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ABSTRACT

The development of automated methods for revealing the
repetitive structure of a given music recording is of cen-
tral importance in music information retrieval. In this pa-
per, we present a novel scape plot representation that al-
lows for visualizing repetitive structures of the entire music
recording in a hierarchical, compact, and intuitive way. In
a scape plot, each point corresponds to an audio segment
identified by its center and length. As our main contri-
bution, we assign to each point a color value so that two
segment properties become apparent. Firstly, we use the
lightness component of the color to indicate the repetitive-
ness of the encoded segment, where we revert to a recently
introduced fitness measure. Secondly, we use the hue com-
ponent of the color to reveal the relations between different
segments. To this end, we introduce a novel grouping pro-
cedure that automatically maps related segments to similar
hue values. By discussing a number of popular and classi-
cal music examples, we illustrate the potential and visual
appeal of our representation and also indicate limitations.

1. INTRODUCTION

The musical form describes a piece of music in terms of
musical parts such as intro, chorus, and verse of a popular
song or the first and second theme of a classical work. Such
musical parts are typically repeated several times through-
out the piece and evoke in the listener the feeling of famil-
iarity. One major goal of audio structure analysis is to au-
tomatically derive the musical form directly from a given
music recording. To this end, most procedures divide the
music recording into repeating temporal segments and then
group these segments according to musically meaningful
categories [13].

Finding the repetitive structure of a music recording has
been a central and well-studied task within the wide area of
audio structure analysis, see, e. g., [2,5,7,8,11,12] and the
overview articles [3, 13]. Even though most of these ap-
proaches work well when repetitions largely agree, struc-
ture analysis becomes a hard and even ill-posed task when
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audio segments that refer to the same musical part reveal
pronounced musical variations. One way to circumvent
such problems is to only visualize structural elements and
their relations without explicitly extracting them. For ex-
ample, in [4] self similarity matrices are used to visualize
overall structural patterns or, in [15], repeating and related
elements are indicated by arc diagrams.

In this paper, we contribute to this line of research by
introducing a novel representation that reveals the hierar-
chical repetitive structure of a given music recording. In-
spired by the work by Sapp [14], we use the concept of a
2D scape plot, where each point represents an audio seg-
ment by means of its center and length. As our main contri-
bution, we describe an automated procedure for assigning
to each point a color value such that the repetitive struc-
ture of the music recording becomes apparent. On the one
hand, we use the lightness component of the color to in-
dicate the repetitiveness of the respective segment. This
repetitiveness is expressed in terms of a fitness measure
as recently introduced by Müller et al. [10]. On the other
hand, we use the hue component of the color to reveal the
relations across different segments, where we introduce a
function that maps related segments to similar hue values.
As a result, one obtains a hierarchical structure visualiza-
tion of the underlying music recording referred tostructure
scape plot, see Figure 4g for an example. We hope that this
representation not only visually appeals to the reader, but
also brings valuable and even surprising insights into the
structural properties of a recording.

The remainder of this paper is organized as follows. In
Section 2, we review the underlying fitness measure and
describe the corresponding fitness scape plot. Then, in
Section 3, we introduce our structure scape plot represen-
tation which is based on a novel distance measure to com-
pare different segments as well as on an efficient grouping
and coloring procedure. Based on a number of explicit ex-
amples, we discuss benefits and limitations of our structure
visualization in Section 4 and conclude with Section 5 by
indicating future work.

2. FITNESS SCAPE PLOT

In this section, we summarize the construction of the fit-
ness measure (Section 2.1) and then introduce the concept
of a fitness scape plot (Section 2.2).
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Figure 1: Various representations for an Ormandy record-
ing of Brahms’ Hungarian Dance No. 5.(a) Musical form
A1A2B1B2CA3B3B4. (b) Fitness scape plot. The remaining
subfigures show the SSM with optimal path families for various
segmentsα (horizontal axis) and induced segment families (ver-
tical axis). (c) α = [68 : 89] (thumbnail, maximal fitness, corre-
sponding toB2). (d) α = [131 : 150] (corresponding toA3). (e)
α = [131:196] (corresponding toA3B3B4).

2.1 Fitness Measure

Let [1 : N ] = {1, 2, . . .N} denote the (sampled) time axis
of a given music recording. Then a segment is a subset
α = [s : t] ⊆ [1 : N ] specified by its starting points and
its end pointt. Let |α| := t−s+1 denote the length of seg-
mentα. In [10], a fitness measure has been introduced that
assigns to each audio segmentα a fitness valueϕ(α) ∈ R

which simultaneously captures two aspects. Firstly, it in-
dicates how well the given segment explains other related
segments. Secondly, it indicates how much of the overall
music recording is covered by all these related segments.
In the computation of the fitness measure, an enhanced
self-similarity matrix (SSM) is computed from the music
recording based on chroma-based audio features. It is well
known that each path of the SSM (a stripe of high score
running parallel to the main diagonal) reveals the similarity
of two segments (given by the two projections of the path
onto the vertical axis and horizontal axis), see [13]. The
main idea of [10] is to compute for each audio segment
α a so-calledoptimal path family overα that simultane-
ously reveals the relations betweenα and all other similar
segments. By projecting such optimal path family to the
vertical axis, we get the corresponding induced segment
family, where each element of this family defines a seg-
ment similar toα.

As an example, we consider a recording of the Hun-
garian Dance No. 5 by Johannes Brahms, which has the
musical formA1A2B1B2CA3B3B4, see Figure 1a. Fig-
ure 1c shows an optimal path family (cyan stripes) for the

B2-segmentα = [68 : 89] (horizontal axis) as well as the
induced segment family (vertical axis). The induced seg-
mentation consists of four segments corresponding to the
four occurrences of theB-part in this recording. Note that
repeating segments may be played in different tempi. For
example, theB2-part is played much faster than theB1-
part. Similarly, Figure 1d shows the optimal path family
for the segmentα = [131 : 150] (corresponding to theA3-
part) and the induced segmentation (consisting of the three
A-part segments). Finally, Figure 1e reveals that, for the
long segmentα = [131:196] (corresponding toA3B3B4),
there exists a similar segment (corresponding toA2B1B2).

The fitness value of a given segment is derived from
the corresponding optimal path family and the values of
the underlying SSM. Intuitively, one considers the overall
score accumulated by the path family and the total length
covered by the induced segmentation. After a suitable nor-
malization, the fitness is defined as the harmonic mean of
of coverage and score. For further details, we refer to [10].

2.2 Scape Plot Representation

We now describe how a compact fitness representation for
the entire music recording can be obtained showing the fit-
nessϕ(α) for all possible segmentsα. Note that each seg-
mentα = [s : t] is specified by its centerc(α) := (s+t)/2
and its length|α|. Using the center as horizontal coordi-
nate and the length as vertical coordinate, each segment
can be represented as a point in some triangular represen-
tation also referred to asscape plot. Such scape plots were
original introduced by Sapp [14] to represent harmony in
musical scores in a hierarchical way. In our context, we
define a scape plotΦ by settingΦ(c(α), |α|) := ϕ(α)
for segmentα. Figure 1b shows a visualization of the
fitness scape plot for our Brahms example, where the fit-
ness is represented by a lightness grayscale ranging from
white (fitness is zero) to black (fitness is high). The points
corresponding to the three segments discussed above are
marked within the scape plot by small circles. For exam-
ple, the segmentα = [68 : 89] (corresponding toB2) has
the scape plot coordinatesc(α) = 78.5 (horizontal axis)
and |α| = 22 (vertical axis). Actually, this segment has
the highest fitness among all possible segments and is also
referred to asthumbnail [10].

The fitness scape plot represents the repetitiveness of
each segment in a compact and hierarchical form. For ex-
ample, in our Brahms example, the repeating segments cor-
responding to theA-parts andB-parts are reflected by lo-
cal maxima in the scape plot. Also the repetitions of the
superordinate segments corresponding toABB are cap-
tured by the plot. However, so far, the visualization of the
fitness scape plot does not reveal the relationsacross differ-
ent segments. In other words, nothing is said about groups
of pairwise similar segment corresponding to the various
musical parts.



3. STRUCTURE SCAPE PLOT

Actually, the grouping information is implicitly encoded
by the optimal path families underlying the fitness mea-
sure. To make these relations more explicit, we now extend
the grayscale of the fitness scape plot by a color component
that reflects the cross-segment relations. Based on the in-
duced segmentations, we first introduce a distance measure
that allows for comparing two arbitrary segments (Sec-
tion 3.1). Then the objective is to map similar segments
to similar colors and dissimilar segments to distinct colors.
In the following, we proceed in several steps including a
color mapping step (Section 3.2), a point sampling and in-
terpolation step (Section 3.3), and a color combination step
(Section 3.4). The overall pipeline of our procedure is also
illustrated by Figure 4.

3.1 Segment Distance Measure

Recall from Section 2.1 that for a given segmentα there
is an optimal path family along with an induced segment
family, where each segment of this family is similar toα.
Let A = {α1, α2, . . . , αK} denote the induced segment
family of α, then the segmentsαk, k ∈ [1 : K], can be
thought of as the (approximate) repetitions ofα. Note that,
by definition, overlaps between repetitions are not allowed,
see [10].

Now, letα andβ be two arbitrary segments. Intuitively,
we consider these two segments to be close if they are ap-
proximately repetitions of each other (or at least if some
repetitions ofα andβ have a substantial overlap), other-
wise α andβ are considered to be far apart. More pre-
cisely, letA = {α1, . . . , αK} andB = {β1, . . . , βL} be
the respective induced segment families. Then, we define
the distanceδ(α, β) betweenα andβ to be

δ(α, β) := 1− max
k∈[1:K],ℓ∈[1:L]

|αk ∩ βℓ|

|αk ∪ βℓ|
, (1)

see also Figure 2 for an illustration. In other words, the dis-
tance is obtained by subtracting the maximal overlap (rel-
ative to the union) over all repetitions ofα andβ from the
value 1. For example, theB1-segment andB2-segment
for the Brahms recording have a small distance (close to
zero) since the induced segment families more or less co-
incide (consisting of the fourB-part segments). In contrast
theB1-segment and theA1-segment have a large distance
(close to one) since none of their repetitions have a sub-
stantial overlap.

3.2 Color Mapping

Based on the distance measureδ, we now introduce a pro-
cedure for mapping the scape plot points (segments) to
color values in such a way that distance relations are pre-
served. To this end, we first need to specify a suitable
color space. Because of its perceptual relevance, we re-
vert to the HSL model, which is a cylindric parametriza-
tion of the RGB color space [6]. Here the angle coordinate
H ∈ [0, 360] (given in degrees) refers to the hue, the co-
ordinateS ∈ [0, 1] to the saturation, and the coordinate
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Figure 2: Illustration of the computation of the distance mea-
suresδ(α, β) used to compare two segmentsα (shown in(a))
andβ (shown in(b)). The respective induced segment families
are shown in(c) and (d), respectively. The black box indicates
the union and the red box the overlap of the two segments which
are used to compute distance valueδ(α, β).

L

0

1

H
0◦ 120◦ 240◦ 360◦

Figure 3: Cylindric HSL (hue, saturation, lightness) color repre-
sentation. The figure shows only the outside surface of the cylin-
der corresponding to the saturationS = 1.

L ∈ [0, 1] (with 0 being black and1 being white) to the
lightness of the color. To obtain “full” saturated colors, we
fix the parameterS = 1. Figure 3 shows the color space
for S = 1 spanned by the coordinatesH andL. Note that
the hue angle coordinatesH = 0 andH = 360 encode
the same color (by definition this is the color “red”). In
the following, we reserve the lightness coordinate to rep-
resent the fitness value and only use the hue coordinate to
represent the cross-segment relationships.

The problem of mapping the scape plot points to the hue
color coordinates (which topologically corresponds to the
unit circle) in a distance preserving way can be seen as an
instance ofmultidimensional scaling (MDS), see [1]. Gen-
erally, MDS refers to a family of related techniques which
allow for mapping a set of points with pairwise distance
values onto a low-dimensional Euclidean space (often di-
mension2 or 3 for visualization purposes) such that the
distances between the original points are approximated by
the Euclidean distances of the mapped points.

In the following, we use basic MDS techniques to map
the scape plot points onto the unit circle (representing the
hue color space). LetM denote the number of scape plot
points to be considered in the mapping, see Figure 4b.
First, we compute anM ×M -distance matrix∆ by com-
paring theM points in a pairwise fashion usingδ. Next,
we perform a principal component analysis (PCA) of∆
and consider the two eigenvectors corresponding to the
two largest eigenvalues. The columns of∆ (which are
indexed by theM scape plot points) are then projected
onto the two-dimensional Euclidean space defined by these
two eigenvectors, see Figure 4c. Using PCA, the variance
across the mapped column vectors is maximized. There-
fore, scape plot points that have a distinct distance distri-
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Figure 4: Illustration of the pipeline for computing the structure scape plot for Brahms.(a) Fitness scape plot.(b) Fitness scape plot
with sampled anchor points.(c) Anchor points projected onto the first two principal components. (d) Anchor points projected to the unit
circle colored with the resulting hue value.(e)Hue-colored anchor points.(f) Hue-colored scape plot using interpolation techniques.(g)
Structure scape plot combining fitness (lightness) and cross-segment relation (hue) information.

bution to the other points (encoded by its respective col-
umn vectors) are likely to be mapped to different regions
in the 2D space, see [1] for details. Furthermore, as shown
in Figure 4c, the projected points are usually distributed in
a circular fashion (even though this is not guaranteed and
crucially depends on the distance distributions of the origi-
nal points). Finally, we normalize the projected points with
respect to the Euclidean norm to obtain points on the unit
circle, which yields angle parameters that are associated to
hue values, see Figure 4d. Figure 4e shows the original
scape plot points colored with the derived hue values.

3.3 Sampling and Interpolation

Using all scape plot points in the described color map-
ping procedure may be problematic because of two rea-
sons. Firstly, using a large numberM of points would not
only make the computation of theM ×M distance matrix
∆ but also of the subsequent PCA rather expensive. There-
fore, the numberM of used points should be kept small.
Secondly, using all scape plot points may over-represent
segments of short lengths that are located in the lower part
of the triangular scape plot. As a result, the distance re-
lations of the short segments may dominate the selection
of the eigenvectors obtained in the PCA step. Therefore,
we only choose a suitable subset of scape plot points, also
referred to asanchor points, and then transfer the obtained
hue color information to the other points using interpola-
tion techniques.

Note that scape plot points of higher fitness are struc-
turally more relevant than scape plot points of lower fit-
ness. Therefore, in the anchor point selection step, we
sample the scape plot by taking the fitness into account.
To this end, we use a greedy procedure that consists of two
steps. Firstly, we select the scape plot point of maximal
fitness as an anchor point. Secondly, around this anchor

point, we specify a neighborhood of sizeρ > 0 and set
the fitness values of all points in this neighborhood to zero
excluding them for the subsequent procedure. The role of
the neighborhood is to avoid a sampling that is locally too
dense. This procedure is repeated until either all of the re-
maining scape plot points have a fitness of zero, or until
a specified maximal number of pointsM0 is reached, see
also Figure 4b.

Sometimes the fitness values of short segments are
rather “noisy.” This may also have musical reasons since
such segments often correspond to highly repetitive frag-
ments like a short riff or a single chord of dominant har-
mony. Therefore, it is often beneficial to exclude such
short segments in the anchor point selection by only con-
sidering scape plot points whose length coordinate lies
above a certain lower boundλ > 0. The influence of the
parametersM0, ρ, andλ on the resulting number of anchor
pointsM is discussed in Section 4.

The color mapping as described in Section 3.2 is now
applied only to the anchor points. In the next step, the color
information is transferred to arbitrary scape plot points by
simply interpolating color values of the nearest neighbor-
hood anchor points. However, since the hue values live on
a unit circle (rather than in the two-dimensional Euclidean
space), one needs to use spherical interpolation instead of
linear interpolation. Figure 4f shows the interpolation re-
sult obtained from the anchor points of Figure 4e.

3.4 Color Combination

So far, we have derived two scape plot visualizations:
one indicating the repetitive properties (fitness value rep-
resented by lightness, see Figure 4a) and the other indicat-
ing the cross-segment relations (represented by hue colors,
see Figure 4f). We now combine this information within a
single scape plot representation, which we also refer to as
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Figure 5: Structure scape plots and structure annotations for
recordings of various pieces.(a) Chopin Mazurka Op. 17 No. 3.
(b) Beatles song “While My Guitar Gently Weeps.”(c) Chopin
Mazurka Op. 33 No. 3.(d) Beatles song “You Can’t Do That.”

structure scape plot. To this end, we first linearly map the
fitness values onto the lightness parameter space[0, 1] of
the HSL model such thatL = 1 (white) corresponds to the
fitness value0 andL = 0 (black) to the maximal fitness
value occurring in the fitness scape plot. Furthermore, by
rotating the hue parameter space (unit circle) we normal-
ize the color assignment such that the thumbnail (fitness-
maximizing scape plot point) is mapped to the color “red”
(angleH = 0). Finally, for each scape plot point we use
the saturationS = 1, the computed lightnessL, and the
normalized hue angleH to obtain a single color value.

Figure 4g shows the final result of the structure scape
plot for our Brahms example. Note that the fourB-part
segments (repetitions of theB2-thumbnail) are represented
by red, the threeA-part segments by blue, and the super-
ordinate twoABB-part segments by green. Furthermore,
the visualization reveals some substructures of theA-parts,
each actually consisting of two (approximate) repetitions.
Finally, note that smaller segments within theC-part are
assigned to the color violet. Since theC-part contains
many fragments sharing the same harmony, our procedure
has captured some repetitiveness also in this middle part.

4. EXAMPLES AND DISCUSSION

In this section, we indicate the potential and some limi-
tations of our visualization procedure by discussing rep-
resentative examples. In our experiments, we used audio
recordings considering popular music as well as classical
music. On the one hand, we employed the dataset consist-
ing of recordings of the12 studio albums by “The Beatles”
using the structure annotations as described by [9]. On
the other hand, we used the complete Rubinstein (1966)
recordings of the49 Mazurkas composed by Frédéric

Chopin, where we manually generated some structure an-
notations for each piece. Note that these annotations are
not needed to generate the structure scape plots, but are
only used to compare our visualizations with some sort of
ground truth. As mentioned in the introduction, the pur-
pose of the scape plot visualizations is to yield a compact
and intuitive representation without the necessity of explic-
itly extracting the structure.

As for the parameter settings, we chooseM0, ρ, and
λ in a relative fashion depending on the duration of the
respective music recording. In particular, we determined
the upper boundM0 and the neighborhood parameterρ to
result in a numberM of anchor points ranging between
200 and250 for each recording. Furthermore, the lower
boundλ was set to correspond to5-7% of the recording’s
total duration. Figure 5 shows structure scape plots for
some representative music recordings. For example, Fig-
ure 5a shows the scape plot for a Rubinstein performance
of Chopin’s Mazurka Op. 17 No. 3. The fiveA-part seg-
ments, which also comprise the thumbnail, are represented
by red. Furthermore, the threeB-part segments are in-
dicated by a lighter orange color, and the superordinate
ABA-part segments are represented by green. Also sub-
structures of theA-part segments are visible: indeed each
A-part consists of two similar subparts. Interestingly, the
segments corresponding to theC- and the twoD-parts are
all represented by pink. Actually this is musically mean-
ingful, since each of the two repeatingD-parts is only a
slight extension of theC-part.

Figure 5b visualizes the structure scape plot for the Bea-
tles song “While My Guitar Gently Weeps.” Also in this
example, the structure scape plot nicely reflects the over-
all musical form. Each of the four verse segments (V -
part) consists of two (approximately) repeating subparts,
sayV = WW . Actually, the intro also corresponds to such
a subpart (I = W ) and the outro corresponds to three of
these subparts (O = WWW ), which also explains the red
coloring of these segments. Furthermore, the color blue
corresponds toWWW -segments and the color green to
V BV -segments.

The structure scape plot of a recording of the Mazurka
Op. 33 No. 3 is shown in Figure 5c, which indicates a
number of substructures not reflected in the structure an-
notation (see bothA parts). Finally, Figure 5d correctly
reproduces the overall structure of the Beatles song “You
Can’t Do That.” Only theV4-segment has not been cap-
tured well. Actually,V4 corresponds to an instrumental
section with some vocal interjections, which make theV4-
segment spectrally quite different to the other fourV -part
segments.

Next, we discuss some limitations and problems that
may occur in our visualization approach. As an illustrating
example, we consider the Beatles song “Hello Goodbye.”
Figure 6b shows the structure scape plot using our standard
parameter setting as described above. The red color corre-
sponds to the fourV R-part segments, which also comprise
the thumbail. However, the individualV -part andR-part
segments are all represented by green and are not distin-
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Figure 6: Anchor points projected onto the first two principal
components (left) and resulting structure scape plot (right) for the
Beatles song “Hello Goodbye.”(a)/(b) Usingλ = 14 seconds.
(c)/(d) Usingλ = 10 seconds.

guishable. The reason for this is that the lower bound for
the anchor points was set toλ = 14 seconds, which is too
high to capture the finer structures. By decreasing this pa-
rameter toλ = 10 seconds,V -part andR-part segments
are separated, see Figure 6d. As this example shows, the
choice of the parameterλ may have a significant impact
on the final visualization. The Beatles example also indi-
cates a second problem that may arise in our color map-
ping procedure. Usually, the anchor points projected to the
two principal components are homogeneously distributed
along the unit circle as in our Brahms example, see Fig-
ure 4c. Therefore, projecting these points to the unit circle
(to yield the desired hue values) does not destroy too much
of the neighborhood relations. However, in the Beatles ex-
ample, the projected anchor points are rather scattered in
the two-dimensional Euclidean space with some outliers
as indicated by the boxed and circled points shown in Fig-
ure 6a. Therefore, projecting these points onto the unit
circle may result in the same hue value for anchor points
that are actually far apart. This explains, why the substruc-
tures within theS-part are mapped to the same color as
substructures of theV R-part, see Figure 6b.

5. FUTURE WORK

These problems indicate some future research directions.
Possible improvements of the color mapping step may be
achieved by applying more involved generalized multidi-
mensional scaling techniques which directly map the an-
chor points to a smooth manifold (in our case the unit cir-
cle). Also, the one-dimensional hue color space may not
suffice to suitable capture more intricate cross-segment re-
lations. Here, a more flexible usage of the color space or
an extension to 3D scape plot representations may help to

better represent more complex structures. So far, we have
only given a qualitative evaluation to demonstrate the po-
tential of our techniques. In this context, user studies may
be necessary to better understand the actual user needs and
the applicability of our concepts. Besides introducing a
novel segment distance function as well as a grouping and
coloring procedure, the main contribution of this paper was
to introduce the concept of a structure scape plot for visu-
alizing repetitive structures of music recordings. We hope
that our visualization is not only aesthetically appealing,
but also may allow a user to explore and browse musical
structures in novel ways.
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