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—— Abstract

Score and audio files are the two most important ways to represent, convey, record, store, and
experience music. While score describes a piece of music on an abstract level using symbols

such as notes, keys, and measures, audio files allow for reproducing a specific acoustic realization
of the piece. Each of these representations reflects different facets of music yielding insights
into aspects ranging from structural elements (e.g., motives, themes, musical form) to specific
performance aspects (e. g., artistic shaping, sound). Therefore, the simultaneous access to score
and audio representations is of great importance. In this paper, we address the problem of
automatically generating musically relevant linking structures between the various data sources
that are available for a given piece of music. In particular, we discuss the task of sheet music-
audio synchronization! with the aim to link regions in images of scanned scores to musically
corresponding sections in an audio recording of the same piece. Such linking structures form
the basis for novel interfaces that allow users to access and explore multimodal sources of music
within a single framework. As our main contributions, we give an overview of the state-of-the-art
for this kind of synchronization task, we present some novel approaches, and indicate future
research directions. In particular, we address problems that arise in the presence of structural
differences and discuss challenges when applying optical music recognition to complex orchestral
scores. Finally, potential applications of the synchronization results are presented.
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1 Introduction

Significant advances in data storage, data acquisition, computing power, and the worldwide
web are among the fundamental achievements of modern information technology. This
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Linking Sheet Music and Audio Recordings

technological progress opened up new ways towards solving problems that appeared nearly
unsolvable fifty years ago. One such problem is the long-term preservation of our cultural
heritage. Libraries, archives, and museums throughout the world have collected vast amounts
of precious cultural material. The physical objects are not only difficult to access, but
also threatened from decay. Therefore, numerous national and international digitization
initiatives have been launched with the goal to create digital surrogates and to preserve our
cultural heritage.? However, generating and collecting digitized surrogates represents only
the beginning of an entire process chain that is needed to avoid digital graveyards. To make
the digitized data accessible, one requires automated methods for processing, organizing,
annotating, and linking the data. Furthermore, intuitive and flexible interfaces are needed
that support a user in searching, browsing, navigating, and extracting useful information
from a digital collection.

In this paper, we address this problem from the perspective of a digital music library
project,® which has digitized and collected large amounts of Western classical music. Such
collections typically contain different kinds of music-related documents of various formats
including text, symbolic, audio, image, and video data. Three prominent examples of such
data types are sheet music, symbolic score data, and audio recordings. Music data is often
digitized in some systematic fashion using (semi-)automatic methods. For example, entire
sheet music books can be digitized in a bulk process by using scanners with automatic
page turners. This typically results in huge amounts of high-resolution digital images
stored in formats such as TIFF or PDF. One can further process the image data to obtain
symbolic music representations that can be exported into formats such as MusicXML,*
LilyPond,? or MIDI.® This is done by using optical music recognition (OMR), the musical
equivalent to optical character recognition (OCR) as used in text processing. Symbolic
music representations and MIDI files are also obtained from music notation software or from
electronic instruments. Last but not least, modern digital music libraries contain more and
more digitized audio material in form of WAV or MP3 files. Such files are obtained by
systematically ripping available CD collections, converting tape recordings, or digitizing old
vinyl recordings.

As a result of such systematic digitization efforts, one often obtains data sets that contain
items of a single type,” see also Figure 1. For example, scanning entire sheet music books
results in a collection of image files, where each file corresponds to a specific page. Or,
ripping a data set of CD recordings, one obtains a collection of audio files, where each file
corresponds to an audio track. In the case of digitizing a vinyl recording, a track covers an
entire side of the recording that may comprise several pieces of music.® In order to make
the data accessible in a user-friendly and consistent way, various postprocessing steps are
required. For example, the scanned pages of sheet music need to be pooled, cut, or combined
to form musically meaningful units such as movements or songs. Furthermore, these units

For example, the project Presto Space (http://www.prestospace.org) or the internet portal Furopeana
(http://www.europeana.eu).

PRrROBADO, for more information we refer to http://www.probado.de/en_home.html.
http://www.recordare.com/musicxml

http://lilypond.org

http://www.midi.org

For example, the Archival Sound Recordings of the British Library (http://sounds.bl.uk), the Chopin
Early Editions (http://chopin.lib.uchicago.edu), or the Munich Digitization Center of the Bavarian
State Library (http://bsb-mdz12-spiegel.bsb.lrz.de/~mdz).

The notion of a piece of music usually refers to individual movements or songs within bigger compositions.
However, the particular segmentation applied by music libraries can vary.
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Figure 1 Change from a document and document type centered data collection (left) to an
arrangement focusing on pieces of music (right).

need to be assigned to the respective musical work and annotated accordingly. Similarly,
audio tracks are to be identified and trimmed to meet certain standards and conventions.
Finally, suitable metadata needs to be attached to the digitized documents. When trying
to automate the stated postprocessing steps for real-world music collections, they become
challenging research problems. The main issues are the inconsistency and the complexity of
the given data. For instance, sheet music contains a lot of textual metadata but its extraction
and proper interpretation are non-trivial tasks (e.g., Allegro can likewise constitute a tempo
instruction or the name of a piece of music, see [25] for further details).

The availability of accurate metadata is essential for organizing and indexing huge
music collections. For example, searching for the keywords “Beethoven” and “Op. 1257,
one should be able to retrieve all documents that refer to Beethoven Symphony No. 9.
In this way, suitable metadata information allows for re-arranging the music documents
to obtain a data collection, where all versions that refer to the same piece of music are
compiled irrespective of their format or modality, see Figure 1. However, such a document-
level compilation of musically related versions constitutes only the first step towards a
comprehensive system for multimodal music navigation and browsing. In the next step, one
requires linking structures that reveal the musical relations within and across the various
documents at a lower hierarchical level. For example, such a linking structure may reveal the
musical correspondence between notes depicted in a scanned sheet music document and time
positions in an audio recording of the same piece of music. Such links would then allow for
a synchronous display of the audible measure in the sheet music representation during the
playback of a music recording. Similarly, in a retrieval scenario, a musical theme or passage
could be marked in the image domain to retrieve all available music recordings where this
theme or passage is played.

In this paper, we address the problem of how suitable linking structures between different
versions of the same piece of music can be computed in a fully automated fashion. In particular,
we focus on the multimodal scenario of linking sheet music representations with corresponding
audio representations, a task we also refer to as sheet music-audio synchronization, see
Figure 2a. In Section 2, we give an overview of an automated synchronization procedure and
discuss various challenges that arise in the processing pipeline. One major step in this pipeline
is to extract explicit note events from the digitized sheet music images by using OMR. Even
though there is already various commercial OMR, software on the market for many years,
the robust extraction of symbolic information is still problematic for complex scores. Some
of these challenges are discussed in Section 3. In particular, certain extraction errors have
severe consequences, which may lead to erroneous assignments of entire instrument tracks or
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(a) Score-audio synchronization on the measure-level. Time segments in the audio stream are mapped to
individual measures in the score representation. The depicted audio track contains a repetition. Therefore
the according score measures have to be mapped to both audio segments.

)

(b) Score-audio mapping on the detail level of pieces of music. The score and the audio data are segmented
into individual pieces of music. Afterwards, the correct score-audio pairs have to be determined.

Figure 2 Examples for score-audio synchronization on different detail levels.

to deviations in the global music structure. In Section 4, we discuss common computational
approaches to sheet music-audio synchronization and present various strategies how the
resulting global differences between documents can be handled within the synchronization
pipeline. Finally, in Section 5, we describe some applications and novel interfaces that are
based on synchronization results. We conclude the paper with an outlook on future work. A
discussion of relevant work can be found in the respective sections.

2 Task Specification

The goal of music synchronization is the generation of semantically meaningful bidirectional
mappings between two music documents representing the same piece of music. Those
documents can be of the same data type (e.g., audio-audio synchronization) or of different
data types (e.g., score-audio synchronization or lyrics-audio synchronization). In the case of
score-audio synchronization the created linking structures map regions in a musical score,
e.g., pages or measures, to semantically corresponding sections in an audio stream (see Figure
2).

Although the task of score-audio synchronization appears to be straightforward, there
exist several aspects along which the task and its realization can vary (see Figure 3). The
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Figure 3 Aspects of score-audio synchronization.

particular choice of settings with respect to these aspects is always influenced by the intended
application of the synchronization results.

The first choice concerns the sought detail level or granularity of the synchronization.
A very coarse synchronization level would be a mapping between score and audio sections
representing the same piece of music, see Figure 2b (e.g., Neue Mozart-Ausgabe®). This type
of alignment is also referred to as score-audio mapping. Finer detail levels include page-wise
[2, 21], system-wise, measure-wise [34], or note-wise [8, 46] linking structures between two
music documents. The choice of granularity can in turn affect the level of automation. The
manual annotation of the linking structure might be achievable for page-wise synchronizations.
However, for finer granularities semi-automated or automated synchronization algorithms
would be preferable. While automatic approaches do not need (and also not allow) any user
interaction, in semi-automatic approaches some user interaction is required. However, the
extent of the manual interaction can vary between manually correcting a proposed alignment
on the selected detail level and correcting high-level aspects (e.g., the repeat structure) before
recalculating the alignment. The selected automation level obviously also depends on the
amount of data to be processed. For a single piece of music given only one score and one
audio interpretation, a full-fledged synchronization algorithm might not be required. But,
for the digitized music collection of a library, manual alignment becomes impossible. Finally,
reliability or accuracy requirements also take part in the automation decision.

Another huge differentiation concerns the runtime scenario. In online synchronization,
the audio stream is only given up to the current playback position and the synchronization
should produce an estimation of the current score position in real-time. There exist two
important applications of online score-audio synchronization techniques, namely score follow-
ing and automated accompaniment [13, 17, 36, 37, 46, 48, 54]. The real-time requirements
of this task turn local deviations between the score and the audio into a hard problem.
Furthermore, recovery from local synchronization errors is problematic. In contrast, in offline
synchronization the complete audio recording and the complete score data are accessible
throughout the entire synchronization process [34, 42]. Also, the computation is not required
to run in real-time. Due to the loosened calculation time requirements and the availability
of the entire audio and score data during calculation, offline synchronization algorithms
usually achieve higher accuracies and are more robust with regard to local deviations in the
input data. The calculated linking structures can afterwards be accessed to allow for, e.g.,
score-based navigation in audio files.

The genre/style of the music to be synchronized also influences the task of score-audio
synchronization. While Western classical music and most popular music feature strong

9 http://www.nma.at
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melodic/harmonic components other music styles, like African music, may mainly feature
rhythmic drumming sounds. Obviously, using harmonic information for the synchronization of
rhythmic music will prove ineffective and therefore different approaches have to be employed.

The type of input data—more precisely the score representation—constitutes the last
aspect of score-audio synchronization. The score data can either be available as scanned
images of music notation (i.e., sheet music) or as symbolic score (e.g., MIDI or MusicXML).
Obviously, the choice of score input affects the type of challenges to be mastered during
synchronization. While symbolic score representations are usually of reasonable quality and
the extraction of the individual music events is straightforward, some sort of rendering is
required to present the score data. In contrast, sheet music already provides a visualization.
But the music information needs to be reconstructed from the image data before the linking
structures can be calculated. OMR systems approach this task and achieve high reconstruction
rates for printed Western music. Nevertheless, the inclusion of OMR into the synchronization
process may result in defective symbolic score data (see Section 3). Usually, the errors are of
mainly local nature. Thus, by choosing a slightly coarser detail level (e.g., measure level)
sound synchronization results can be achieved. For a differentiation between these two types
of input data, the term sheet music-audio synchronization is often utilized if scanned images
are given as score input.

Various researchers are active in the field of score-audio synchronization and work on all
settings of the listed aspects has been reported. Considering all aspects and their specific
challenges would go beyond the scope of this paper. Instead, we focus on the task of
automated offline sheet music-audio synchronization for Western classical music producing
linking structures on the measure level. Furthermore, the processing of large music collections
should be possible.

The basic idea in most score-audio synchronization scenarios is to transform both input
data types into a common mid-level representation. These data streams can then be
synchronized by applying standard alignment techniques, see Section 4 for an overview.
Independent of the selected approach, one has to cope with the following problems to get
reasonable synchronization results:

Differences in structure: A score can contain a variety of symbols representing jump
instructions (e.g., repeat marks, segno signs, or keywords such as da capo, Coda, or Fine,
see Figure 4). While OMR systems are capable of detecting repeat marks, they often
fail to reliably detect most other textual jump instructions in the score. Therefore, the
correct playback sequence of the measures cannot be reconstructed. However, even if all
jump instructions are correctly recognized, the audio recording may reveal additional
repeats or omissions of entire passages notated in the score. Again, the given sequence of
measures does not coincide with the one actually played in the audio recording. Such
structural differences lead to major challenges in score-audio synchronization.

T . > Coda
1, 2 & Fee T ) - I
™ & T 7 T X = ; =
=t e e e Wj: —
5 & R i = p
1 - N ;
= == § §* Seeia é PN e W
T Iy & 3 3 F—r—r— 1 S o
3 3 = e ] i
e 3 W7 ‘g i == Tonh
‘ ; - Da capo il Scherzo senza rep. siwal Fine - 'Fine

Figure 4 Examples of jump indicators used in music notation (adapted from [25]).

Differences between music representations: Score pages and audio recordings
represent a piece of music on different levels of abstraction and capture different facets
of the music. One example is the tempo. Music notation may provide some written
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Figure 5 Extract of Beethoven’s Piano Sonata No. 17 (publisher: Henle Verlag, pianist: V. Ashke-
nazy). In the first nine measures alone four substantial tempo changes are performed. Thus, the
duration of the measures in the audio recording varies significantly. However, in the score only vague
instructions are available that result at best in an approximation of the intended tempo changes.

information on the intended tempo of a piece of music and tempo changes therein (e.g.,
instructions such as Allegro or Ritardando). However, those instructions provide only a
rough specification of the tempo and leave a lot of space for interpretation. Therefore,
different performers might deviate significantly in their specific tempo choices. In addition,
most musicians even add tempo changes that are not specified by the score to emphasize
certain musical passages. For an example we refer to Figure 5.

The differences in the loudness of instruments and the loudness variations during the

progression of a piece of music are further important characteristics of a given performance.

Just like tempo, loudness is notated only in a very vague way and OMR systems often fail
to detect the few available instructions. Similarly, music notation only provides timbre
information through instrument labels. Therefore, timbre-related sound properties such
as instrument-dependent overtone energy distributions are not explicitly captured by the
score.

In conclusion, in view of practicability, score-audio synchronization techniques need to
be robust towards variations in tempo, loudness, and timbre to deal with the mentioned
document type related differences.

Errors in the input data: As already mentioned, OMR is not capable of reconstructing
the score information perfectly. The errors introduced by OMR can be divided into
local and global ones. Local errors concern, e.g., misidentifications of accidentals, missed
notes, or wrong note durations. In contrast, examples for global errors are errors in
the detection of the musical key or the ignorance of transposing instruments. Further
details will be presented in Section 3. While for sheet music, errors are introduced during
the reconstruction from the scanned images, the audio recordings themselves can be
erroneous. The performer(s) may locally play some wrong notes or a global detuning
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occurred. For Western classical music a tuning of 440 Hz for the note A4 was defined as
standard. However, most orchestras slightly deviate from this tuning.!® Furthermore, for
Baroque music a deviation by a whole semitone is common.
Sheet music-audio mapping: Especially in library scenarios, the goal is not the
synchronization of one piece of music. Usually, the input consists of whole sheet music
books and whole CD collections. Therefore, before calculating the linking structures, the
score and the audio data need to be segmented into individual pieces of music. As the
order in the sheet music books and on the CDs might differ, a mapping on this granularity
level needs to be created before the actual synchronizations can be calculated.
Although we focus on sheet music-audio synchronization in this contribution, most of the
mentioned problems also exist for other score-audio synchronization variants.

3 Optical Music Recognition

Similarly to optical character recognition (OCR) with the goal to reconstruct the textual
information given on scanned text pages, optical music recognition (OMR) aims at restoring
musical information from scanned images of sheet music. But, the automatic reconstruction
of music notation from scanned images has to be considered much harder than OCR. Music
notation is two-dimensional, contains more symbols, and those symbols mostly overlap with
the staves. A large number of approaches to OMR has been proposed and several commercial
and non-commercial OMR systems are available today. Three more popular commercial
systems are SharpEye,'! SmartScore,'? and PhotoScore.!? All of them operate on common
Western classical music. While the former two only work for printed sheet music, PhotoScore
also offers the recognition of handwritten scores. Two prominent examples for non-commercial
OMR systems are Gamera'* and Audiveris.'®> While Audiveris is not competitive in terms
of recognition rates, Gamera is actually a more general tool for image analysis. Therefore,
Gamera requires training on the data to be recognized to yield adequate recognition results.
Since the introduction of OMR in the late 1960s [45] many researchers worked in the field
and relevant work on the improvement of the recognition techniques has been reported. For
further information, we refer to the comprehensive OMR bibliography by Fujinaga [29].

As with score-audio synchronization, there are three factors that affect the difficulty
of the OMR task and the selection of the pursued approach. First, there exist different
types of scores (e.g., medieval notation, modern notation or lute tablatures) that differ
significantly in their symbol selection and their basic layout. Therefore, the type of music
notation present on the images has to be considered. Second, the transcription format is of
influence. Printed score is regular and usually well formatted while handwritten score can be
rather unsteady and scrawly. Additionally, crossing outs, corrections, and marginal notes
make the interpretation of handwritten scores even more challenging. Finally, the envisioned
application of the resulting symbolic representation influences the required precision. OMR,
results intended for playback or score rendering have to present a much higher accuracy on
the note level than a reconstruction serving as score representation during sheet music-audio
synchronization on the measure level (see Section 4). In the first scenario, most OMR systems

10List of standard pitches in international orchestras: http://members.aon.at/fnistl/
Unttp://www.music-scanning. com

2http: //www.musitek. com

Bnttp://wuw.sibelius.at/photoscore.htm

Myttp://gamera.informatik.hsnr.de

Y nttp://audiveris.kenai.com
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Figure 6 Examples of common OMR errors. Left: Besides wrong note durations and an

accidental mistaken for a note, the staff system was split into two systems. Middle: The key
signature was not correctly recognized for the lower staff. Right: In the lower staff, the clef was not
detected.

support the creation of an initial approximation of a symbolic representation and provide
user interfaces for manual correction.

Several studies on the performance of OMR systems and the types of errors that occur
were conducted [10, 11, 12, 25]. Those studies show that OMR systems vary with regard to
their strengths and weaknesses. However, the types or classes of recognition errors are the
same for all systems. Some examples of common errors are given in Figure 6. Most of those
errors are of a local nature and concern individual music symbols or small groups thereof.
Examples are articulation marks, ornaments, accidentals, dynamics, and note durations that
are mistaken for some other symbol or missed altogether. In the context of sheet music-audio
synchronization those local errors are less severe because the applied synchronization methods
are capable of managing local deviations between the two sequences to be aligned. In contrast,
several types of recognition errors, influencing larger areas of the score, exist. Those might
include wrong time signatures, missed clefs, wrong key signatures, staff systems being split
up (e.g., due to arpeggios traveling through several staves or due to textual annotations
disrupting the vertical measure lines), or missed repetition instructions. While the time
signature is of little importance for sheet music-audio synchronization, the other error types
can have a strong impact on the alignment result. To achieve high quality alignments, these
kinds of errors should be corrected, either by offering user interfaces for manual intervention
or by developing new OMR techniques improving on those specific deficits.

Another shortcoming of most OMR systems is the interpretation of textual information
in the score. While some systems are capable of determining text such as lyrics correctly,
text-based instructions on dynamics, title headings, and instruments are often recognized
without associating their (musical) meaning or are not detected at all. For sheet music-
audio synchronization the most significant textual information is the one on transposing

16 If transposing instruments are part of the orchestra and their specific

instruments.
transposition is not considered during the reconstruction, their voices will be shifted with
respect to the remaining score, see Figure 7. However, to the best of our knowledge, no OMR,

system considers this type of information and attempts its detection.

16 For transposing instruments, the sounding pitches are several semitones higher/lower than the notes
written in the score.
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Figure 7 Voices of transposing instruments are shifted with respect to other voices if their
transpositions are not known. Middle: Erroneous reconstruction in absence of transposition
information. Right: Correct symbolic representation of the highlighted score extract.
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Figure 8 Illustration of chroma features for the first few measures from the third movement of
Beethoven’s Piano Sonata No. 23. The color values represent the intensity of a chroma at a given
position (black: low intensity, red: medium intensity and yellow/white: high intensity). The left
diagram shows a chroma sequence created from the depicted sheet music extract. The middle and
the right diagram show the chroma features for two audio interpretations of the same music extract.
The chroma features clearly capture the higher tuning (by one semitone) of the second recordings.

4  Sheet Music-Audio Synchronization

The goal of sheet music-audio synchronization is to link regions in two-dimensional score
images to semantically corresponding temporal sections in audio recordings. Therefore, the
two data sources need to be made comparable by transforming them into a common mid-level
representation. In the synchronization context, chroma-based music features turned out to be
a powerful and robust mid-level representation [7, 31]. A chroma vector represents the energy
distribution among the 12 pitch classes of the equal-tempered chromatic scale (C, C#, D, ...,
B) for a given temporal section of the data, see Figure 8. Chroma features have the property
of eliminating differences in timbre and loudness to a certain extend while preserving the
harmonic progression in the music. Therefore, their application is most reasonable for music
with a clear harmonic progression, like most Western classical music. In addition, by choosing
the size of the sections represented by individual chroma vectors appropriately, local errors in
the input data can be canceled out for the most part. To transform sheet music into chroma,
OMR is performed on the score scans. Afterwards, a MIDI file is created from this data
assuming a fixed tempo and standard tuning (see [34] for more information).
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Figure 9 (a) Local cost matrix for the score chromagram and one of the audio chromagrams
depicted in Figure 8. The optimal alignment path is highlighted in light blue. (b) Example of
allowed steps during DTW based synchronization. (c) Illustration of a left-to-right connected HMM
with 3 states.

At the moment, we assume that we are given one sheet music representation and one
audio interpretation of the same piece of music. We will address the issue of sheet music-audio
mapping in Section 4.1. Furthermore, we will for now assume that the structure of the score
and the audio recording coincide. Some ideas on how to handle structural differences will be
presented in Section 4.2. After calculating chroma features for both music representations,
a local cost matrix can be constructed by pair-wise measuring the similarity between the
vectors of the two chroma sequences. Then, the goal is the identification of a path through
this matrix that is connecting the two beginnings and endings of the feature sequences and is
optimal with respect to the local costs along the path (optimal alignment path). See Figure
9a for an example.

There exist two commonly used computational approaches to this task. The first approach
is called dynamic time warping (DTW) and is based on dynamic programming techniques
[1, 18, 24, 31, 42, 43]. After creating the local cost matrix using an appropriate cost measure
an accumulated cost matrix is constructed. In this matrix the entry at position (n, m) contains
the minimal cost of any alignment path starting at (1,1) and ending at (n,m). However,
during the creation of the alignment path only a certain set of steps is allowed to move
through the matrix, e.g., {(1,0),(0,1),(1,1)}, see Figure 9b. The optimal alignment path is
then constructed by backtracking through the matrix using the allowed steps. At each point
we chose the predecessor with the lowest accumulated costs. The second approach applies
Hidden Markov Models (HMM) to determine the optimal alignment path [36, 37, 46, 48]. In
this scenario one of the feature sequences is used as hidden states of the HMM and the other
sequence forms the set of observations. Usually a left-to-right connected HMM structure is
used for score-audio synchronization, see Figure 9c.

In combination with chroma features these alignment techniques allow for some variations
in timbre, loudness, and tempo. In addition, small deviations in the data streams (due to
errors) can be handled. In contrast, tuning differences are not considered by the presented
approaches. Here, the feature sequences show significant differences that can result in a poor
synchronization quality (see Figure 8). To suitably adjust the chroma features, a tuning
estimation step can be included in the feature calculation process [19]. Instead, one may
also apply brute-force techniques such as trying out all possible cyclic shifts of the chroma
features [30, 39]. Thus, the presented approaches already cope with some of the problems
mentioned in Section 2. In the remainder of this section we want to introduce approaches
tackling some of the remaining unsolved problems (i.e., structural differences, certain types
of errors, and sheet music-audio mapping).
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4.1 Sheet Music-Audio Mapping

Arranging the music data in a digital library in a work-centered way or, more precisely, piece
of music-wise has proven beneficial. Thus in the context of a digitization project to build up
a large digital music library, one important task is to group all documents that belong to
the same piece of music, see Figure 1. Note that in this scenario, the music documents that
are to be organized are not given as individual songs or movements, but rather as complete
sheet music books or audio CD collections that usually contain several pieces of music.!” In
addition, we typically have to deal with numerous versions of audio recordings of one and the
same piece of music,'® and also with a number of different score versions (different publishers,
piano reductions, orchestra parts, transcriptions, etc.) of that piece. Thus, the final goal at
this level of detail is to segment both the score books and the audio recordings in such a way
that each segment corresponds to one piece of music. Furthermore, each segment should be
provided with the appropriate metadata. This segmentation and annotation process, called
sheet music-audio mapping, is a crucial prerequisite for the sheet music-audio synchronization
described in the previous section. One possibility to solve this task is to manually perform
this segmentation and annotation. However, for large collections this would be an endless
undertaking. Thus semi-automatic or even fully automatic mapping techniques should be
developed.

For audio recordings and short audio extracts, music identification services like Shazam'®
can provide a user with metadata. Furthermore, ID3 tags, CD covers, or annotation databases
such as Gracenote?? and DE-PARCON?! can contain information on the recorded piece of
music. However, their automated interpretation can quickly become a challenging task. To
name just two prominent issues, the opus numbers given by the different sources might not
use the same catalogue or the titles might be given in different spellings or different languages.
Furthermore, the mentioned services do not provide information for public domain recordings.
Another issue can be introduced by audio tracks containing several pieces of music. Here,
the exact start and end positions of the individual pieces of music have to be determined.??
However, this information is usually not provided on CD covers or in metadata databases.
Still, the mentioned information sources can be used to support the manual segmentation
and annotation process. The automatic extraction and analysis of textual information on
scanned score images has to be considered at least equally challenging.

Given one annotated audio recording of all the pieces contained in a score book, Fremerey
et al. [25, 27] propose an automatic identification and annotation approach for sheet music
that is based on content-based matching. One key strategy of the proposed procedure is to
reduce the two different types of music data, the audio recordings as well as the scanned
sheet music, to sequences of chroma features, which then allow for a direct comparison across
the two domains using a variant of efficient index-based audio matching, see [33]. To this
end, the scan feature sequence is compared to the audio feature sequence using subsequence
dynamic time warping. The resulting matching curve combined with the information on the

7In the context of the PROBADO project, the Bavarian State Library in Munich digitized more than 900
sheet music books (approx. 72,000 score pages) and about 800 audio CDs.

18 For example, the British Library Sounds include recordings of about 750 performances of Beethoven
String Quartets, as played by 90 ensembles, see http://sounds.bl.uk/Classical-music/Beethoven

Y nttp://www. shazam. com

20 yyw.gracenote. com

2 http://www.de-parcon.de/mid/index . html

22 Usually, longer periods of silence can hint at the beginning of a new piece. However, the direction attacca
resulting in two successive movements played without a pause, can prevent this clue from existing.
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Figure 10 Score block sequence (31820304 created from notated score jumps and alignment path
for an audio with block structure 81820308284 (adapted from [25]).

audio segmentation finally gives both the segmentation and the annotation of the scanned
sheet music.

In the same manner, additional audio recordings of already known pieces can be segmented
and annotated. Therefore, through the presented approach the manual processing of only
one manifestation of each piece of music is required.

4.2 Dealing with Structural Differences

When comparing and synchronizing scores and performances, it may happen that their
global musical structures disagree due to repeats and jumps performed differently than
suggested in the score. These structural differences have to be resolved to achieve meaningful
synchronizations. In the scenario of online score-audio synchronization this issue has already
been addressed [2, 35, 44, 51]. Pardo and Birmingham [44] and Arzt et al. [2] both use
structural information available in the score data to determine music segments where no
jumps can occur. In the first publication an extended HMM is used to allow for jumps
between the known segment boundaries. In the second approach an extension of the DTW
approach to music synchronization is used to tackle structural differences. At each ending
of a section, three hypotheses are pursued in parallel. First, the performance continues on
to the next section. Second, the current section is repeated. Third, the subsequent section
is skipped. After enough time has passed in the performance the most likely hypothesis is
kept and followed. Besides approaches exploiting structural information available from the
score, Miiller et al. [38, 40] approached a more general case where two data sources (e.g.,

two audio recordings) are given but no information on allowed repeats or jumps is available.

In this case, only partial alignments of possibly large portions of the two documents to be
synchronized are computed.

Fremerey et al. [25, 26] presented a method for offline sheet music-audio synchronization
in the presence of structural differences, called JumpDTW. Here, jump information is derived
from the sheet music reconstruction thus creating a block segmentation of the piece of music
(see Figure 10). As already mentioned, OMR systems may not recognize all types of jump
instructions (especially, textual instructions are often missed). Therefore, bold double bar
lines are used as block boundaries. At the end of each block the performance can then either
continue to the next block or jump to the beginning of any other block in the piece, including
the current one (in contrast to [2] where only forward jumps skipping at most one block are
considered). To allow for jumps at block endings, the set of DTW steps is modified. For

all block endings, transitions to all block starts in the score are added to the usual steps.

By calculating an optimal alignment path using a thus modified accumulated cost matrix,
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Figure 11 Examples of transposition labels applied by different editors.

possible jumps in the performance can be detected and considered during the synchronization
process.

4.3 Dealing with Orchestral Music

Because of the large number of instruments in orchestral music, the score notation inevitably
becomes more complex. Typically, this results in a decreased OMR accuracy. Furthermore,
orchestral scores contain information commonly neglected by OMR, systems. One very impor-
tant example is the transposition information. The specific transposition of an instrument
is usually marked in the score by textual information such as “Clarinet in E”, see Figure
11. Obviously, by disregarding this information during the OMR, reconstruction, the pitch
information for transposing instruments will be incorrect. In the context of sheet music-audio
synchronization such global errors in the reconstructed symbolic score data can result in a
significant accuracy loss [52, 53].

Kleine Fléte.
2 GroBe Floten.
2 Hoboen.

Englisches Horn.

2 Klarinetten in B.

BaBklarinette in A. { £

? Fagotte.

Figure 12 Extracts from Franz Liszt: FEine Sinfonie nach Dantes Divina Commedia using
compressed notation (publisher: Breitkopf & Hdrtel).

In Western classical music, the score notation usually obeys some common typesetting
conventions. Examples are the textual transposition information but also the introduction
of all instruments playing in a piece of music by labeling the staves of the first system.
Furthermore, a fixed instrument order and the usage of braces and accolades help in reading
the score [49]. But despite of all these rules, the task of determining which instrument
is supposed to play in a given staff (instrument-staff mapping) and whether or not it
is a transposing instrument can be challenging. For most scores the number of staves
remains constant throughout the entire piece of music. Therefore the instrument names and
transposition information are often omitted after the first system and the information given
in the first system needs to be passed on to the remaining systems. The task of determining
the instrument of a staff and its transposition becomes even more complicated for compressed
score notations where staves of pausing instruments are removed (see Figure 12). Here, the
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instrument order is still valid, but some of the instruments introduced in the first system
may be missing. To clarify the instrument-staff mapping in these cases, textual information
is given. However, in these cases the instrument names are usually abbreviated and therefore
more difficult to recognize. Furthermore, transposition information is often only provided
in the first system of a piece or in the case that the transposition changes. The textual
information might be omitted altogether if the instrument-staff mapping is obvious for a
human reader (e.g., strings are always the last instrument group in a system).

Although a great deal of research on OMR has been conducted (see, e.g., [4, 29]), the
particular challenges of orchestral scores have not yet been addressed properly. A first
approach for the reconstruction of the transposition information was presented in [53]. The
instrument-staff mapping as well as the transposition information are reconstructed during
three distinct processing steps.

In the first step, the textual information available on the score scans is recovered and
interpreted to regain as many instrument labels and transposition labels as possible, see
Figure 13. Using the staff location information available in the OMR result, image regions
that possibly contain text/words naming an instrument or a transposition are detected and
processed by an OCR engine. Subsequently, the detected instruments are mapped to the
according staves. To account for different spellings and abbreviations, a library of all possible
textual representations of the instruments is used as additional knowledge. Transpositions are
recognized by searching for the keyword “in” followed by a valid transposition information.

Allegro Instrument library ,_Allegro
Piceolo. @ I_,P'ECD‘D Text Instrument Piceolo. ;-_2‘5
g Libral g
= OCR 1brary o2, Flauto  flute Map
Flauti LI === Plauti 1. 11 Look-U Flauti LIL
—
Oboi L.II. == Clarinetti Clarinet Oboi LI
Clarivetti LI in B §= keyword Can i Clarinetti LT in B (sib
Vi PN Clarino  Trumpet .
EE N Coruo inglese.

Figure 13 Overview: Reconstruction of instrument and transposition labels from the textual
information in the score.

In the second step, the reconstruction from the previous step is used as initialization of
an iterative process, see Figure 14. To this end, musical knowledge and common notation
conventions are employed. As both the OCR-reconstruction and all information deduced
through musical knowledge are uncertain, all instrument-staff mappings are equipped with
plausibility values. Besides filling missing mappings, the following iterative update process
also strengthens/weakens existing plausibilities. Each iteration of step two can again be
divided into three parts. First, the already detected instrument information is successively
propagated between consecutive systems by employing the convention that the initially
established instrument order is not altered. If two instruments occur in both systems and
the number of intermediate staves between these instruments coincides, the instrument
information of the intermediate staves of the first system is propagated to the according
staves in the subsequent system. Second, musical properties such as “trombone and tuba
play in subsequent staves and are grouped by an accolade” are deduced from the score and
employed to determine the instrumentation. In the third and final part, the instrument order
established in the first system is used again. For all subsequent systems deviations from this
order are determined and the according instrument-staff mappings are weakened.

In the last step of the proposed method, the transposition labels given in the first
system (and reconstructed in step one) are transferred to the remaining systems. Thereby a
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Figure 14 Overview: Recursive approach to the reconstruction of missing instrument and
transposition labels.

global correction of the transposition information is achieved even if textual transposition
information is only available in the first system.

5 Applications of Sheet Music-Audio Synchronization

In Section 1 we already touched upon possible applications of sheet music-audio synchroniza-
tion. In this section we first give a more detailed overview of existing user interfaces that
employ synchronization techniques (using sheet music or symbolic score data). Then, we
focus on current issues in music information retrieval (MIR) and show how to incorporate
sheet music-audio synchronization to solve specific MIR tasks.

5.1 User Interfaces

The Laboratorio di Informatica Musicale at the University of Milan developed the IEEE 1599
standard for the comprehensive description of music content. The proposed XML-format
can handle and relate information of various kinds including music symbols, printed scores,
audio recordings, text, and images. In addition, music analysis results and synchronization
information can be stored as well. Based on this IEEE standard, user interfaces for the
simultaneous presentation of multiple music documents have been proposed [3, 5, 6]. To this
end, the synchronization results are used for enhanced, multimodal music navigation. At the
moment, the synchronization information is created manually but work towards automated
score-audio synchronization has been reported [14]. Another project that uses manually
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created alignment information is the Variations project [21].23 The goal of Variations is
the development of a digital music library system to be used in the education context. The
system offers music analysis and annotation tools (e.g., structure analysis, time stretching)
and page-wise score-audio synchronization. Work on automated synchronization has been
described in [47].

WEDELMUSIC is one of the first systems presenting sheet music and audio data simultane-
ously [8]. During playback a marker moves through the sheet music to identify the currently
audible musical position. In addition, page turning is performed automatically by gradually
replacing the current sheet/system with the next one. However, the employed automatic
synchronization approach was rather simple. Using the start and end points in the sheet
music and the audio as anchor points, linear interpolation was applied. As local tempo
deviations may result in alignment errors, a user interface for the manual rework of the
proposed synchronization was available. Xia et al. [55] present a rehearsal management tool
for musicians that exploits semi-automated score-audio synchronization. Here, recordings of
various rehearsals are clustered and aligned to a score representation of the piece of music.
Additional challenges are introduced by the fact that the recordings can differ in length
and may cover different parts of the piece. In the PROBADO project, a digital music library
system for the management of large document collections was developed (see Figure 15).
The most prominent features are content-based retrieval techniques and a multimodal music
presentation implemented by sheet music-audio synchronization [15, 16]. The alignment
structures are calculated nearly automatically in this system.

Another application designed to support musicians is automated accompaniment. To
this end, online score-audio synchronization determines the current position in the score
as well as the current tempo to replay a time-stretched audio recording. Two well known
accompaniment systems are Music Plus One by Raphael [46, 48] and ANTESCOFO by
Cont [13].

5.2 MIR Research

There are various MIR tasks that exploit score information as additional knowledge. For
example, in score-informed source separation one assumes that along with the audio recording
a synchronized MIDI file is given. Through this file the occurring note events along with
their position and duration in the audio are specified. We refer to Ewert and Miiller [23] for
an extensive overview. At the moment, all approaches use symbolic score data (e.g., MIDI)
but sheet music may be applicable as well. However, in this case recognition errors need
to be considered by the source separation method. A similar task is the estimation of note
intensities in an audio recording where the notes are specified by a symbolic representation
[22]. Again, to avoid the manual creation of a MIDI file, the exploitation of score scans
together with sheet music-audio synchronization techniques, seems reasonable.

Another important research topic is lyrics-audio synchronization [28, 32]. Instead of using
the commonly employed speech analysis techniques, sheet music can be added as additional
information. Thereby, the lyrics can be derived from the OMR results. Afterwards, the
lyrics-audio alignment can be calculated by means of the sheet music-audio synchronization
[15, 41, 50].

nttp://www.dlib.indiana.edu/projects/variations3
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Figure 15 The PROBADO music user interface. (a) Search interface with a result presentation on
the piece of music level. On the bottom right, access to all documents containing the selected piece
is provided. Besides sheet music (b), the interface offers visualizations of audio recordings (c¢) and
lyrics (d). Sheet music-audio synchronization results allow for the currently audible measure to be
highlighted. Equally, the sung word is marked in the lyrics [50]. Different sheet music edition or
other audio recordings can easily be selected. During a document change, the linking structures
help to preserve the musical position and playback continues smoothly.

There are several other tasks where score-audio synchronization might help reducing the
complexity of the problem. Some examples are structure analysis, chord recognition, and
melody extraction.

6 Outlook

Although, current sheet music-audio synchronization algorithms perform quite well, there
still exist some open issues. First, to allow for a higher level of detail, the input data has
to become more reliable. In particular, the OMR accuracy needs to be improved. After
achieving a high-resolution synchronization, e.g., on the note level, the question of how to
present this alignment structure arises. For orchestral music, highlighting the currently
audible notes in all voices would result in a very nervous visualization. At the moment only
printed sheet music of reasonable quality is being used. However, huge amounts of old sheet
music volumes exist that are heavily yellowed and stained. In addition, large collections
of handwritten scores and hand-annotated printed sheet music are available. Some OMR
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systems are capable of dealing with those types of sheet music but the applicability of the
resulting symbolic representation (in terms of recognition accuracy) to the synchronization
task would have to be investigated.

In Section 4.1, we discussed the task of sheet music-audio mapping and presented a
method for segmenting and identifying score data using already segmented and identified
audio documents. With this approach, at least one version of a piece of music has to be
manually annotated. For large music databases a full automation or at least some support in
the unavoidable manual tasks is highly desired. Looking at sheet music and CD booklets, they
contain a wealth of textual information (composer, title, opus number, etc.). Automatically
detecting and interpreting this information constitutes an important future step.

One can think of a variety of applications that would benefit from the presented synchro-
nization techniques. The method could be extended to allow for online score following and
live accompaniment of musicians using a scanned score. In [20, 44] the synchronization of
lead sheets with a fully instrumented audio recording was suggested. In a similar manner,
the sheet music of individual voices could be synchronized to an orchestra recording. These
linking structures could for example be of use in the context of digital orchestra stands
[9]. All parts are synchronized to the conductors score and upon selecting a position in the
conductors score the position in all score visualization changes accordingly.
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