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ABSTRACT

Our goal is to improve the perceptual quality of signal components
extracted in the context of music source separation. Specifically,
we focus on decomposing polyphonic, mono-timbral piano record-
ings into the sound events that correspond to the individual notes of
the underlying composition. Our separation technique is based on
score-informed Non-Negative Matrix Factorization (NMF) that has
been proposed in earlier works as an effective means to enforce a
musically meaningful decomposition of piano music. However, the
method still has certain shortcomings for complex mixtures where
the tones strongly overlap in frequency and time. As the main con-
tribution of this paper, we propose a restoration stage based on re-
fined Wiener filter masks to score-informed NMF. Our idea is to in-
troduce notewise soft masks created from a dictionary of perfectly
isolated piano tones, which are then adapted to match the timbre
of the target components. A basic experiment with mixtures of pi-
ano tones shows improvements of our novel reconstruction method
with regard to perceptually motivated separation quality metrics. A
second experiment with more complex piano recordings shows that
further investigations into the concept are necessary for real-world
applicability.

Index Terms— Score-informed music processing, source sep-
aration, music decomposition, signal reconstruction.

1. INTRODUCTION

The goal of music source separation is to decompose a music
recording into its constituent signal components [1, 2]. We focus
on the special case of polyphonic, mono-timbral piano recordings,
where we aim to extract sound events that correspond to the com-
position’s individual notes. We assume that each sound event corre-
sponding to a musical note can be characterized as a harmonic tone
with constant pitch as well as a sharp attack, a stable sustain, and a
release phase. Moreover, the mixture signal is assumed to be a lin-
ear superposition of the isolated tones. This is, of course, a simpli-
fication since we neglect acoustic effects such as room impulse re-
sponses and sympathetic string resonances in the piano. With these
assumptions, the decomposition of piano music into isolated tones
constitutes a limited, yet challenging source separation task, which
may pave the way to more complex scenarios.
One of the challenges is to improve the perceptual quality of the sep-
arated signals which may suffer from audible artifacts, depending
on the complexity of the music, the recording conditions, as well as
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the decomposition technique. In this paper, we follow the paradigm
of score-informed Non-Negative Matrix Factorization (NMF) to
separate the mixture magnitude spectrogram as described in [3, 4].
This procedure involves soft masks used to derive the targeted com-
ponent magnitude spectrograms by Wiener filtering. The soft masks
are usually obtained from multiplying suitable NMF templates and
activations. In contrast to that, we propose to refine the soft masks
on the basis of a timbre-adapted dictionary of isolated tones. We re-
fer to this extension of the conventional method as restore approach
and show that it can be beneficial for certain types of mixtures.
The remainder of this paper is organized as follows: Section 2 pro-
vides a brief overview of related work, Section 3 reviews score-
informed NMF, Section 4 describes our proposed restore approach,
Section 5 discusses the experimental results and indicates directions
for future work.

2. RELATED WORK

Music source separation using score information has first been in-
troduced in [5] and [6]. Related approaches used tensor factoriza-
tion [7] or synthesized music for component initialization [8]. An
important starting point for our work is the procedure for score-
informed music decomposition described in [3], where the authors
describe how to impose musically meaningful constraints on the
components of a Non-Negative Matrix Factorization (NMF) with-
out the need for a dedicated component training. The same principle
is extended to note-wise decomposition in [4]. Other authors de-
vised elaborate source-filter models to account for the time-varying
spectral envelope of components with fixed pitch [9, 10]. In [11], a
semi-adaptive NMF variant, which allows to efficiently capture the
temporal evolution of component spectrograms, was proposed.
In [12], Ewert discussed the problems inherent to NMF decompo-
sition in case of overlapping partials of the targeted components.
He proposed to use the activations and gains computed by a first
NMF stage to infer a time-frequency (TF) dependent weighting of
the mixture magnitude spectrogram accounting for possible phase
cancellations. He could show that this leads to more meaningful de-
compositions in a second NMF stage. The use of a weighted NMF
had already been proposed by Virtanen in [13], where it was used as
a means to fill gaps in the magnitude spectrogram that occurred due
to binary masking of predominant pitched signal components. In
[14], Cano et al. investigated the complex mutual influence of mag-
nitude and phase on the quality of separated signals in source sep-
aration. Cano proposed to soften the additivity constraint in source
separation and suggested to use instrument specific resynthesis ap-
proaches in [15].
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Figure 1: Artificial piano score used as illustrative example through-
out the paper. Our target is the extraction of the isolated magnitude
spectrograms corresponding to the individual notes G4, A4, B4, and
D5 (ordered by pitch instead of onset time).

3. SEPARATE

In this section, we summarize the score-informed NMF approach as
described in [3, 4]. In our signal model, we assume that the given
piano recording x is a linear mixture of notewise audio events xs,
s ∈ [1 : S], where S ∈ N is the number of musical notes speci-
fied in the musical score (see our example score in Figure 1) such
that x :=

∑
s xs. Let X (m, k), m, k ∈ Z, be a complex-valued

TF coefficient at the mth time frame and kth frequency bin of the
Short-Time Fourier Transform (STFT) of our mixture signal x. Let
V := |X |T ∈ R

K×M
≥0 be a transposed version of the mixture sig-

nal’s magnitude spectrogram. Our objective is to decompose V into
component magnitude spectrograms Vs that correspond to the indi-
vidual note events xs. Ignoring possible phase issues, we assume
that the additive relationship V :=

∑
s Vs is fulfilled (see Figure 1).

3.1. Music Decomposition via NMF

NMF can be used to decompose the magnitude spectrogram V
into spectral basis functions (also called templates) encoded by the
columns of W ∈ R

K×R
≥0 and time-varying gains (also called acti-

vations) encoded by the rows of H ∈ R
R×M
≥0 such that V ≈ WH.

NMF typically starts with a suitable initialization of matrices W(0)

and H(0). Subsequently, these matrices are iteratively updated to
adapt to V with regard to a suitable distance measure. In this work,
we use the well-known update rules for minimizing the Kullback-
Leibler Divergence [16] given by

W(�+1) = W(�) �
V

W(�)H(�)H
(�)T

JH(�)T
(1)

H(�+1) = H(�) � W(�+1)T V

W(�+1)H(�)

W(�)TJ
(2)

for � = 0, 1, 2, . . . , L for some L ∈ N. The symbol � de-
notes element-wise multiplication and the division is also under-

stood element-wise. Furthermore, J ∈ R
K×M denotes an all-one

matrix.

3.2. Constraint Components via Score-Informed NMF

Proper initialization of W(0) and H(0) is an effective means to con-
strain the degrees of freedom in the NMF iterations and enforces
convergence to a desired, musically meaningful solution. One pos-
sibility is to impose constraints derived from a time-aligned, sym-
bolic representation (i.e., machine readable score) of the recording
[7]. Three constraints can be obtained from the musical score. First,
the rank R of the decomposition is chosen according to the num-
ber of unique musical pitches. Second, each column of W(0) is
initialized with a prototype harmonic overtone series reflecting the
expected nature of a musical tone corresponding to the assigned
musical pitch. Third, the rows of H(0) are initialized as follows:
A binary constraint matrix Cs ∈ R

R×M is constructed for each
s ∈ [1 : S], where Cs is 1 at entries that correspond to the pitch and
temporal position of the sth aligned note event and 0 otherwise. The
union (OR-sum) of all Cs is then used as initialization of H(0). With
this initialization, each template obtained from iteration (1) typi-
cally corresponds to an average spectrum (usually �1-normalized
[2]) of the corresponding musical pitch and each activation function
obtained from (2) corresponds to the temporal amplitude envelope
of all occurrences of that particular pitch throughout the recording.

4. RESTORE

Score-informed NMF as described in Section 3.2 yields a decom-
position of V into musically meaningful templates W(L) and acti-
vations H(L). In the following, we discuss the issues inherent to the
restoration of our targeted Vs from the components and introduce
our extension to the conventional procedure.

4.1. Component Magnitude Spectrogram Reconstruction

As shown on the left hand side of Figure 2(a), we can use the
results of score-informed NMF to reconstruct magnitude spec-
trograms corresponding to individual note objects as VNMF

s ≈
W(L)

(
H(L) � Cs

)
. In the conceptual illustration, the template

and activation corresponding to the sth tone are indicated by a
hatched column and row, respectively. The binary activation in the
corresponding Cs is visualized by a black box inside the hatched
row. In order to obtain a time-domain signals from VNMF

s , it is
common practice to use the mixture phase information of the origi-
nal STFTX and to invert the resulting modified STFTs via the sig-
nal reconstruction method from [17]. However, NMF-based mod-
els typically yield only a rough approximation of the original mag-
nitude spectrogram, where spectral nuances may not be captured
well. Therefore, the audio components reconstructed in this way
may contain a number of audible artifacts. In order to better cap-
ture the temporal evolution of the spectral nuances, it is common
practice to calculate soft masks that can be interpreted as a weight-
ing matrix reflecting the contribution of the sth tone to the original
mixture V. The mask corresponding to the desired note event can

be computed as MNMF
s := VNMF

s �
(
W(L)H(L) + ε

)
, where �

denotes element-wise division and ε is a small positive constant to
avoid division by zero. We obtain the masking-based estimate of
the component magnitude spectrogram as VMask

s := V � MNMF
s .

This procedure is also often referred to as Wiener filtering.
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Figure 2: Conceptual illustration of (a) the procedures described in
Section 4.1 and Section 4.2, and (b), the restore approach described
in Section 4.3.

4.2. Difficult Mixtures

As discussed in [12], even the integration of score information
might not suffice to separate certain mixtures. This is especially
true in the case of mutually overlapping harmonics and transients.
Our artificial example exhibits some of these problems. The decay
of the two quarter notes (G4 and B4) is interfered by the attack tran-
sient of the subsequent notes. The last two notes (A4 and D5) are
played simultaneously, so their attack transients overlap and some
of their harmonics collide since they have very close center frequen-
cies due to the harmonic relationship between the two notes (fourth
interval). As can be seen in Figure 3(b) this leads to corrupted NMF
templates. The note s = 2 (A4) exhibits a spurious peak around
600 Hz in a spectrogram frame that lies within the attack phase of
VNMF

s . The artifact is caused by “crosstalk” of the first partial of
D5 whose center frequency is 587 Hz and leads to deteriorated sep-
aration quality. For the following considerations, we introduce an
alternative representation Bs ∈ R

K×M
≥0 of the targeted Vs defined

by

Bs(k,m) :=
Vs(k,m)

Gs(m)
(3)

where Gs ∈ R
1×M contains element-wise the �1-norm of each

spectrogram frame of the original Vs. On the right hand side of
Figure 2(a), we show BNMF

s derived by application of (3) to VNMF
s .

Each spectrogram frame in BNMF
s is depicted as a replicate of the

�1-normalized template corresponding to s. This seemingly redun-
dant representation will become useful in Section 4.3, where we
replace the potentially imperfect NMF templates by timbre-adapted
and �1-normalized spectral templates taken from a dictionary.

4.3. Component Restoration using a Note Dictionary

Inspired by the work of [7] and [8], we construct a dictionary of
crosstalk-free magnitude spectrograms VDict

s obtained from iso-
lated piano tones. Via the score information, we select the appro-
priate tone and place it in the TF domain according to the onset po-
sition of the target note. However, the benefit of having an artifact-
free VDict

s comes at the expense that the dictionary tone is likely to
differ in timbre from the target tone in the mixture. In order to adapt
the timbral qualities of the dictionary without propagating potential
errors in the NMF decomposition, we propose to transfer the spec-
tral envelope of the target tone to the corresponding dictionary tone.
Figure 3 illustrates this procedure for the note A4 (s = 2) in our
artificial example. Similar to [12], we take VNMF

s as best estimate
of the target component regardless of potential decomposition arti-
facts. Furthermore, we assume that a single estimate for the spectral
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Figure 3: (a): Spectrogram frame (bold black curve) located in the
attack phase of the dictionary tone representing the note A4. Its
spectral envelope EDict

s (thin black curve) is extracted via the true
envelope method [18]. (b): Due to an imperfect NMF decomposi-
tion, a spurious peak is present around 600 Hz (marked by the red
oval) in the target spectrum (blue curve). After an envelope transfer,
the adapted dictionary spectrum follows nicely the target envelope
ENMF

s , but does not contain the artifact.

envelope can be applied to the complete tone spectrogram. The es-
timate could e.g., be derived from an average spectrum. In our case,
we expect the target component to dominate over potential cross-
talk components in a spectral frame located in the attack phase of
the tone. From that particular frame, we extract the spectral enve-
lope ENMF

s ∈ R
K×1 using the so-called true envelope method as

described by Röbel et al. in [18]. This procedure iteratively refines
an estimate for the spectral envelope obtained by conventional cep-
stral liftering. Using the same method, we extract an estimate for
the spectral envelope EDict

s of the dictionary spectrogram. Then,
we introduce the timbre-adapted dictionary note spectrogram as

ṼDict
s := VDict

s �
(
ENMF

s J1,M
)

(ε+ EDict
s J1,M )

(4)

where the division is understood element-wise and J1,M ∈ R
1×M

denotes an all-one matrix needed to replicate both spectral en-
velopes across all frames. Subsequently, we apply (3) to ṼDict

s in
order to obtain B̃Dict

s that we now use to replace the potentially cor-
rupted BNMF

s as shown in Figure 2(b). This way, we obtain novel
estimates for the component spectrogram and corresponding soft
mask as

VComb
s := B̃Dict

s �
(
JK,1 ·GNMF

s

)
(5)

MComb
s := VComb

s �
(
ε+

∑
s

VComb
s

)
(6)

where JK,1 ∈ R
K×1 denotes an all-one matrix needed to replicate

the corresponding note activation across all frequency bins. In short,
the sequence of (4),(5), and (6) allows us to combine the NMF-
based activations with �1-normalized dictionary spectra that have
been adapted to match the timbre captured in the NMF-based tem-
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plates. The resulting note component spectrogram is again obtained
by Wiener filtering as VProp

s := V �MComb
s .

5. EXPERIMENTS

We conducted two source separation experiments using wellknown
quality metrics to assess the possible improvements achievable with
our proposed approach. First, we evaluated the separation of sim-
plistic piano tone mixtures. Second, we tried to decompose more
complex piano recordings into bass and treble component signals.

5.1. Dataset

Our first test set consisted of pair-wise piano tone combinations. We
assigned MIDI pitch P1 to the first tone in the mixture and defined
it to be the interfering signal. Consequently, we assigned MIDI
pitch P2 to the second tone and defined it to be the target signal.
Both P1, P2 were varied from MIDI pitch P = 21 (A0, 27.5 Hz)
to P = 108 (C8, 4186 Hz) resulting in 7569 tone pairs (including
unison intervals). The underlying single tone signals were recorded
from a real piano, while the tone dictionary used for separation was
synthesized using the Pianoteq1 physical modeling plugin. Each
tone pair was treated as individual test item, i.e. only R = 2 com-
ponents were used.
The second test uses a subset of 11 MIDI files from the Saarland
Music Data (SMD2) collection. SMD contains MIDI files for vari-
ous classical piano pieces which were performed by students of the
Hochschule für Musik Saar on a Yamaha Disklavier. The Disklavier
stores all key and pedal movements performed by the pianist in an
interpreted MIDI file that is suitable for synthesizing piano perfor-
mances with expressive dynamics and timing. Following the ex-
perimental design in [12], we split the note events in each of the
interpreted MIDI files into a bass (MIDI pitch P < 60) and a treble
set (MIDI pitch P ≥ 60). We again used Pianoteq to synthesize
the note sequences for the bass and treble set individually. The bass
tones were defined to be the interferer and the treble tones the target,
respectively. The superposition of both yielded our mixture signal.
All test files had 44.1 kHz sampling rate, the STFT was com-
puted with a blocksize of approx. 46.4 ms and a hopsize of ap-
prox. 5.8 ms. The number of NMF iterations was set to L = 30.
For each test item, we used VMask

s as magnitude spectrogram rep-
resenting the conventional approach and VProp

s as magnitude spec-
trogram representing proposed reconstruction. We employed the
PEASS Toolkit [19, 20] in order to evaluate the quality of the sep-
arated audio signals obtained from application of the conventional
and the proposed method. From the available metrics, we focused
on the perceptually-motivated Overall Perceptual Score (OPS) and
used the objective Source-Distortion Ratio (SDR) to complement
the evaluation.

5.2. Results and Discussion

From the first experiment, we derived two interval related evalu-
ations. First, we aggregated the quality measures to the interval
ΔP1,2 := P2 − P1 between the two piano tones in each mixture
and averaged the respective measurements. Second, we applied the
same result aggregation, this time mapping to 12 absolute, octave-
agnostic interval classes Δ̃P1,2 := (ΔP1,2 mod 12). Figure 4(a)

1https://www.pianoteq.com/
2http://resources.mpi-inf.mpg.de/SMD/SMD_

MIDI-Audio-Piano-Music.html
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Figure 4: The Overall Perceptual Score (OPS) [19, 20] computed
for separated piano tone mixtures with the conventional method
(black bars) vs. the proposed method (gray bars). (a): OPS aver-
aged over interval classes. (b): OPS averaged over absolute, octave-
wrapped interval classes.

shows that the restore approach surpasses the conventional Wiener
filtering approach in terms of OPS mostly for positive intervals,
i.e., where the MIDI pitch of the target is above the MIDI pitch
of the interferer. Interestingly, this trend can not be observed for the
SDR. Instead, the improvements are more evenly distributed and
only decrease for very wide intervals regardless if they are positive
or negative. Figure 4(b) shows that the proposed restore approach
is approx. 9.5 OPS points ahead of the conventional approach if we
ignore octave information. The average SDR improvement in that
case amounts to approx. 0.7 dB.
We obtained very mixed results in our second experiment with re-
alistic piano performances. On average, we achieved an OPS of
38.06 (SDR 10.16 dB) using conventional Wiener filtering, while
our proposed restore approach yielded a tiny OPS increase to 38.32
(SDR 10.25 dB). Unfortunately, there is no consistent improvement
across the test items, roughly half of them exhibit lower quality met-
rics compared to the conventional approach. From inspection of
selected examples, we believe that this might be related to inferior
separation of tones with a long sustain phase. Since we transfer
the spectral envelope taken from the tone’s attack, the sustain phase
might diverge from the desired target over time.
Still, we see potential in further developing the principal concept of
our separate and restore approach. One obvious possibility would
be an interval-selective application of the proposed method. An-
other possible direction is to investigate dedicated processing of
percussive and harmonic NMF components to remedy some of the
remaining problems related to unsatisfactory separation of complex
mixtures. Audio examples covering positive and negative separa-
tion results are available online3.

5.3. Conclusions and Future Work

We presented a method for post-processing score-informed music
decomposition by means of refined soft masks based on a dictio-
nary of timbre-adapted piano tone spectrograms. In simple tone
mixtures, this step attenuates the mutual interference between com-
ponents. In the future, we want to further enhance this concept and
investigate its applicability to other source separation tasks, such as
drum sound separation from drum loops.

3http://www.audiolabs-erlangen.de/resources/MIR/
2015-WASPAA-SeparateAndRestore/
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