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Abstract

Reconstructing a three-dimensional representation of
human motion in real-time constitutes an important re-
search topic with applications in sports sciences, human-
computer-interaction, and the movie industry. In this paper,
we contribute with a robust algorithm for estimating a
personalized human body model from just two sequentially
captured depth images that is more accurate and runs
an order of magnitude faster than the current state-of-
the-art procedure. Then, we employ the estimated body
model to track the pose in real-time from a stream of
depth images using a tracking algorithm that combines
local pose optimization and a stabilizing database look-
up. Together, this enables accurate pose tracking that is
more accurate than previous approaches. As a further
contribution, we evaluate and compare our algorithm to
previous work on a comprehensive benchmark dataset
containing more than 15 minutes of challenging motions.
This dataset comprises calibrated marker-based motion
capture data, depth data, as well as ground truth tracking
results and is publicly available for research purposes.

I.. Introduction

Tracking 3D human motion data constitutes an impor-
tant strand of research with many applications to com-
puter animation, medicine or human-computer-interaction.
In recent years, the introduction of unexpensive depth
cameras like Time-of-Flight cameras [1] or the Microsoft
Kinect has boosted the research on monocular tracking
since they constitute comparably cheap to obtain so-called
2.5 dimensional depth maps. Tracking from such depth
input is especially appealing in home consumer scenarios,
where a user controls an application only by using his
own body as an input device and where complex hardware
setups are not feasible.

While depth data facilitates background subtraction

compared to pure image based approaches, tracking still
remains challenging because of the high dimensionality
of the pose space and noise in the depth data. Currently,
there exist two different strategies to harness depth data
for tracking human motions. Bottom-up approaches detect
body parts or joint-positions directly from the depth im-
ages. Such approaches often neglect the underlying skeletal
topology of the human which may lead to improbable
joint locations and jitter in the extracted motion. Top-down
approaches fit a parametric model to the depth data using
an optimization scheme. Here, the accuracy of the final
tracking result is dependent on the degree to which the
body model matches the true body shape of the person. In
practice, such models are often obtained in a preprocessing
step,e. g., using laser scanners which are not available in
home consumer scenarios.

Recently, first attempts have been made to obtain the
shape of a person by fitting a parametric model to a set
of depth images of a strictly defined calibration pose.
However, the runtime in the orders of one hour as well
as the requirement of a fixed calibration pose limit the
applicability in a practical scenario.

Contributions.: We contribute with algorithmic so-
lutions that improve the performance of a combined dis-
criminative and generative real-time tracker. Firstly, we
present a new shape estimation method that makes model
fitting an order of magnitude faster compared to previous
approaches [2] at no loss of quality. Secondly, we extend an
existing tracking algorithm by [3] to obtain a personalized
version that works with arbitrary body shapes. As another
contribution, we deployed an extensive dataset of 15 min-
utes of calibrated depth and marker-based motion capture
(mocap) data which was used to evaluate our proposed
tracker and which will be made publicly available to the
research community. We also contribute with suitable error
metrics to make different trackers comparable on our data
set.

The remainder of the paper is organized as follows.
After discussing related work, we present our novel shape



Figure 1.(From left to right): Actor standing in the front of a single Kinect camera. Color coded depth data (red is near, blue is far)
as obtained from the Kinect. Automatically estimated body shape of the actor.Two complex poses reliably tracked with our algorithm
(left: input depth, right: estimated pose).

estimation method in Sect.III . Then, in Sect.IV, we de-
scribe our personalized tracker and evaluate it with respect
to previous approaches. Finally, we conclude in Sect.V
with a discussion of future work.

II.. Related Work

Shape Estimation.:Parametric shape models, as for
example described in [4], [5], provide an easy way to
represent the complex shape of the human body with
only a small set of parameters. The estimation of their
parameters from various kinds of input data constitutes
a challenging problem. Several approaches, such as [6],
[7], solve this task by estimating shape parameters from
images of a person. In contrast, [2] show a first approach
to obtain such shape parameters from a small set of depth
images. However, the runtime of such approaches is still
very long and problematic for home consumer scenarios.
Our approach closes this gap and enables fast and accurate
fitting of a body model to depth data.

Real-time Pose Estimation.:Marker-less pose esti-
mation from multi-view video has been a long-standing
problem in computer vision, and nowadays mature so-
lutions exist, see [8] for an overview. Usually, these
approaches do not run in real-time and require studio en-
vironments with complex multi-camera setups. Real-time
skeletal pose estimation has come into reach by making
use of depth sensors like time-of-flight (ToF) cameras [1]
or the Microsoft Kinect. By using kinematic body models
with simple shape primitives, the pose of an actor can be
found by fitting the model to depth data or a combination
of depth and image features [9], [10]. Body part detectors
and a mapping to a kinematic skeleton are used in [11] to
track full-body poses at interactive frame rates. Recently,
data-driven methods to perform 3D human pose tracking
based on a single depth image stream have become an
important research topic [3], [12], [13], [14]. Another
approach was proposed by [15] where regression forests
were used to obtain model-to-depth data correspondences
which are used for single frame optimization of body

(a) (b) (c) (d)

Figure 2. Shape estimation.(a): Calibration poses.(b): Depth
input of poses.(c): Initial shape.(d): Estimated shape.

pose and rough estimation of the overall body size. We
improve over the work by Baaket al.enabling a combined
generative and discriminative tracker with a personalized
shape model.

III.. Personalized Body Shape Estimation

Many tracking procedures based on depth camera in-
put rely on the availability of an accurate model of the
actor’s 3D body shape, which is often obtained by manual
modeling or by direct measurement using specialized body
scanners [3]. Such a method for generating a shape model
is impractical for home applications, where the user has
to deal with the following conditions and requirements.
Firstly, in most cases there will not be any other sensor
available for the shape estimation than for the actual
tracking. Secondly, the whole shape estimation procedure
should run in a reasonable amount of time, which means
in the order of one minute rather than one hour. Thirdly,
the procedure should impose as little additional constraints
and efforts on the user as possible. In particular, manual
interventions by the user,e. g., to adjust parameters, should
be minimized. Finally, the body shape estimation should
be robust to possible inaccuracies such as imprecise poses
assumed by the user during the calibration stage.

A first approach that tries to meet these requirements
while estimating the body shape from depth camera input
is described in [2]. Based on example shapes obtained from
laser scans, the authors construct a model that parametrizes
pose and shape of the human body. This model is then fit



to four depth images, captured from four different views
that are 90 degrees apart. After capturing the depth images,
the shape estimation takes about one hour.

In this section, we introduce a novel procedure for
estimating the body shape from a single depth camera
using only two different calibration poses and within only
a minute of fitting time, see Fig.2 for an overview. In
addition, even if the user only roughly matches the required
calibration poses, our shape estimation algorithm achieves
accurate results. We propose two innovations to achieve
high speed and high accuracy. Firstly, our optimization
scheme works purely in the 3D domain and does not revert
to 2D data representations as silhouettes or contours as
used in [2]. However, note that the richer 3D contour is
implicitly represented in the 3D-domain. Using 3D cues
instead of 2D cues typically results in fewer ambiguities
and occlusion problems such as an arm in front of the
observed body, which would be invisible in the observed
contour. Secondly, in our optimization scheme we use a
local cost function that is not only based on distances
of corresponding points, but also considers normal-based
distances between points and planes. As a result, the
optimization is less likely to get stuck in local minima
and the speed of convergence is increased significantly.

A.. Shape Model

Mathematically, our shape model is given as a mesh
consisting of vertices and triangular faces. LetP be the
number of vertices and, as explained below, letϕ be a
vector of shape parameters. Henceforth, we assume that the
mesh is rigged with a kinematic skeleton which is driven
by a pose parameter vectorχ using linear blend skinning.
Hence, the 3D coordinates of the mesh depend on both
ϕ and χ and can be represented as the stacked vector
Mϕ,χ ∈ R3·P . Furthermore, letMϕ,χ(p) denote the 3D
coordinate of thepth vertex,p ∈ [1 : P ] := {1, 2, . . . , P}.
Finally, from the triangulation one can derive a normal
vectorNϕ,χ(p) ∈ R3 for each vertex.

Our body model is a statistical model of human pose
and body shape similar to [16]. The statistical model is
a simplified SCAPE model [4], where we omit the terms
responsible for modeling muscle bulging in order to speed
up computations. Our model is generated from scans of
127 young male and female persons [5]. This certainly
limits the expressiveness of the model to a certain extent.
However, as our experiments will show, even with a model
generated from a relatively small number of scans we
achieve better accuracy than [2] where 2 500 scans were
used. By suitably averaging the available scans, a base
shape consisting ofP = 6449 vertices was generated.
Fig. 2(c) shows the base shape in the standard pose given
by the parameterχ0. Let M0,χ0

be the vertex coordinates
of the base shape in the standard pose. Furthermore, let

ϕ be a shape parameter vector that linearly influences the
size and shape of the mesh. More precisely, from a shape
database, a suitable eigenvector matrixΦ ∈ R3·P×|ϕ| is
determined, encoding the statistical shape variations. The
details to compute the eigenvector matrix can be found in
the supplemental material. This yields a family of different
body shapes in the following way:

Mϕ,χ0
= M0,χ0

+Φ ·ϕ (1)

In [5] it was shown that by using dimensionality reduction
techniques, one obtains already a wide range of naturally
looking shapes of different people for a low-dimensional
ϕ. In our experiments, we use the13 most significant
Eigenvectors.

As for the underlying skeleton, we use a model contain-
ing 51 joints similar to [17]. Not all joints possess a full
degree of freedom (DoF). For example, the spine is rep-
resented by several coupled joints that are parameterized
by only 3 DoFs, which results in a smooth bending of the
whole spine. In our experiments, we represent the pose of
a person with31 DoFs (3 translational and28 rotational)
encoded by the pose parameter vectorχ. The skeleton
was once manually fitted to the base shape corresponding
to the parameter vectorϕ = 0 in the poseχ0. To be
able to transfer the skeleton to other shapes, we represent
the position of each joint as a linear combination of its
surrounding vertices.

B.. Optimization

Our shape estimation problem can be formalized as
follows. First, we assume a target point cloud is given
T consisting of pointsT (q) ∈ R3 for q ∈ [1 : Q], where
Q denotes the number of points. In our setting we assume
thatT is a depth image as supplied by a Kinect camera, but
point clouds from other sources could also be used. The
goal is to jointly optimize the shape and pose parameters
of our shape model to best explain the given target point
cloud.

Firstly, the shape and pose parameter vectors are ini-
tialized by ϕ = ϕinit and χ = χinit. In our scenarios,
we setϕinit = 0 andχinit to the standard pose parameter
χ0 translated to the mean center of the point cloudT . In
order to make the shape model compatible with the target
point cloudT , we transform the shape model surface into
a mesh point cloud. To this end, we basically consider the
3D coordinatesM(p) := Mϕ,χ(p), [1 : P ], of the mesh
vertices. Since in our setting the target point cloudT comes
from a depth image and hence only shows one side of the
actor, we also restrict the mesh point cloud to the points
that are visible from the depth camera’s perspective (the
rough orientation of the body is assumed to be known in
the calibration phase). To simplify notation, we still index
the restricted point cloud by the set[1 : P ].



We establish correspondences between the target point
cloud and the mesh point cloud based on closest points.
For each pointM(p), we define the corresponding point
T (qp) to be the point that minimizes the Euclidean distance
betweenM(p) and the point cloudT . Similarly, for each
point T (q) the pointM(pq) is defined.

Based on these correspondences, we now introduce our
optimization scheme. It is well known from the literature
that one obtains faster convergence rates in rigid shape reg-
istration based on iterative closest points (ICP) when using
point-plane constraints instead of point-point constraints,
see [18] and references therein. Furthermore, such con-
straints are more robust to noise from depth sensors leading
to a more stable convergence. On the other hand, point-to-
plane constraints are problematic when correspondences
are far apart. Therefore, we design an energy functional
that incorporates both point-point as well as point-plane
constraints. First, for a pair(p, q) ∈ [1 : P ]× [1 : Q] let

dpoint(p, q) = ||M(p)− T (q)||2 (2)

denote the Euclidean distance between the pointsM(p)
and T (q). Next, we use the normal information supplied
by the mesh to define a point-plane constraint. LetN(p) =
Nϕ,χ(p), p ∈ [1 : P ], be the normal vector at thepth

vertex. Then, the distance between the pointT (q) and the
plane defined by the normalN(p) that is anchored at the
point M(p) is given by

dnormal(p, q) = 〈M(p)− T (q), N(p)〉. (3)

Next, we fix a suitable thresholdτ (in our experiments
τ = 15mm) to decide which of the distances should be
considered depending on how far the two corresponding
points are apart and we define

dτ (p, q) :=

{

dpoint(p, q), if ‖M(p)− T (q)‖2 > τ,

dnormal(p, q), otherwise.
(4)

Finally, in the definition of the energy functional
E(ϕ,χ|T ) we consider all correspondences from the mesh
point cloud to the target point cloud and vice versa:

E(ϕ,χ|T ) :=
∑

p∈[1:P ]

dτ (p, qp) +
∑

q∈[1:Q]

dτ (pq, q). (5)

To minimize Eq. (5), we use a conditioned gradient
descent solver as described in [17]. To this end, we
compute the analytic partial derivatives ofE(ϕ,χ|T ) with
respect to the shape parametersϕ and the pose parameters
χ and solve until convergence. Note that in contrast to
numeric differentiation, analytic derivatives enable faster
and more stable convergence. The analytic derivatives can
be found in the supplemental material of this paper. We
repeat the process in an ICP fashion, where between
two iterations, the correspondences are updated using the

newly estimated parametersϕ and χ. We further speed
up the overall optimization procedure by using a multi-
scale approach, where we start with only a small number
of correspondences and successively increase the number
of correspondences until we use one correspondence for
every point inT and for every vertex inM .

Finally, we want to note that our optimization procedure
can be easily extended to consider several target point
clouds to be jointly optimized against. More precisely,
having K target point cloudsT1, . . . , TK , the objective
is to estimateK pose parameter vectorsχ1, . . . ,χK ,
but one joint shape parameter vectorϕ. In the opti-
mization, the energy functional is defined as the sum
∑

k∈[1:K] E(ϕ,χk|Tk), see Eq. (5). Our experiments show
that using onlyK = 2 different depth images (one from
the front of the body and one from the back) are already
sufficient to obtain an accurate shape estimate, see Fig.2.

C.. Evaluation

To evaluate the accuracy of our proposed method and
to compare it with previous results, we conducted similar
experiments as reported in [2]. As for the test data, we
considered the body shapes of six different persons of
different size and gender (three males, three females),
see also Fig.3. For each person, we recorded two depth
images, one showing the front and the other the back of
the body, see Fig.2. Furthermore, using a full-body laser
scanner, we generated for each person a surface point cloud
with a resolution of about350 000 vertices. These scans
serve as ground-truth (GT).

Now, let ϕ∗ be the optimized shape parameter vector
obtained by our algorithm when using the two depth
images as target point clouds (the pose parameter vectors
χ1 andχ2 are not used in the evaluation). Furthermore,
to obtain a ground-truth shape, we use the same algorithm
as before, however, this time using the laser scanner point
cloud as target. LetϕGT denote the resulting optimized
shape parameter vector. To compare the shapes resulting
from ϕ

∗ andϕGT, one needs to generate the correspond-
ing meshes. However, to this end, one also requires pose
parameters, and simply taking the standard pose parameter
vectorχ0 is usually not the right choice, since the different
shape parameters may also have a substantial influence
on the assumed pose. Therefore, we compensate for this
effect by taking the standard pose for the laser scan
shape and by suitably adjusting the pose parameters for
the estimated shape. To this end, we again apply our
optimization algorithm usingMϕGT,χ0

as target point
cloud and only optimize over the pose parameter vector
χ leaving ϕ = ϕ

∗ fixed. Let χ∗ denote the result.
As for the final evaluation, we then compare the mesh
Mϕ∗,χ∗ (representing our shape estimation result) with
MϕGT,χ0

(representing the ground truth shape). Since



M1 M2 M3 F1 F2 F3 ∅

µ 5.1 18.7 9.1 6.8 11.4 9.2 10.1
σ 2.5 9.5 4.0 3.7 4.9 4.4 4.8
max 14.1 46.3 20.5 18.7 30.1 19.4 24.9

M1 M2 M3 F1 F2 F3

Figure 3. Vertex-to-vertex distances given in millimeters for three
male (M1–M3) and three female (F1–F3) subjects shown from
the front (middle) and from the back (bottom). The table (top)
shows the meanµ, standard deviationσ, and maximummax over
all vertices. The heads where removed from the error calculation
because of their bad representation in the shape model.

vertex correspondences of these two meshes are trivial
(based on the same index set[1 : P ]), one can directly
compute the vertex-to-vertex Euclidean distances in the
same way as Weisset al. [2].

The vertex-to-vertex distances are indicated in Fig.3,
which also shows the mean, variance and maximum over
these distances. For example, for the first male actorM1,
the mean average is5.1mm and the maximal distance
is 14.1mm. Overall, the achieved accuracies (in aver-
age 10.1mm) are good and comparable to (in average
10.17mm) reported in Weisset al. [2]. There are various
reasons for inaccuracies. In particular, using only 13 of
the most significant Eigenvectors in Eq. (1) does not
allow us to capture all shape nuances which may lead to
higher errors, such as for the actorsM2 andF2. In these
cases, either similar shapes might be not spanned by the
training data of the shape model or the13-dimensional
approximation of shape variations might be too coarse.
Furthermore, note that the depth image resolution (which
is roughly 20mm at the used distance of2.6m) as well
as the mesh resolution (where neighboring vertices often
have a distance of20mm) puts limits on the achievable
accuracy. Nonetheless, overall good accuracy is achieved
with a compact model.

Besides its accuracy, our approach has two further main
benefits: efficiency and robustness. It only requires50–
60 seconds to estimate the shape parameter vector (and

the two pose parameter vectors) from two target depth
point clouds. This is substantially faster than the3 900
seconds (65 minutes) reported by Weisset al. [2]. The
running times were measured using a C++ implementation
of our algorithm executed on an Intel Xeon CPU @
3.10GHz. Furthermore, jointly optimizing for shape and
pose introduces a high degree of robustness and allows us
to use only two different depth images to obtain accurate
shape estimates. Actually, an additional experiment, where
we used four target point clouds (using two additional
depth images) only slightly improved the overall accuracies
(from 10.1mm when using two poses to8.4mm when
using four poses). Besides implementation issues, these
substantial improvements in running time and robustness
are the result of using a relatively small number of op-
timization parameters, reverting to reliable 3D correspon-
dences, using a more effective parametrization of the body
model, and combining point and plane constraints.

IV.. Personalized Depth Tracker

The tracker of Baaket al. [3] combines a generative
with a discriminative approach. The discriminative tracker
finds closest poses in a database, but that database is
specific to an actor of a certain body shape. To perform
best, that database would need to be regenerated for each
body shape, which they do not do. They merely use a crude
heuristic and scale the depth point cloud along fixed axes
to match the database model. Therefore, in this paper, we
suggest a different strategy by recomputing the entire set
of poses in the database using the estimated personalized
mesh. The database needs to be computed only once for
each actor, which takes around 12 minutes for50 000 poses
using unoptimized code. An efficient GPU implementation
would yield further speedups.

The resulting personalized depth tracker captures even
fast and complex body poses (jumping jack, sitting down)
reliably and in real-time, see Fig.1 and also the accompa-
nying video for some qualitative results. In the following,
we will give some quantitative results with comparison to
other approaches.

A.. Evaluation on the Standford Dataset

In a first experiment, we compare our personalized
tracker to previous approaches based on the dataset and er-
ror metrics described in [12]. The results of this evaluation
are depicted in Fig.4. One can see that our tracker gives
comparable results to the previous approaches presented by
Ganapathiet al. [12] and Baaket al. [3] and excedes the
results of the previous approaches in many cases. Please
note that for this evaluation marker positions of markers
attached to the actor’s body are predicted and compared
to ground truth marker positions obtained with an optical
marker based mocap system. We think that this way of
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Figure 4. Average tracking error of sequences0 to 27 of the dataset provided by [12]. The sequences were tracked using the tracker
proposed by Ganapathiet al. [12] (blue), Baaket al. (red), and our tracker(yellow).
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Figure 5.(a): Modified calibration wand with a cardboard disc
around one marker.(b): Illuminated marker shown in an image
from the RGB-camera of the Kinect.(c): Cardboard disk is
clearly visible in the Kinect’s depth image.(d): Reconstructed
marker trajectories from Kinect(red) and optical mocap system
(black). (e): Estimation of the rotational offset between both
trajectories after centering at their mean.

evaluating the tracking accuracy is not well suited for the
specific requirements in home consumer scenarios. For
example, in some reconstruction scenarios one is only
interested in reconstructing the joint positions of the user,
as it is done for example in many Kinect applications.
On the other hand, when it comes to augmented reality
scenarios, such as virtual try-on applications, one is rather
interested in tightly approximating the depth image of the
user to get a well fitting overlay of simulated objects such
as cloths. In order to address these two evaluation aspects,
we recorded a dataset with ground truth tracking results.

B.. Our Evaluation Dataset

For our evaluation, we recorded a dataset [19] using
both a Microsoft Kinect as well as a Phasespace active
marker-based mocap system simultaneously. It comprises
various kinds of motion performed by five actors (three
male: M1, M2, and M3 and two female:F1 and F2).
The body models for each actor were estimated with the
method from Sect.III . We defined four groups of motions
of different difficultiesD. They range from easy to track
motion sequences (D1), simple arm and leg motions (D2),
fast movements such a kicking and jumping (D3), to very
hard to track motions such as sitting down, walking in
circles, or rotating in place (D4). In total we recorded
a set of 40 sequences,2 takes from every of the4
difficulties performed by each of the5 actors. We used
half of the recorded motions to build the pose database
of the tracker, the other half is used for evaluation and

is referred to asevaluation dataset. We use the notation
<actor><difficulty> to refer to a specific sequence from
the evaluation dataset,e. g.M2D4 refers to the sequence
of difficulty D4 performed by actorM2.

Calibration.: In order to make the tracking results
from the depth trackers comparable to the ground truth data
we need to calibrate the Kinect with respect to the marker-
based system. Since the location of the Kinect camera is
unknown a priori and the frame capturing of the Kinect
cannot be externally synchronized, such a calibration con-
sists of two parts, a temporal calibration and a spatial
calibration. While the spatial calibration only needs to be
done once, the temporal calibration must be done for every
captured sequence. We perform the temporal calibration
by calculating a space invariant but time varying feature
for two corresponding trajectories from both the marker-
based and the Kinect recording. The temporal offset is
then determined by identifying the lag that maximizes the
cross correlation of both features. In our case, it turned out
that the absolute velocities of the trajectories are a robust
feature for temporal calibration even under the presence of
tracking errors. A suitable trajectory could, for instance, be
the position of a joint or another well defined point over
a period of time.

For spatial calibration of both the Kinect and the
marker-based system, we use a calibration wand with a
single active LED (see Fig.5(a)). Here, the idea is to
determine the trajectory of the marker using both recording
devices, and to register the trajectories to each other.
While the marker-based system provides the marker’s
trajectory in a straight forward way, we need some addi-
tional processing to obtain the trajectory from the Kinect.
The Kinect records depth and video simultaneously, see
Fig. 5(b) & (c), and both streams are calibrated relative
to each other. We can thus get the LED trajectory from
the Kinect by recording in a dark room, thresholding the
intensity image to identify the pixel position of the LED,
and extracting corresponding depth information from the
depth channel. Using the intrinsic parameters of the Kinect,
we calculate the 3D position of the marker from the 2D
position and depth value. Fig.5(d) shows a reconstructed
marker trajectory (red) from Kinect footage. Now, we
temporally align the trajectories with the method described



above. The resulting trajectories are then aligned spatially
by determining a rigid transform for point correspondences
(Fig. 5(e)).

Joint Tracking Error.: In a first experiment, we want
to evaluate how accurate the various depth-based trackers
capture the joint positions of an actor. To this end, we
used the marker data from the phase space system to
animate a kinematic skeleton using inverse kinematics. We
consider the resulting joints positions as ground truth data
for the evaluation. In the following we assume that the
sequences of the trackers and the ground-truth data have
been temporally and spatially aligned using the procedure
described above.

Since all trackers use a slightly different set of joints, we
select for each tracker a subset of20 joints that are close to
semantic positions in the body such as the lower back, the
middle of the back, the upper back, the head, the shoulders,
the elbows, the wrists, the hands, the hips, the knees, the
ankles, and the feet. We now measure for every frame the
distance between the tracked joints and the ground truth
joints. Since the corresponding joints from the different
trackers do not lie at the exact same positions we need to
normalize for an offset. Therefore, we calculate the average
local displacement of the joint relative to the corresponding
ground-truth joint, and subtract this offset from the position
of the tracked joint. Here, local displacement means that
we consider the displacement within the local coordinate
frame of the ground truth joint.

The average errors—over all joints and frames of one
sequence—for the various actors and sequences are shown
in Fig. 6. One can see that the tracker of the Kinect SDK
performs worst with an average error of95.8 millimeters
over all sequences. The tracker presented by Baaket
al. [3] shows an average error of82.6 millimeters over all
sequences, while our tracker performs best with an error
of 73.8 millimeters.

Surface Tracking Error.: In a second experiment,
we assess the quality of the tracker by quantifying how
well the tracked mesh at each frame approximates the
point cloud recorded by the Kinect, referred to assurface
tracking error. To this end, we first calculate a so-called
distance mapfor every frame of a tracked sequence, by
determining for every foreground point in the depth image
of the Kinect the distance to the closest point on the mesh.
Now, the straightforward way to compute a suitable surface
tracking error would be to take the maximum distance
from each distance map. Unfortunately, it turns out that the
maximum is very unstable due to noise in the depth image
and inaccuracies of the background subtraction. Here, a
quantile value is better suited since it filters out influences
of noise. We tested several quantiles and it turned out that
a 97%-quantile is a good compromise between robustness
to outliers and responsiveness to tracking errors. Please

Table I. Averaged surface tracking errors in millimeters for each
sequence of the evaluation dataset that were tracked by Baaket
al., and our tracker.

M1 D1 D2 D3 D4 ∅

Baaket al. 66 84 139 138 106
Ours 61 81 116 102 90

M2 D1 D2 D3 D4 ∅

Baaket al. 54 84 71 153 91
Ours 56 77 75 110 80

M3 D1 D2 D3 D4 ∅

Baaket al. 59 88 104 108 90
Ours 56 76 89 93 79

F1 D1 D2 D3 D4 ∅

Baaket al. 74 102 172 129 119
Ours 64 84 115 97 90

F2 D1 D2 D3 D4 ∅

Baaket al. 49 66 82 117 79
Ours 46 62 80 105 73

note that since the Kinect SDK does not provide a tracked
mesh, we cannot calculate this error for the tracker of the
Kinect SDK.

Fig. 7(top) shows the surface tracking error over se-
quenceF1D1. The red curve represents the error of the
tracker by Baaket al. [3] while the yellow curve is
the result of our personalized tracker. The black vertical
line at 22.7 seconds indicates a point in time where the
surface tracking error of Baaket al. is significantly higher
than that of our tracker. Fig.7(b)–(f) shows that this
corresponds to a notable tracking error. In the middle,
Fig. 7(b) displays the depth image recorded by the Kinect.
In the distance map, cyan colors depict small distances
around0 millimeters while magenta colors represent high
distance values of25 millimeters and up. On the right,
Fig. 7(c) & (d) shows the distance map (left) and the
tracked mesh of their tracker, Fig.7(e) & (f) depicts the
distance map and the tracked mesh of our tracker. Our
tracker tracks the right arm of actorF1 correctly while it
was merged with the upper body by the tracker of Baak
et al..

Table I lists the average surface tracking errors of
the different sequences, actors and trackers. Our tracker
performs significantly better than the tracker of Baaket
al. [3]. Especially sequenceM2D4—which is one of the
hardest sequences—is tracked considerably better by our
tracker (average error of110mm) than by the tracker
by Baaket al. (average error of153mm) Of course our
tracker also has limitations,e. g., when the actor does not
face the camera (as in sequences of difficultyD4) or when
parts of the body are occluded or outside of the recording
volume of the Kinect—which occasionally happens during
all sequences.
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Figure 6. Average joint tracking error in millimeters for each sequence from the evaluation dataset that were tracked by the tracker of
the Kinect SDK(black), Baaket al. (red), and our tracker(yellow).
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Figure 7.(a): Surface tracking error in millimeters for sequence
F1D1 tracked by of Baaket al. (red) and our tracker(yellow).
(b)-(f): Status at22.7 seconds.(b): Depth image at (red front,
blue back).(c): Distance map of tracker of Baaket al.. (d):
Tracked mesh for tracker of Baaket al.. (e): Distance map for
our tracker.(f): Tracked mesh for our tracker.

V.. Conclusion and Future Work

In this paper, we presented a personalized real-time
tracker of human body poses from single depth images
that is more accurate than related approaches from the
literature. Key to its success is personalization. We devel-
oped a new approach to estimate the personalized shape
of an actor based on a parametric body model, which is
much faster and more accurate than previous methods. We
also presented a new real-time pose tracker that exploits
this model and automatically adjusts to every actor. In
conjunction, these two contributions allow us to track both
skeletal joint locations as well as the shape of the body
more accurately than with previous methods. We confirm
this through extensive evaluations against ground truth on
a comprehensive test dataset which is publicly available.
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