
Score-Informed Audio Decomposition and Applications

Jonathan Driedger
International Audio

Laboratories Erlangen∗

jonathan.driedger@
audiolabs-erlangen.de

Harald Grohganz
Bonn University
grohganz@

cs.uni-bonn.de

Thomas Prätzlich
International Audio

Laboratories Erlangen
thomas.praetzlich@

audiolabs-erlangen.de
Sebastian Ewert

Queen Mary University of
London

sebastian.ewert@
eecs.qmul.ac.uk

Meinard Müller
International Audio

Laboratories Erlangen
meinard.mueller@

audiolabs-erlangen.de

ABSTRACT
The separation of different sound sources from polyphonic music
recordings constitutes a complex task since one has to account for
different musical and acoustical aspects. In the last years, vari-
ous score-informed procedures have been suggested where musi-
cal cues such as pitch, timing, and track information are used to
support the source separation process. In this paper, we discuss
a framework for decomposing a given music recording into note-
wise audio events which serve as elementary building blocks. In
particular, we introduce an interface that employs the additional
score information to provide a natural way for a user to interact
with these audio events. By simply selecting arbitrary note groups
within the score a user can access, modify, or analyze correspond-
ing events in a given audio recording. In this way, our framework
not only opens up new ways for audio editing applications, but also
serves as a valuable tool for evaluating and better understanding the
results of source separation algorithms.

Categories and Subject Descriptors
H.4 [Information Interfaces and Presentation]: Sound and Mu-
sic Computing

Keywords
Score-informed processing, source separation, audio editing, align-
ment, music synchronization

1. INTRODUCTION
In recent years, the task of separating a mixture of superim-

posed sound sources into its constituent components has been a
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Figure 1: Score-informed decomposition of a given audio
recording into note-wise audio events and a residual signal.

central research topic in the field of digital signal processing. In
speech, for example, these components could be the individual
conversations of simultaneously speaking persons (“Cocktail party
scenario”, see [1]). In the context of music, the sources might cor-
respond to the main melody, a bassline, a drum track or another
instrument track [5, 6, 13, 14]. To guide the source separation pro-
cess in such a scenario, it has become a common strategy to provide
the algorithm with additional information. Such information can,
for example, be given in the form of user-specified annotations [2],
or by a musical score. In score-informed procedures the explicit
timing, pitch and instrument information encoded by the score is
utilized to guide and support the source separation processes.

Most current score-informed approaches are designed for ex-
tracting individual instruments as specified by the score, see [8,
10, 17]. In this paper, we go beyond this scenario by introducing
a framework for decomposing a music recording into elementary
building blocks or sound events. More precisely, a musical score
can be considered as a composition of elementary events given by
the individual musical notes. These notes have some explicit mu-
sical meaning (in terms of pitch, onset time, and duration) and are
directly intelligible by a human. The core idea of this contribution
is to decompose a given music recording into a set of note-wise au-
dio events, where each audio event is directly associated with a note
in the musical score, see Figure 1. Based on this decomposition, we
introduce an intuitive interface that allows a user to directly access
the audio recording in a note-wise fashion, which opens up explicit
ways of editing and manipulating audio material. Such an inter-
face also provides novel possibilities to better understand the qual-
ity achieved by the underlying source separation algorithm. For
example, subtracting all note-wise audio events from the original
recording yields a residual signal which can be interpreted as the
part of the recording that was not captured by the source separa-
tion process (for example because it was not reflected by the given



musical score). Analyzing this residual can then reveal parts in the
original recording where the source separation algorithm typically
fails or where data inconsistencies occur.

The remainder of this contribution is structured as follows. In
Section 2 we summarize a recent score-informed source separation
algorithm used in our experiments. Furthermore, we show how
to derive the note-wise decomposition of the audio recording and
discuss some manipulation strategies. In Section 3, we present a
prototype of a user interface for intuitive score-based audio edit-
ing and analysis. Finally, in Section 4, we close this paper with
conclusions and future work.

2. AUDIO DECOMPOSITION
In the last years, techniques based on non-negative matrix fac-

torization (NMF) have been applied to decompose a magnitude
spectrogram into a set of template (column) vectors and activation
(row) vectors [15]. To better control this factorization, additional
score information has been used to constrain NMF and to yield
a musically more meaningful decomposition [7]. In this section,
we summarize the score-informed procedure as introduced in [3]
(Section 2.1) and then describe how to decompose a given audio
recording x into note-wise audio events xm, m ∈ [1 : M ], where
M is the number of note events specified in the score, and a residual
signal r such that x =

∑
m xm + r (Section 2.2).

2.1 Constrained NMF-based Source Separa-
tion

Given a matrix V ∈ RS×T
≥0 , the goal of classical NMF is to de-

rive two matrices W ∈ RS×K
≥0 and H ∈ RK×T

≥0 , such that the dis-
tance, typically a modified Kullback-Leibler divergence, between
V and WH is minimized [12]. In the context of source separa-
tion, given an audio recording x with spectrogram X , the goal is
to factor the magnitude spectrogram V := |X| into a matrix W
of template vectors (every column corresponding to the prototype
spectrum of a certain tone) and a matrix H of activations (every
row encoding when and how loud a corresponding tone is played).
In standard NMF the matrices W and H are derived by iteratively
updating two randomly initialized matrices using multiplicative up-
date rules. However, the result of this process is often not musically
meaningful as discussed for example in [3].

To overcome this issue, [3] proposed a score-informed approach,
where the score information is used to initialize both matrices W
and H to guide the NMF update process in a musically meaningful
direction. More precisely, having the score of the audio record-
ing at hand in form of a MIDI file, high-resolution synchronization
techniques are used to temporally align the MIDI events with the
audio recording [4, 11]. Each of the M note events of the syn-
chronized MIDI file yields information about the pitch, the onset
time and the duration of a corresponding audio event that should
occur in the recording according to the score. For each occurring
pitch in the MIDI file, a harmonic template (column of the matrix
W ), which encodes the rough harmonic structure of the pitch, is
initialized. This template is defined to have non-zero entries at fre-
quency bins that are related to the fundamental frequency and the
overtones of the given pitch and zero entries otherwise. Similarly,
the activation matrix H is initialized by the specified onset times
and note durations obtained from the synchronization procedure.
For later use, we link the initialization ofH with the corresponding
synchronized MIDI events as follows. A binary constraint matrix
Cm ∈ RK×T is constructed for each m ∈ [1 :M ], where Cm is 1
at entries that correspond to the pitch and temporal position of the
mth MIDI event and 0 otherwise. Each Cm therefore constitutes
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Figure 2: (a) Magnitude spectrogram V . (b) Synchronized
MIDI note events. (c) Template matrix W learned by NMF. (d)
Activation matrix H learned by NMF. (e) Note-wise activation
matrices Hm. (f) Note-wise spectrograms Xm. (g) Note-wise
audio events xm. (h) Residual signal r.

a link between specific entries in H and a MIDI note event. The
union (OR-sum) of all Cm is then used as initialization of H . At
this point, the crucial observation is that the multiplicative NMF
update rules can only change the non-zero entries. Therefore, ap-
plying NMF to the initialized matrices W and H yields a decom-
position, where the relations expressed by the Cm between MIDI
note events and entries in the activation matrixH are preserved, see
Figure 2a-d. The result after the NMF-learning procedure can be
seen as a refinement of the initially constrained harmonic template
and activation matrices.

2.2 Note-Based Audio Decomposition
Let W and H denote the template and activation matrices after

applying the NMF learning procedure. We now use the note-wise
constraints given by the matrices Cm, m ∈ [1 : M ], to derive
the note-wise audio events xm. To this end, we first compute a
note-wise activation matrix Hm := H � Cm, where the operator
� denotes the point-wise multiplication. Afterwards, we derive a
spectral mask Mm := (WHm) � (

∑
mWHm + ε), where � is

understood as point-wise division and ε is a small positive constant
to avoid a potential division by zero. The mask Mm can be in-
terpreted as a weighting matrix that reflects the contribution of the
mth note event to the original spectrogramX . Finally, we compute
the note-wise spectrogram Xm := X �Mm and apply the inverse
short-time Fourier transform to obtain the audio event xm, see Fig-
ure 2e-h. The audio events xm represent a decomposition of the



original signal x (the music recording) according to the note events
specified by the given musical score. Obviously, this decomposi-
tion becomes problematic in the case that the recorded performance
deviates from the musical score. More generally, synchronization
inaccuracies, i. e. deviations in the alignment of the MIDI events
and their expected realization in the music recording, may lead to
local errors in the decomposition. Furthermore, simplifying model
assumptions (such as the assumption that the partials’ relative en-
ergy distribution is independent of the loudness), deviations in the
expected tuning, or additional sound components caused by reso-
nance or reverberation may cause artifacts in the decomposition.
Therefore, we also compute a residual signal r = x −

∑
m xm.

The signal r holds a lot of valuable information since it does not
only give a deeper insight into the source separation process, but it
may also reveal inconsistencies between the musical score and the
audio recording. Therefore, it is a natural idea to analyze r in more
detail. In the next section we present an interface that supports such
an analysis by enabling the user to study the decomposition and the
residual signal more thoroughly.

3. APPLICATIONS
In this section, we show how the decomposition of an audio

recording can be utilized as a basis for various applications. To
this end, we developed a user interface (Section 3.1) which offers
a user-friendly access to such a decomposition1. Furthermore, we
show how this interface can be used for intuitive audio editing (Sec-
tion 3.2) and the analysis of the underlying source separation pro-
cedure by investigating the residual signal r (Section 3.3).

3.1 User Interface
Besides standard audio player functionalities, our interface comes

with a set of additional tools related to the score-informed audio de-
composition introduced in the previous section. In its current state,
our interface provides a piano roll representation of the musical
score. While playing back the audio recording, the synchronized
MIDI events are displayed and allow a user to directly access every
single corresponding note-wise audio event, see Figure 3. Addi-
tionally, the interface also provides a set of plugins that can be used
to manipulate, analyze and visualize the note-wise audio events.
Some plugins included in our interface are discussed next. In gen-
eral our Matlab-based framework is not restricted to these use cases
and is flexible enough to support a wide range of further applica-
tions.

3.2 Audio Editing
Our interface provides easy-to-use possibilities for manipulating

the audio recording in a musically informed manner. For example
dragging a MIDI event in the piano roll representation and drop-
ping it at a different position is an intuitive way of changing the
onset time (horizontal displacement) and the pitch (vertical dis-
placement) of a note. Having the note-wise audio decomposition
at hand, we are able to transfer the same manipulations to the au-
dio recording. If the user wishes to displace a note with respect
to time and pitch, the corresponding audio event is first subtracted
from the original recording and a suitably time- and pitch-shifted
version (using a standard pitch shifting procedure such as [16]) of
the event is added afterwards. We keep track of all the applied
manipulations such that it is possible to manipulate a previously
edited note again. By using similar strategies it is also possible to

1A demo of the proposed interface can be found at
http://www.audiolabs-erlangen.de/resources/2013-
ACMMM-AudioDecomp/.
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Figure 3: Top: Score of the first three measures of Op. 28 No.
4 by Frédéric Chopin. Bottom: Our user interface showing the
corresponding part in an audio recording of the piece. Each
note-wise audio event can be accessed separately.

change the duration or the volume level of notes, to remove notes
completely from the audio recording, or to add additional notes by
copying and manipulating existing ones.

3.3 Source Separation Analysis
Analyzing the decomposition of a music recording, and espe-

cially the residual signal r offers novel possibilities to investigate
the behavior of the underlying source separation algorithm. Posi-
tions in the original audio recording where r shows high energy
indicate passages where the source separation procedure could not
assign all of the recording’s energy to the note-wise audio events.
To analyze such positions, our interface has been equipped with a
plugin that plots the color-coded short-time energy of r in the back-
ground of the standard visualization, see Figure 4. This way, one
can directly observe temporal relations between bursts of energy in
r and the synchronized MIDI note events.

As an illustrative example how this tool can be used, we consider
a short excerpt of Chopin’s Prelude Op. 28 No. 4 as shown in Fig-
ure 4. Often a musical score does not completely describe what is
actually played by the performing musician. An example for this
are ornamental notes which are not reflected directly by the score
(see, e.g., the pink boxes in Figure 4). Such deviations typically
lead to local misalignments between the MIDI events and the audio
recording. Even worse, additionally played notes that are not con-
tained in the MIDI file may neither have an appropriate template
vector in W , nor entries in the activation matrix H . It is therefore
impossible for the score-informed source separation procedure to
properly capture these notes. As Figure 4 shows, the residual r
can reveal such inconsistencies between the notated score and the
performance.

Local energy peaks in the residual are commonly aligned with
note onsets (see the green and orange boxes in Figure 4). While
smaller peaks, like shown in the lower green box, commonly emerge
from oversimplifications in the musical model of the source sepa-
ration algorithm (the derived template vectors in W can often not
describe the sound of an onset accurately), more massive bursts of
energy often arise from slightly misaligned MIDI events (e.g., the
two bass notes marked in orange are played slightly earlier than
they are encoded in our synchronized MIDI file).
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Figure 4: Top: Score of measures 16 and 17 of Op. 28 No. 4 by
Frédéric Chopin. Bottom: Our user interface showing the cor-
responding part in an audio recording of the piece. The short-
time energy of the residual signal r is visualized in a color-coded
format in the background.

Another aspect that can not be captured appropriately by the used
source-separation procedure are acoustical phenomena like reso-
nance or reverberation (see the red boxes in Figure 4). At the be-
ginning of measure 17, the performing musician holds the pedal of
the piano and all played notes are therefore sustained until the pedal
is released again in the middle of the same measure. Furthermore,
the pressed pedal allows all strings of the piano to resonate with the
actually played notes, thus creating an even more complex sound
mixture. This information is not reflected in the audio decompo-
sition and a large amount of energy migrates to the residual in the
source separation process.

4. CONCLUSION AND FUTURE WORK
In this paper we presented a framework that allows for decom-

posing a given audio recording into score-based, and therefore mu-
sically meaningful audio events. Furthermore, we showed how this
decomposition can be used for audio editing and analysis purposes.
As discussed in Section 3.3, the residual signal r provides valuable
information about deviations between a performance and a corre-
sponding score as well as about misalignments of the MIDI events
with the audio recording. As for future work, building a classifier
that can automatically distinguish between different kinds of error
sources may not only be beneficial for the source separation proce-

dure itself, but could also aid in performance analysis applications
or in improving alignment techniques. A further challenge is to
investigate to which extend our decomposition may serve as an in-
stance of object-oriented sound representation with applications to
parametric audio coding and interactive remixing, see [9].
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