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ABSTRACT

The task of novelty detection with the objective of detect-
ing changes regarding musical properties such as harmony,
dynamics, timbre, or tempo is of fundamental importance
when analyzing structural properties of music recordings.
But for a specific audio version of a given piece of mu-
sic, the novelty detection result may also crucially depend
on the individual performance style of the musician. This
particularly holds true for tempo-related properties, which
may vary significantly across different performances of the
same piece of music. In this paper, we show that tempo-
based novelty detection can be stabilized and improved by
simultaneously analyzing a set of different performances.
We first warp the version-dependent novelty curves onto a
common musical time axis, and then combine the individ-
ual curves to produce a single fusion curve. Our hypothesis
is that musically relevant points of novelty tend to be con-
sistent across different performances. This hypothesis is
supported by our experiments in the context of music struc-
ture analysis, where the cross-version fusion curves yield,
on average, better results than the novelty curves obtained
from individual recordings.

1. INTRODUCTION

Music is highly structured data. Structure in music arises
from repetitions, contrasts and homogeneity in musical
aspects such as melody, dynamics, harmony, timbre or
tempo [12]. The extraction of the musical structure from
audio recordings is an important task in the field of music
information retrieval. It consists of a segmentation prob-
lem, where the goal is to find the boundaries that mark the
transitions between two structural parts, and a musically
meaningful labeling (e.g. chorus, verse, first theme, sec-
ond theme) of the segments, see [3, 12] for an overview.
In many cases, segment boundaries are accompanied by a
change in instrumentation, dynamics, harmony, tempo, or
some other characteristics. The task ofnovelty detection
is to specify points within a given audio recording where a
human listener would recognize such a change [6,9,14,15].
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Such points of novelty are not only of musical relevance,
but also allow for speeding up further music analysis
tasks [11].

In this paper, we present a general approach for stabiliz-
ing novelty-based segmentation techniques. Following [6],
we first convert the audio signal into a suitable feature rep-
resentation, compute a self distance matrix, and derive a
novelty curve by detecting 2D corner points in this ma-
trix. The choice of features (e. g. MFCCs, chroma fea-
tures, tempogram features) depends on the musical aspects
(e. g. timbre, harmony, tempo) of interest [9]. In the fol-
lowing, we consider the aspect of tempo using the cyclic
tempogram features as proposed in [7] as an illustrative
example. Particularly in classical music, there often exist
many different recordings for a given piece of music. Even
though all recordings follow the same musical score, two
distinct versions may differ significantly in performance
aspects regarding tempo, dynamics, or timbre. This is the
reason why novelty detection results often vary across dif-
ferent audio versions.

The main contribution of this paper is to apply the nov-
elty detection simultaneously to a set of different perfor-
mances of a given piece. To this end, using a score-based
MIDI reference, we convert the physical time axis (in sec-
onds) of all version-dependent novelty curves into a com-
mon musical time-axis (in measures) . Then we combine
the individual curves into a cross-version fusion curve, see
Figure 1 for an overview. Assuming that the musically in-
teresting points of novelty are consistent across the differ-
ent versions, we expect the fusion curve to be more stable
and musically meaningful than the individual curves. Ap-
plying our cross-version novelty detection approach for lo-
cating segment boundaries in music structure analysis, we
show that the fusion curves yield, on average, better re-
sults than the version-dependent novelty curves of individ-
ual recordings. This effect becomes more prominent, when
there is a high performance variance across the recordings,
which is typically the case for the aspect of tempo.

Cross-version strategies have previously been applied
for other music analysis tasks. For example, multiple per-
formances are used in [1] to support tempo tracking, in [10]
to stablize chord labeling, and in [8] to detect critical pas-
sages in a piece of music that are prone to beat tracking
errors.

The remainder of this paper is organized as follows.
In Section 2, we describe the various steps of our cross-
version novelty detection procedure. Then, in Section 3,
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Figure 1: Overview of the cross-version novelty detection
pipeline for Chopin’s Mazurka Op. 7 No. 4.(a) Waveforms
of several performances.(b) Individual novelty curves (color-
coded) for43 performances. Each row of the matrix corresponds
to one novelty curve.(c) Individual novelty curves warped to
a common musical time axis (in measures).(d) Fusion novelty
curve.(e) Annotated structure and segment boundaries.

we give a detailed quantitative evaluation of our proce-
dure within a structure analysis scenario for Chopin’s Pi-
ano Mazurkas. Furthermore, we critically assess the results
by a musically informed discussion of concrete examples.
Finally, we conclude with Section 4 indicating future work.

2. CROSS-VERSION NOVELTY DETECTION

In this section, we describe the pipeline for our cross-
version approach to novelty detection. For the purpose
of illustration, we concentrate on the musical aspect of
tempo using a cyclic tempogram feature representation
(Section 2.1). As for the novelty detection, we follow a
standard procedure based on 2D corner detection in self
distances matrices (Section 2.2). Applying music syn-
chronization techniques, we show how to warp the novelty
curves onto a version-independent musical time axis (Sec-
tion 2.3). Finally, we describe how to merge the novelty
curves based on a late-fusion strategy (Section 2.4). This
pipeline is also illustrated by Figure 1.

2.1 Cyclic Tempogram Features

In a first step, the given audio recording is transformed
into a suitable feature representation that captures the mu-
sical aspects of interest. As an example, we consider the
case of tempo-based novelty detection, even though our

cross-version approach is applicable to any kind of fea-
ture representation. In the following, we revert to cyclic
tempogram features as introduced in [7]. These features
constitute a robust mid-level representation encoding local
tempo information. In a first step, we capture changes in
the signal’s energy and spectrum [2] and then apply win-
dowed autocorrelation methods [4]. Afterwards, the lag-
axis is converted into a tempo axis specified in beats per
minute (BPM), yielding a tempogram as shown in Fig-
ure 2c. Forming tempo equivalence classes by binning
tempi that differ by a power of two and quantizing the val-
ues of the resulting cyclic tempogram yields an even more
robust feature representation, see Figure 2d. In our exper-
iments we use a feature resolution of 5 Hz (five feature
vectors per second) and a feature dimension of10 (ten fea-
ture values per vector). A free MATLAB implementation
of these features is part of the tempogram toolbox.1 For
further details we refer to [7].

2.2 Novelty Curve

Let X = (x1, . . . , xN ) denote the resulting feature se-
quence. To compute a novelty curve from this sequence,
we employ a standard approach introduced by Foote [6].
To this end, anN × N self distance matrixD(n,m) :=
d(xn, xm) is computed using the local distance function

d(xn, xm) = 1− exp

(

〈xn, xm〉

‖ xn ‖‖ xm ‖
− 1

)

,

for 1 ≤ n,m ≤ N . Then,D is analyzed by correlat-
ing a kernel along its main diagonal. The kernel consists
of anM × M matrix (with M < N ) which has a2 × 2
checkerboard-like structure weighted by a Gaussian radial
function. This yields anovelty curve, the peaks of which
indicate changes in the musical aspect represented by the
feature type (in our case, tempo changes), see Figure 2e.
We further process the novelty curve by subtracting a lo-
cal average, see Figure 2f. In our experiments, a valueM

corresponding to7 seconds has turned out to be suitable,
see Section 3.2 and Figure 3 for a further discussion of the
parameterM .

2.3 Time Axis Conversion

The computed novelty curve depends on the performance
characteristics of the underlying music recording. To make
novelty curves comparable across different recordings of
the same piece of music, we convert the version-dependent
physical time axis (in seconds) to a version-independent
musical time axis (in measures). To this end, we assume
that we are given a score-like MIDI version of the piece
with explicit beat and measure positions. Then, for a given
music recording, we apply music synchronization tech-
niques to automatically align the MIDI version with the
audio version.2 The alignment result allows for transfer-
ring the beat and measure positions specified by the MIDI

1 www.mpi-inf.mpg.de/resources/MIR/tempogramtoolbox
2 In our implementation, we revert to the high-resolution music syn-

chronization approach described in [5].



Allegro ma non troppo Poco più vivo29

4
3

4
3

54 56 58 60 62 64

 

 

54 56 58 60 62 64
50

100

150

200

250

300

350

400

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

 

54 56 58 60 62 64

1

1.1

1.21

1.33

1.5

1.66

1.81

0.2

0.4

0.6

0.8

54 56 58 60 62 64

0
0.02
0.04
0.06
0.08

54 56 58 60 62 64

0
0.02
0.04
0.06
0.08

54 56 58 60 62 64
0

0.02

0.04

0.06

0.08

29 30 31 32 33 34 35 36 37
0

0.02

0.04

0.06

0.08

29 30 31 32 33 34 35 36 37
0

0.02

0.04

0.06

0.08

 

 

29 30 31 32 33 34 35 36 37
0

0.02

Time in seconds

Te
m

p
o

in
B

P
M

Time in seconds

R
el

at
iv

e
te

m
p

o

Time in seconds

Time in seconds

Time in seconds

Time in seconds

Time in measures

Time in measures

Time in measures

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 2: Novelty detection for a recording of Chopin’s Mazurka
Op. 68 No. 3. (a) Measures29-36. (b) Waveform. (c) Tem-
pogram. (d) Quantized cyclic tempogram.(e) Novelty curve
(solid line) and its local average curve (dashed line).(f) Post-
processed novelty curve.(g) Time axis conversion.(h) Resam-
pled novelty curve.(i) Color-coded representation of (h).

version to the corresponding time positions in the audio
version. Based on this information, we locally stretch and
contract the time axis of the novelty curve computed from
the recording to obtain a musical time axis, see Figure 2g.
Finally, we interpolate and resample the novelty curve to
obtain one value for each beat position of the piece of mu-
sic, see Figure 2h and Figure 2i.

2.4 Fusion Novelty Curve

Being based on the same musical time axis, one can now
directly compare novelty curves from different perfor-
mances of the same piece of music. As an example, Fig-
ure 1b shows the original novelty curves (in some color-
coded form) for43 different performances of Chopin’s
Mazurka Op. 7 No. 4. No correlations across the different
performances are visible. After the time axis conversion,
as shown in Figure 1c, strong correlations between the dif-
ferent novelty curves become evident. For example, there
is a tempo change at measure52 for basically all perfor-
mances.

To fuse the information across all novelty curves, we
basically compute the average of the novelty curves. To
become more robust to outliers, we first remove the20%
smallest and largest novelty values for each beat position
among all performances, and then compute thefusion nov-
elty curve by taking the beat-wise arithmetic mean of the
remaining values. The crucial observation is that a fusion
novelty curve reveals a local maximum (peak) at those po-
sitions where a large number of individual novelty curves
also possess a local maximum. In other words, the fusion
novelty curve expresses the consistencies in the peak struc-
tures across the various recordings, see also Figure 1d.

3. EXPERIMENTS

Even though there are often significant differences in the
way musicians interpret a piece of music, tempo changes
are not arbitrary and there are musical reasons for a speed
up or slow down. Our hypothesis is that the tempo changes
that can be observed across a large number of different per-
formances are of particular musical importance. There-
fore, we conjecture that peaks of the fusion novelty curve
are more relevant than the peaks of the individual novelty
curves. To investigate our hypothesis, we have conducted
various experiments on a dataset consisting of Chopin’s
Mazurkas (Section 3.1). Our quantitative evaluation in
the context of music structure analysis (Section 3.2) as
well as a discussion of various representative examples
(Section 3.3) demonstrate that cross-version fusion curves
yield, on average, better results than the novelty curves ob-
tained from individual recordings.

3.1 Dataset and Annotations

We conduct our experiments on a Mazurka dataset,
which consists of2792 recorded performances for the49
Mazurkas by Frédéric Chopin. These recordings were col-
lected in the Mazurka Project3 and have been previously
used, e. g., for the purpose of performance analysis [13].
For each of the49 Mazurkas, there are on average57 dif-
ferent recordings (ranging from the early stages of music
recording until today), as well as a MIDI file that represents
the piece in an uninterpreted symbolic form. In particular,
measure and beat positions are known in the MIDI file.

The Chopin Mazurkas are short piano compositions
with a 3/4 time signature. These pieces have a relatively

3 mazurka.org.uk



clear musical structure, where certain parts are repeated
more or less in the same way. We have manually anno-
tated each score-like MIDI file according to its musical
structure. On average this leads to9.4 segment boundaries
per Mazurka (disregarding segment boundaries at the be-
ginning and end of the piece) and an average duration of
11.9 measures per musical part, see also Table 1 for more
details.

3.2 Quantitative Evaluation

As is the case for romantic piano music, most Mazurka
performances reveal numerous local tempo changes which
often indicate transitions of musical importance. Many of
these transitions occur near segment boundaries between
musical parts, where one can often observe tempo changes.
Even though not all segment boundaries are characterized
this way, we use them for a first quantitative evaluation to
indicate the behavior of our cross-version fusion novelty
curves. LetB denote the set of segment boundaries (spec-
ified in musical beats) for a given Mazurka.

For a novelty curve (with time axis given in musical
beats), we perform some peak picking to determine a set
P of relevant peak positions. Here a position is consid-
ered relevant if the novelty curve assumes at this position
a global maximum over a window of lengthλ centered at
the corresponding position. In our experiments, the value
λ = 19 beats has turned out to be meaningful, see also
Figure 3. A peak position inP is considered to betrue
if there is a segment boundary inB in a δ-neighborhood,
otherwise it is considered to befalse. This allows to define
a precision (P), recall (R), and F-measure (F) for the setP
relative toB . In our experiments, we chooseδ = 3 beats
corresponding to a musical measure. In our evaluation,
we further ignored all boundaries and all peaks in the first
four and last four measures of a piece of music. The main
reason for excluding these measures is that many of the
recordings start and end with non-musical content such as
silence or applause, which leads to spurious peaks at the
positions where the music starts or ends. Also, synchro-
nization errors typically occur in these regions.

Before we investigate the role of the various parameters,
we first look at the results for a fixed parameter setting as
indicated by Table 1. To better understand the effect of the
cross-version approach, we computed P/R/F-measures in
two different ways. First, for a given Mazurka, we com-
puted individual P/R/F-measures for each performance us-
ing the version-dependent novelty curves and then aver-
aged over all performances to obtain averaged individ-
ual P/R/F-measures. Secondly, we computed these mea-
sures from the fusion novelty curve to obtain cross-version
P/R/F-measures. Table 1 shows the resulting averaged in-
dividual as well as cross-version P/R/F-measures for all of
the49 Mazurkas. Furthermore, the last row of the table in-
dicates the overall values averaged over all Mazurkas. As
the main result, one can see that the overallF -measure
obtained from individual novelty curves isF = 0.39,
whereas the overallF -measure obtained from the fusion
novelty curves isF = 0.52. In other words, the tempo-

Ind.-Version Cross-Version
Piece #P #M #B P R F P R F
M06-1 49 112 7 0.29 0.60 0.39 0.50 1.00 0.67
M06-2 51 96 9 0.42 0.63 0.50 0.47 0.89 0.62
M06-3 47 98 12 0.23 0.31 0.26 0.13 0.18 0.15
M06-4 46 40 9 0.65 0.40 0.49 0.83 0.63 0.71
M07-1 55 104 9 0.30 0.52 0.38 0.44 0.89 0.59
M07-2 51 120 14 0.40 0.45 0.42 0.36 0.36 0.36
M07-3 65 105 11 0.31 0.44 0.36 0.47 0.64 0.54
M07-4 43 60 7 0.51 0.60 0.55 0.75 0.86 0.80
M07-5 46 20 12 0.61 0.35 0.44 1.00 0.60 0.75
M17-1 52 100 10 0.25 0.35 0.29 0.07 0.10 0.08
M17-2 55 68 3 0.21 0.65 0.32 0.25 1.00 0.40
M17-3 51 168 10 0.26 0.64 0.37 0.42 1.00 0.59
M17-4 93 132 10 0.23 0.49 0.31 0.35 0.67 0.46
M24-1 61 96 10 0.30 0.40 0.34 0.46 0.60 0.52
M24-2 66 120 16 0.38 0.48 0.42 0.50 0.64 0.56
M24-3 55 79 6 0.26 0.46 0.33 0.45 0.83 0.59
M24-4 76 186 20 0.42 0.59 0.49 0.65 0.85 0.74
M30-1 50 53 4 0.34 0.57 0.42 0.50 0.75 0.60
M30-2 60 64 7 0.48 0.60 0.53 0.78 1.00 0.88
M30-3 63 111 10 0.30 0.45 0.36 0.50 0.60 0.55
M30-4 65 139 14 0.34 0.51 0.40 0.47 0.62 0.53
M33-1 55 48 4 0.43 0.62 0.51 0.50 0.75 0.60
M33-2 70 143 16 0.34 0.47 0.39 0.33 0.44 0.38
M33-3 50 48 3 0.28 0.61 0.38 0.33 1.00 0.50
M33-4 74 224 19 0.24 0.40 0.30 0.27 0.37 0.31
M41-1 56 139 14 0.26 0.39 0.32 0.19 0.29 0.23
M41-2 63 68 7 0.43 0.57 0.49 0.75 0.86 0.80
M41-3 40 78 13 0.44 0.45 0.44 0.57 0.73 0.64
M41-4 45 74 9 0.42 0.58 0.48 0.62 0.89 0.73
M50-1 49 104 6 0.18 0.48 0.26 0.20 0.50 0.29
M50-2 58 127 10 0.31 0.56 0.40 0.56 0.90 0.69
M50-3 74 208 10 0.18 0.57 0.27 0.21 0.70 0.33
M56-1 42 204 13 0.18 0.41 0.25 0.11 0.23 0.15
M56-2 53 92 8 0.31 0.60 0.41 0.54 1.00 0.70
M56-3 57 220 15 0.23 0.51 0.32 0.30 0.67 0.42
M59-1 63 142 9 0.19 0.42 0.26 0.17 0.44 0.25
M59-2 63 111 4 0.10 0.41 0.16 0.20 0.75 0.32
M59-3 66 154 11 0.20 0.44 0.28 0.30 0.55 0.39
M63-1 46 102 9 0.26 0.46 0.33 0.27 0.44 0.33
M63-2 65 56 4 0.33 0.61 0.43 0.38 0.75 0.50
M63-3 88 76 8 0.41 0.55 0.47 0.78 0.88 0.82
M67-1 44 60 7 0.23 0.31 0.26 0.14 0.17 0.15
M67-2 41 72 6 0.33 0.54 0.41 0.45 0.83 0.59
M67-3 46 56 3 0.30 0.75 0.43 0.43 1.00 0.60
M67-4 59 112 6 0.26 0.71 0.38 0.40 1.00 0.57
M68-1 46 84 11 0.53 0.63 0.57 0.50 0.50 0.50
M68-2 65 84 11 0.49 0.54 0.51 0.77 0.91 0.83
M68-3 51 60 9 0.61 0.55 0.57 0.78 0.78 0.78
M68-4 63 63 7 0.35 0.37 0.36 0.47 0.58 0.52
∅ 57.0 103.7 9.4 0.33 0.51 0.39 0.45 0.69 0.52

Table 1: Overview of the Mazurka dataset and precision (P), re-
call (R), and F-measures (F) for two different settings. Thefirst
four columns specify the Mazurka (e.g.M06-1 refers to Mazurka
Op. 6 No. 1), the number of performances (#P), the number of
measures (#M), and the number of annotated segment bound-
aries (#B). The next three columns show the average individ-
ual P/R/F-measures obtained from individual performancesand
the last three columns show cross-version P/R/F-measures ob-
tained from the fusion novelty curves. The used parameters are:
M ∼ 7 seconds, λ = 19 beats, δ = 3 beats.

based novelty detection can indeed be improved when si-
multaneously analyzing a set of different performances.

In the next experiments, we investigate the role of the
kernel size parameterM (see Section 2.2) and the neigh-
borhood parameterλ used in the peak picking. Figure 3
shows the cross-version P/R/F-measures averaged over all
49 Mazurkas for various combinations ofM andλ. Gener-
ally, when increasingλ, the precision increases (Figure 3a)
and the recall decreases (Figure 3b). This is not surpris-
ing, since an increase inλ imposes stricter conditions on
the peak picking (and the set of relevant peaks becomes
smaller). The remaining peaks tend to be true (increase in
precision), while fewer segment boundaries inB are de-
tected (decrease in recall). The kernel size parameterM

has a minor influence on the final results. Only for large
values ofλ, smaller kernel sizes tend to be favorable. As
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Figure 3: Average cross-version P/R/F-measures for different
parameter settings.(a) Average precision values.(b) Average
recall values.(c) Average F-measure values. The red circle indi-
cates the parameter setting used in Table 1.
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Figure 4: Novelty curves forM68-3. (a) Individual novelty
curves (color-coded, musical time axis) for51 performances.(b)
Fusion novelty curve. True peaks are indicated by green discs
and false peaks by red crosses. The gray areas at the beginning
and end are left out in the evaluation. The thin gray curve indi-
cates the peak picking condition introduced by the neighborhood
parameterλ. (c) Annotated structure and segment boundaries.

for our main experiments, we favored comparatively larger
kernel sizes (resulting in smoother novelty curves) and a
smallerλ (being less restrictive in the peak picking) choos-
ing M ∼ 7 seconds andλ = 19 beats. However, as
also indicated by Figure 3c, the specific paramter setting is
not of crucial importance and slightly changing the settings
yields similar experimental results.

3.3 Qualitative Evaluation

For some Mazurkas this improvement is significant. For
example, for the Mazurka Op. 7 No. 4 shown in Figure 1,
the F-measure increases fromF = 0.55 (individual) to
F = 0.80 (cross-version). Also for the Mazurka Op. 68
No. 3 (Figure 4) the cross-version fusion approach stabi-
lizes the tempo-based novelty detection improving the F-
measure fromF = 0.57 (individual) toF = 0.78 (cross-
version).

However, there is also a number of Mazurkas where one
has rather low P/R/F-measures—for the individual curves
as well as for the fusion novelty curves. For example,
for the Mazurka Op. 56 No. 1 shown in Figure 5, the F-
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Figure 6: Detailed example onM07-2. (a) Fusion novelty curve.
(b) Annotated structure and segment boundaries.(c) Score ex-
cerpt of measures29-34. (d) Fusion novelty curve excerpt of
measures29-34.

measure even decreases fromF = 0.25 (individual) to
F = 0.15 (cross-version). In this piece, the annotated seg-
ments are rather long in comparison to the other Mazurkas.
Listening to the performances reveals that eachA-part con-
sists of several phrases, which are shaped by most pi-
anists using a characteristic tempo progression with a slow
down and speed up at phrase boundaries. These tempo
changes lead to a large number of consistent peaks, which
are not reflected by our structure annotations (even though
the peaks are musically meaningful) and sometimes also
not captured by our peak picking (λ being too restrictive).
Also, in the other parts there are a number of false positive
peaks of less musical significance. As this Mazurka shows,
annotated segment boundaries do not need to go along
with tempo changes and, vice versa, musically meaning-
ful tempo changes may also occur within musical parts.
Therefore, our quantitative evaluation within the structure
analysis context, even though indicating meaningful gen-
eral tendencies, is an oversimplification.

We now discuss some further typical examples where
the fusion novelty curve reveals musically relevant tempo
changes that do not concur with segment boundaries. Let
us look at the fusion novelty curve for Mazurka Op. 7 No. 2
as shown in Figure 6a. Here one can notice strong peaks in
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Figure 7: Detailed example onM56-2. (a) Fusion novelty curve.
(b) Annotated structure and segment boundaries.(c) Score ex-
cerpt of measures29-36. (d) Fusion novelty curve excerpt of
measures29-36.

theA2-parts andA3-parts located roughly two measures
before segment boundaries, so that these peaks are con-
sidered false positives in our evaluation. Looking at the
score of the piece reveals that there is actually a tempo in-
structiona Tempo just two measures before the respective
segments boundaries, see Figure 6c. Most pianists realize
this instruction by speeding up their performances, which
leads to the musically relevant peaks captured by our cross-
version novelty curve. As another example, let us look at
the fusion novelty curve of Mazurka Op. 56 No. 2, see Fig-
ure 7. Here, two of the false peak positions in the fusion
novelty curve are located in the middle of the twoD-parts,
see Figure 7a. A manual investigation showed that each of
the eight-measureD-parts consists of two repeating four-
measure phrases. This substructure is not reflected by our
structure annotations. The pianists, however, shape the
phrases by a pronounced tempo change. Furthermore, in
the middle of theC-parts and theF -part, Figure 7 also
shows some false positive peaks of no musical relevance.
Here, an improved peak picking may remedy this problem.

4. CONCLUSIONS

In this paper, we introduced a cross-version approach for
novelty detection capturing consistencies across different
performances of a piece. Applying this concept to tempo-
related audio features, we showed that the resulting fusion
novelty curves perform better in revealing musically mean-
ingful points of novelty than the individual curves. In the
future, we plan to conduct similar experiments using dif-
ferent audio features that reflect not only tempo, but also
harmony, timbre, and dynamics. Also, the described cross-
version approach is generic in the sense that it can also be
applied to other music analysis tasks beyond novelty detec-
tion. A stabilization effect has also been reported for chord
labeling and beat tracking, and we plan to apply this con-
cept to general structure analysis. Finally, we discussed
that our evaluation of the novelty detection results based
on segment boundaries indicates interesting general ten-
dencies, but also constitutes an oversimplification. Here,

future work must address the evaluation problem by in-
cluding more musicological knowledge, e. g. by looking at
expected tempo changes in the score, annotated by musi-
cally trained experts. On the other hand, our cross-version
approach might not only be used for the task of audio seg-
mentation, but may also aid as a performance analysis tool
for musicologists.
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