
each plot are ground truth segments and the red rectan-
gles show automatically detected segments. The main
challenge in automatic vocal detection comes both from
the huge variety of singing voice characteristics as well
as the simultaneous presence of other pitched musical
instruments in the accompaniment. Especially in opera,
the singers are often accompanied by instruments playing
the same sequence of notes. Since the singers voice should
dominate over the accompaniment, expressive techniques
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such as pronounced vibrato and the so called singer’s
formant [18] are often used. Moreover, the pitch and
dynamic range of professional opera singers goes well
beyond singing voices in popular music.
There has been quite some research on the problem of
singing voice detection. The majority of previous contri-
butions employ some sort of machine learning approach
in combination with the extraction of audio features (see
Section 2). When using machine learning, two major
aspects need to be considered. First, appropriate audio
features have to be designed that are suitable for the
singing voice detection task. A delicate trade-off between
elaborate, but error-prone extraction steps on the one hand,
and undirected low-level features on the other hand has to
be made. In this context, we introduce a novel extension
to a previously proposed feature set and show that it is
appropriate for singing voice detection.
Second, a supervised machine-learning algorithm usually
learns from training data. It is well known that the per-
formance of an optimized classifier can drop significantly
if the “closed world” of the training data does not match
the “open world” of the target data. A typical example
is found in speech processing where systems trained
with clean speech usually fail under noisy or reverberant
conditions. One possibility to approach this challenge
is so-called bootstrapping [14, 19]. As a second main
contribution, we show how bootstrapping can help to
improve singing voice detection by adapting classifiers
to the specific recording under analysis. Furthermore,
we describe a cross-version fusion approach [8] that can
improve the results in case several versions of a music
piece are available, which is a realistic assumption for
opera and classical music in general.

2 Related Work

Although singing voice detection seems to be a task that
is not so hard for human listeners, automatic singing voice
detection remains difficult due to expressive characteris-
tics of the singing voice and the diversity of accompani-
ment music playing simultaneously. These specific chal-
lenges have already been brought up in early works on the
topic [2]. Given an unknown music recording, automatic
singing voice detection is usually performed as a frame-
wise estimation of singing voice activity. Even though this



poses a binary classification problem with just two classes,
the acoustical variance within each class is so large that
it is necessary to train the classifier with a wide range of
training data.
Bootstrapping, i.e., the idea of using training data taken
from the target recording itself, was proposed before as un-
supervised [14] and user assisted [19] strategy for improv-
ing classification performance. One of the first attempts to
separate the singing voice from the accompaniment prior
to the feature extraction stage was described in [20]. Post-
processing of the so-called posterior probabilities obtained
during classification was described in [12].
A large set of low-level features was used in conjunction
with a Support Vector Machine (SVM) classifier in [15].
Furthermore, the authors published singing voice annota-
tions for training, validation and test subsets of the JA-
MENDO corpus, enabling reproducible comparisons be-
tween different methods (see Section 5.2). The same test
corpus was used for evaluation in [16], where the feature
extraction focused on vibrato and tremolo properties. A
study on the effect of accompaniment music in singing vs.
rap discrimination was presented in [6]. Very promising
results in singing voice detection and related tasks were
reported in [13]. However, the proposed signal process-
ing chain was quite elaborate and involved an estimation
of the predominant pitch, which can lead to substantial er-
ror propagation to all the feature extractors depending on
it.
Lehner et al. [10] focused on achieving comparable results
using a light-weight approach. In a follow-up work, they
improved the achievable precision by introducing novel au-
dio features tailored to the singing voice detection scenario
[11]. A recent paper [4] showed that two cross-version
post-processing strategies can improve the singing voice
detection performance achievable with the light-weight
feature set of [10, 11].
So far, the best classification performance on the JA-
MENDO data set was reported in [9], using a Bidirectional
Long Short-Term Memory Recurrent Neural Network as
machine learning scheme that inherently takes the tempo-
ral context of low-level feature sequences into account.
However, it reads as if the authors selected the optimal
network architecture according to the best results obtained
w.r.t. the test set instead of the validation set. Thus, we
think that their results might be overly optimistic.

3 Baseline Singing Voice Detection

Our baseline system for singing voice detection closely fol-
lows the approach proposed in [10, 11]. The extraction of
descriptive audio features is performed by splitting the au-
dio signals into frames and transforming each frame to the
spectral domain. Low-level and mid-level audio features
are computed from each resulting spectral frame, form-
ing a feature vector by concatenation. Supervised machine
learning is employed to train a classifier for discriminat-
ing the feature vector assigned to each frame into the two
classes vocal and non-vocal. Note that the vocal class usu-

Feature name and reference Abbrev. Dim.

Mel-frequency Cepstral Coefficients [10] MFCC 30
Vocal Variance [11] VOCVAR 5
Fluctogram Variance [11] FLUCT 17
Spectral Contraction Variance [11] NSD 17
Spectral Flatness Mean [11] FLAT 17
Polynomial Shape Spectral Contrast [1, 7] PSSC 24

Table 1. Feature names, abbreviations, and dimensionality
of the low-level and mid-level audio features used.

ally comprises singing voice plus accompaniment, which
makes the task more intricate.

3.1 Feature Extraction and Processing

Table 1 lists the complete set of features that is used in our
approach. Since most of our descriptors are wellknown in
the MIR literature, we only highlight a few aspects here.
Mel-Frequency Cepstral Coefficients (MFCC) are one
of the most common audio features widely used in diverse
audio classification tasks. They are designed to capture the
spectral envelope of an audio signal using only a few co-
efficients in the so-called Cepstral domain. As described
in [10], we use an optimized parametrization with a dif-
ferent time-frequency resolution and a higher number of
coefficients than usual. A strongly related feature is the
Vocal Variance, which basically captures the variance in
the first 5 MFCCs across a number of consecutive frames.
The mid-level features Fluctogram, Spectral Contrac-
tion, and Spectral Flatness are the most important contri-
butions from [11]. All three are extracted in 17 overlapping
frequency bands, where each band covers two octaves and
neighboring bands are spaced three semitones apart. The
Fluctogram encodes the relative frequency fluctuation of
salient tonal components in each band, without the need
for an actual estimation of a predominant pitch. Spectral
Contraction and Flatness are designed to complement the
Fluctogram, encoding whether there are reliable harmonic
components with clear sinusoidal peaks or rather a noise-
like distribution of the spectrum within the current band
boundaries.
Spectral Contrast encodes the relation of peaks to val-
leys of the spectral magnitude in several sub bands. The
band boundaries have been specified for the Octave-Based
Spectral Contrast (OBSC) [7] and the Shape-Based Spec-
tral Contrast (SBSC) [1]. In general, both variants can be
interpreted as harmonicity or tonality descriptor. We sug-
gest a modification of the already existing methods, both
of which were successfully used for music genre classifi-
cation tasks. In the previous approaches, the spectral mag-
nitude values in each sub band are sorted and the relation
between the lowest and highest fraction is encoded via sta-
tistical measures. In our modification, we propose to fit
a third-order polynomial to the ordered magnitude values
and store the three polynomial coefficients together with
the offset as descriptors. Therefore, we refer to this fea-
ture as Polynomial Shape Spectral Contrast (PSSC). It is
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Figure 1. Illustration of the cross-version post-processing strategies as described in Section 4.1 and Section 4.2. The
curves and annotations are based on an excerpt corresponding to the first 80 measures of the duet No. 6 (Agathe and
Ännchen): “Schelm! halt fest” from the opera “Der Freischütz” by Carl Maria von Weber. For each case, the decision
functions of the baseline (blue thin curve) and bootstrap (red bold curve) classifier are shown. The colored time-lines
below the decision curves show the automatically detected singing voice activity (red segments, derived from bootstrap
decision) vs. the ground truth (black segments). (a): Recording of the performance conducted by Karl-Heinz Bloemecke
(2013). (b): Recording of the performance conducted by Carlos Kleiber (1973). (c): Cross-version results based on three
performances (including Bloemecke and Kleiber) after temporal alignment to a common, measure-based time axis and
subsequent averaging across the individual decision functions.

computed for each of the 6 sub bands (0-200 Hz, 200-400
Hz, 400-800 Hz, 800-1600 Hz, 1600-3200 Hz, and 3200-
8000 Hz), yielding a feature vector with 24 attributes. In
contrast to the procedure in [1, 7], we do not apply any
decorrelation procedure to the raw features, hence reduc-
ing the computational complexity. Compared to the before
mentioned versions of spectral contrast, our modification
resulted in better accuracy on our internal data set (PSSC:
80.2%, OBSC: 73.4%, and SBSC: 72.3%).
In total, the concatenation of all features listed in Table 1
results into a 110-dimensional feature vector per spectral
frame. The set of all feature vectors makes up our feature
matrix which is split into appropriate training and test sets
and used for machine learning in the following.

3.2 Classification and Decision Function

Again following [10,11], we employ Random Forests (RF)
[3] as classification scheme. RF are an instance of the so-
called Bootstrap Aggregation (Bagging) concept applied
to Classification and Decision Trees (CART) [21] classi-
fiers. This machine learning ensemble meta algorithm was
designed to improve the stability and accuracy by averag-
ing over a set of weak classifiers trained from random sub-
spaces of the complete feature matrix. In RF, random sets
of CARTs are trained by introducing randomness at 2 lev-
els: in the subset of features as well as in the subset of

training data [3]. The generalization error of RF depends
on the classification strength of the individual CARTs as
well as their mutual correlation. As changes in the feature
selection cause drastic changes in the tree structure, the in-
dividual trees are expected to be uncorrelated. Averaging
their individual decisions in the RF leads to decreased vari-
ance of the classifier model, which is in general a desirable
property.
RFs deliver a frame-wise score value per class that can be
interpreted as confidence measure for the classifier deci-
sion. In our binary classification scenario, the two score
functions are inversely proportional. We pick the one cor-
responding to our target vocal class and refer to it as deci-
sion function in the following. A decision function value
close to 1 indicates a very reliable assignment to the vocal
class, whereas a value close to 0 points to the non-vocal
class. In order to binarize the decision function, we com-
pare it to a threshold. Only frames where the decision func-
tion value exceeds the threshold will be classified as vocal.
Prior to that, the decision function is smoothed using a me-
dian filter. The filter width given in seconds is an important
parameter. Median filtering of the decision function is jus-
tified by the observation that singing voice activity usually
exhibits a certain continuity. So this step helps to stabilize
the detection result and to prevent unreasonably short gaps
in the decision function, where the classification rapidly
flips from vocal to non-vocal or vice versa.



4 Post-processing of Singing Voice Detection

In this section, we describe two approaches suitable for
post-processing of intermediate singing voice detection re-
sults. First, we describe our approach to unsupervised
bootstrap training of a classifier adapted to the recording
under analysis. Second, we describe how to perform a late
fusion of decision functions by means of time alignment
between different versions.

4.1 Bootstrap Training

Inspired by the ideas in [14, 19], we propose to perform a
second, specialized RF classification subsequent to the ini-
tial singing voice detection stage. The rationale is to rem-
edy the “closed world” vs. “open world” training problem
discussed before (see Section 1). We do so by creating an
adapted classifier model that is trained with feature vectors
exclusively taken from the current recording under anal-
ysis. However, this recording does usually not come to-
gether with an annotation of its frames to the two classes.
So how to assign the feature vectors automatically to the
training sets of the vocal respective non-vocal class?
Our idea is to base this assignment on the shape of the deci-
sion function generated by the initial RF classifier. Look-
ing at the course of this decision function, we see some
extreme values for frames, where the observed feature vec-
tors match very well to either the vocal or non-vocal class
of the initial classifier model. However, many values re-
side in the middle of the range of decision function values,
where an assignment to either side is questionable. If we
now select two subsets of the feature vectors, each corre-
sponding to an upper and lower fraction (e.g., 20%) of the
range of decision function values, we can use these to train
a small RF classifier that is adapted to the feature space
spanned by the recording under analysis. Before we do so,
we stratify the training set, meaning that we randomly se-
lect the same number of feature vectors for each class from
the subset corresponding to the upper and lower decision
values.
In Figure 1, we observe that the new decision functions
(red curve) generated by classifying the current song with
the adapted RF classifier exhibits a more desirable shape
than the decision function generated by the initial RF clas-
sifier (blue curve). In Figure 1(a), it can be seen, that the
bootstrap decision function can close small gaps, where the
initial decision function dipped below the decision thresh-
old (e.g., at around 80 s).

4.2 Cross-Version Fusion

In [8], Konz et al. introduced the intuitive yet effective
idea to exploit the availability of different recordings of
the same piece of music for stabilizing automatic chord
recognition results. We pursue the same idea here in or-
der to perform a late fusion of decision functions obtained
from the initial singing voice detection. This is achieved by

Authors and Reference Accuracy F-measure

Biased Guess (all frames vocal) 46.3 0.64

Vembu and Baumann 2005 [20] 77.4 0.77
Ramona et al. 2008 [15] 82.2 0.84
Regnier and Peeters 2009 [16] — 0.77
Lehner et al. 2013 [10] 84.8 0.85
Lehner et al. 2014 [11] 88.2 0.87
Leglaive et al. 2015 [9] 91.5 0.91

Proposed feature set 88.2 0.87

Table 2. Singing voice detection results achievable with
our novel feature set in comparison to other authors. The
basis of all measurements is a publicly available subset of
the JAMENDO corpus [15].

warping the individual decision functions obtained for dif-
ferent versions of the same piece to a version-independent
representation with a musical time axis given in measures
(respective sub-divisions thereof) instead of seconds. For
the moment, we assume that the required temporal position
of measure boundaries is given. In Section 5.3, we sketch
how to retrieve the measure boundaries automatically.
In general, the procedure described above yields a set of
time-aligned decision functions that we use to derive a
fused, overall decision function. To this end, we use the
most straightforward approach and just take the arithmetic
mean of the decision values of all aligned decision func-
tions. The averaging is intended to compensate for noise
and artifacts that might occur in the individual decision
functions. Figure 1(c) presents the resulting decision func-
tion on the measure-related time axis. We show the fused
decision function derived from baseline singing voice de-
tection (thin blue curve) overlayed with the fused deci-
sion function derived from bootstrap training (bold red
curve). It can be seen that the averaging leads to a slightly
more stable decision function. Comparison of the fused
bootstrap decision function against the decision threshold
(dashed black line) yields our estimated singing voice seg-
ments (black rectangles). In general, the estimated seg-
ments exhibit improved agreement to the ground truth seg-
mentation in comparison to Figure 1(a) and 1(b).

5 Evaluation

In this section, we assess the performance of our proposed
methods. First, we validate our novel feature set on a pub-
lic benchmark data set. Second, we show that bootstrap-
ping and cross-version fusion can help to improve the re-
sults for classical opera recordings.

5.1 Experimental Settings

For our experiments, we are going to fix the following pa-
rameters: For the majority of features in Table 1, the hop-
size between consecutive analysis frames is 200 ms (fea-



ture rate of 5 Hz), the analysis windows have a length of
800 ms. The raw fluctogram, flatness and contraction fea-
tures are extracted on a finer temporal level, with a hop-
size of 20 ms and a window size of 100 ms. We aggregate
40 consecutive frames of these raw features and use their
variance as descriptor for fluctogram and contraction, and
their means as descriptor for flatness. In the RF classifier,
we use 128 individual CART classifiers, each trained with
a randomly selected subset of 5 feature dimensions, from
the originally 110-dimensional feature space. For post-
processing of the decision functions, we employ a median
filter with a width of 1.4 s. The decision function thresh-
old is set to 0.5. In the next sections, we keep these settings
fixed for the evaluation of our baseline system as well as
our proposed post-processing strategies.

5.2 Performance on a Common Benchmark

In order to benchmark our novel feature set against the
state-of-the-art, we used a subset of the publicly available
JAMENDO music corpus [15]. Each recording in that
data set was manually annotated into vocal and non-vocal
sections by the original author. Since human annotators
can have difficulties in determining singing segment
boundaries, the segmentation allowed some uncertainty,
i.e., very short instrumental breaks were not labeled as
such. The exact split into training, validation and test set
is specified in [15]. Table 2 lists our results in comparison
to previously published works. The used metrics are
the frame-wise F-measure and the accuracy which are
computed by evaluating all frames across the 16 test
songs. According to the ground truth annotation, the
majority of frames belongs to the non-vocal class. We also
report the Biased Guess, where all frames of a test item
are assigned to the vocal class, because in classical opera,
the vocal class usually occurs more often. As can be seen,
the performance of our proposed feature set is on par with
the state-of-the-art. Only the accuracy and F-measure
reported in [9] surpass our results, but the comparison
might not be entirely fair as discussed in Section 2.

5.3 Opera Case-Study

The opera “Der Freischütz” by Carl Maria von Weber, a
work of high relevance for opera studies, was chosen for
the further evaluation. For this opera, there exists a large
number of historical sources, including a multitude of au-
dio recordings. In the project “Der Freischütz Digital” 1 ,
musicologists and computer scientists cooperate to explore
opportunities for new and digital ways of research, analy-
sis and presentation of music related data in critical edi-
tions [17].
From the corpus used in the project, we had three different
versions of this opera available for the purpose of cross-
version singing voice detection. The respective conductors

1 www.freischuetz-digital.de

Opera Conductor Year

“Carmen” Lorin Maazel 1984
“Die Zauberflöte” Nikolaus Harnoncourt 1988
“Pelleas et Melisande” Claudio Abbado 1992
“La Cenerentola” Riccardo Chailly 1993
“La Traviata” Carlo Rizzi 2005
“Tristan und Isolde” Daniel Barenboim 1995

“Der Freischütz” Karl Elmendorff 1944
“Der Freischütz” Carlos Kleiber 1973
“Der Freischütz” Karl-Heinz Bloemecke 2013

Table 3. Overview over the used opera recordings. The
upper half specifies the operas available as training set, the
lower half gives the operas used as test set.

and recording years are shown in Table 3. All numbers
in the three versions have orchestral accompaniment and
varying number of soloist singers. We picked the numbers
6, 8, and 9 as test cases of different musical complexity, a
duet, a solo aria and a trio, respectively.
For evaluation purposes, we first had to generate reference
annotations of the singing voice activity in these pieces.
This was achieved semi-automatically by means of align-
ing a MIDI version of each piece to the recording and tak-
ing the note onsets and offsets of the singing voice as ref-
erence. Details about this procedure can be found in [5].
Furthermore, each recording had its measures (i.e., the be-
ginning of each bar) manually annotated to facilitate the
alignment between corresponding versions of the same
number. The manually annotated bar positions are used
to warp the individual decision functions to a common
time axis regardless of their original tempo and variations
thereof.

5.4 Results and Discussion

The diagrams in Figure 2 illustrate the benefit of applying
bootstrap training (see Section 4.1), cross-version fusion
(see Section 4.2), as well as a combination of both in two
different training scenarios. The bar plots in both (a) and
(b) show the F-measures obtained per test item as well as
the average F-measure value. The following singing voice
detection and post-processing strategies were tested. Ran-
dom Guess refers to randomly assigning the frames of our
test data to either the vocal or non-vocal class with equal
probability. Since the vocal class occurs more frequently
in our test data, the resulting F-Measure is slightly above
chance. Biased Guess refers to assigning the singing voice
class to each frame of a test recording. It can be seen that
the resulting F-measure is already quite high, again a con-
sequence of the dominance of the vocal class in our test
set. Baseline Detection refers to the results obtained by
the baseline singing voice detection system as described in
Section 3. Bootstrap Detection refers to the results ob-
tained by a second classification run with an adapted RF
classifier using the bootstrapping strategy as described in
Section 4.1. Cross-version Fusion refers to the results of
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Figure 2. The average F-measures obtained in two different training scenarios and four post-processing strategies. The test
set consisted of three versions of the numbers 6, 8, and 9 from the opera “Der Freischütz.” (a): Results obtained by training
the initial RF classifier with popular music recordings from the RWC and JAMENDO data sets. (b): Results obtained by
training the initial RF classifier with classical opera recordings not including “Der Freischütz.”

fusing the initial RF decision functions of all available ver-
sions of each test recording as described in Section 4.2.
Finally, Bootstrap Fusion refers to the results obtained
by combining both the bootstrap training and the cross-
version fusion.
The results in Figure 2(a) were obtained by training the
initial RF classifier with a combined data set comprising
both the JAMENDO [15] and RWC [13] subsets that are
annotated for singing voice. Both corpora are dominated
by recordings of popular music. Obviously, this kind of
training material differs from the music content in the test
set. The average singing voice detection performance stays
even below the biased guess. However, this rather poor ini-
tial estimate for the vocal frames can be used for bootstrap
training. Consequently, the bootstrap training leads to a
substantial performance gain, surpassing the bias results.
Cross-version fusion of the imperfect initial decision func-
tions leads to similar improvements as the bootstrap train-
ing. The combination of both bootstrap training and cross-
version fusion of decision functions delivers the best re-
sults in this training scenario.
The results in Figure 2(b) were obtained when training
the initial RF classifier with recordings of classical opera.
Specifically, we used the operas listed in the upper half
of Table 3. In total, the playtime of our training material
amounts to approximately 4 h. As can be seen from the F-
measure of the baseline RF classifier, this kind of training
data gives a considerable performance boost. This is not
surprising, since the orchestral timbre as well as the pro-
nounced use of vibrato singing in these opera recordings is
very similar to our test items. The remaining F-measures
show that the proposed post-processing strategies at best
lead to marginal improvements since the performance is
already saturated.
From our comparison, we infer that bootstrap training
could be recommended as standard post-processing strat-
egy for singing voice detection in classical opera record-
ings. This is especially true if the initial classification de-
livers reasonable results that can be surpassed if more ap-
propriate training data would be available. However, boot-
strap training does not seem to help much if there exists no

combination of feature set, training set, and classifier that
can obtain good singing voice detection for the recording
under analysis. Moreover, bootstrap training has the draw-
back that it will likely produce erroneous decision func-
tions when there is no singing voice activity at all through-
out a recording. If these cases can not be ruled out from
bootstrap training, singing voice detection results could
even deteriorate in comparison to the baseline system.

6 Conclusions and Future Work

In this paper, we made two contributions to advancing the
state-of-the-art in automatic singing voice detection. First,
we proposed a novel extension to a state-of-the-art au-
dio feature set for singing voice detection and validated
it on a public benchmark set. Second, we proposed boot-
strap training and cross-version fusion as post-processing
strategies applicable to intermediate results from a ma-
chine learning system. In our case study, involving mul-
tiple recordings of Carl Maria von Webers opera “Der
Freischütz,” we have shown that a combination of boot-
strap training and cross-version fusion can help to improve
the classification performance if the training data is very
different from the test data. While bootstrap fusion might
be applicable to improve singing voice detection in various
music genres, cross-version fusion can only help if we have
multiple, sufficiently similar versions of the same piece of
music available. Future work will be directed towards fur-
ther refinements and applications of these techniques for
various kinds of music genres.
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