
A RE-ORDERING STRATEGY FOR ACCELERATING INDEX-BASED
AUDIO FINGERPRINTING

Hendrik Schreiber
tagtraum industries

incorporated
hs@tagtraum.com

Peter Grosche
Saarland University
and MPI Informatik

pgrosche@mpi-inf.mpg.de

Meinard Müller
Saarland University
and MPI Informatik

meinard@mpi-inf.mpg.de

ABSTRACT

The Haitsma/Kalker audio fingerprinting system [4] has
been in use for years, but its search algorithm’s scalability
has not been researched very well. In this paper we show
that by simple re-ordering of the query fingerprint’s sub-
prints in the index-based retrieval step, the overall search
performance can be increased significantly. Furthermore,
we show that combining longer fingerprints with re-ordering
can lead to even higher performance gains, up to a factor of
9.8. The proposed re-ordering scheme is based on the ob-
servation that sub-prints, which are elements of n-runs of
identical consecutive sub-prints, have a higher survival rate
in distorted copies of a signal (e.g. after mp3 compression)
than other sub-prints.

1. INTRODUCTION

In 2002 Jaap Haitsma and Ton Kalker proposed their au-
dio fingerprinting system [4], which today is still in use at
Gracenote [3], competing with other commercial systems
like Shazam [7, 8]. In this system, identity of two songs is
established by comparing so called fingerprints. These fin-
gerprints correspond to ca. 3 seconds of audio and are com-
prised of 256 sub-prints, each representing 11.6 millisec-
onds of audio with 32-bits. For a general overview of audio
fingerprinting systems, we refer to [1].

To identify an unknown audio fragment (the query), fin-
gerprints are extracted from the query and compared with
fingerprints stored in a database. Typically, as the fragment
is exposed to distortions such as additive noise or compres-
sion artifacts, one cannot assume to find an identical finger-
print in the database. Therefore, the similarity of two fin-
gerprints is expressed in terms of the bit error rate (BER).
The lower the BER, the more likely two fingerprints belong

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

to the same song. If the BER is below a certain threshold
(τ = 0.35), both fingerprints are assumed to stem from the
same song.

Comparing all query fingerprints for a song with all
reference fingerprints is only feasible for databases con-
taining a very limited number of recordings. There-
fore, Haitsma/Kalker proposed an efficient two-step hashing
scheme. In the first step, indexing techniques are employed
to detect “anchor points” in the database. The idea is, that
even though there typically is not an exact match for a whole
query fingerprint in the database, at least one of the 256 sub-
prints occurs unaltered (without any bit error) in query and
reference fingerprints. Exploiting this idea, Haitsma/Kalker
propose to use one 32-bit long sub-print of the query finger-
print at a time and query the reference database for identical
sub-prints. The positions of exact matches of sub-prints in
the database then serve as said anchor points. In the second
step, the BER for entire fingerprints (consisting of 256 sub-
prints) around these anchor points is calculated. If it turns
out to be lower than the threshold, the search is terminated
and the identified song returned.

As the number of reference fingerprint lookups and BER
computations is considerably reduced by this strategy, this
way of searching is multiple orders of magnitude faster than
the naı̈ve approach of comparing fingerprints with all refer-
ence fingerprints in the database. The lookup of potentially
matching songs using unaltered sub-prints is a crucial step in
this approach. To find them, the system maintains a lookup
table with entries for each of the possible 32-bit sub-prints.
Each entry points to a linked list of songs the given sub-
print occurs in and the position of the sub-print within this
song (Figure 1). Obviously the system is faster, if it finds a
matching fingerprint in as few sub-print lookups as possible.

In this paper, we propose an extension to the original al-
gorithm. Our main idea is to re-order the lookup of unal-
tered sub-prints in such a way that those sub-prints more
likely to survive compression distortions are looked up first.
In our experiments, we show that this is the case for sub-
prints, which are elements of n-runs of identical consecu-
tive sub-prints (Figure 2). Exploiting this property in a sim-

!"#$%&'()*+
!"#%($%*,#+

-+
!"!!!!!!!#+
!"!!!!!!!!+

-+
+

.)
%+

/0123454016+

789:;4016<+

!"!!!!!!!!+
!"!!!!!!!#+

-+
+
+
+
+
+

!"////////+

=>>?85+@A9B3+ 7>12+*+
!"#.*,C///+

-+
+
+

!"!!!!!!!!+
-+
+
+

!"**D)&#.%+

7>12+,+

!"*,C&D$#)+
-+

!"!!!!!!!#+
-+
+
+

!"!!!!!!!!+
-+

!"//D)&$#%+

E.
)F

+

Figure 1. Lookup strategy for potentially matching songs
and their reference sub-prints as suggested in [4].

. . .

. . .
.

.

.

.

3-run 2-run 2-run

Figure 2. Illustrative example showing one fingerprint con-
sisting of 256 sub-prints. The fingerprint exhibits runs of
identical sub-prints.

ple re-ordering scheme leads to significant speed-ups of the
search algorithm. In a second step, we apply the re-ordering
scheme to fingerprints longer than 256 sub-prints achieving
even higher improvements up to a factor of 9.8.

The remainder of this paper is organized as follows. In
Section 2 we motivate our re-ordering scheme by investi-
gating the distribution of sub-prints and their likelihood of
surviving compression distortions. Then, in Section 3, as
our main contribution, we introduce in detail the re-ordering
scheme. In Section 4 we give experimental evidence for the
speed-up of our approach in a real-world runtime analysis.
Finally, conclusions and outlook on future work are given in
Section 5.

2. SUB-PRINT PROPERTIES

In this section, we explain in detail the computation of the
fingerprints as proposed in [4] (Section 2.1). Then, in Sec-
tion 2.2, we show that these fingerprints are strongly cor-
related over time by analyzing audio recordings of three
datasets of different genres. Finally, in Section 2.3, we show
that the temporal correlation can be exploited for identifying
more robust sub-prints.

2.1 Computation

Following [4], we compute the sub-prints from a given au-
dio signal in three steps. In the first step, a spectrogram
is derived from the audio. To this end, discrete Fourier
transforms are computed over Hann-windowed frames cor-

RWC-P (iTunes
128kbps mp3)

4-run

5-run

6-run

7-run

8-run

9-run

10-run

run

single

2-run

3-run

4-run

5 or more

6-run

7-run

8-run

9-run

10-run

0.0327654 0.044823065 0.045347314 0.032241154

0.05321285 0.072289154 0.08032128 0.07931727 0.05120482

0.064150944 0.06792453 0.056603774 0.079245284 0.079245284 0.05283019

0.038961038 0.09090909 0.116883114 0.14285715 0.14285715 0.12987013 0.064935066

0.083333336 0.083333336 0.125 0.083333336 0.041666668 0.0 0.0 0.083333336

0.2857143 0.42857143 0.2857143 0.2857143 0.42857143 0.42857143 0.42857143 0.14285715 0.14285715

NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

of prints % of prints % of prints

593195 0.7023625011988 0.7023625011988

177044 0.2096259521106 0.2096259521106

51708 0.0612239823532 0.0612239823532

15260 0.0180683447573 0.0180683447573

4980 0.0058964847242 0.0087192195801

1590 0.0018826125927

539 0.0006381938286

192 0.0002273343508 20.846776593702

63 0.0000745940839

0 0 62.540326862556

1%

2%
6%

20%

72%

Pop (mp3)

3%

4%
9%

23%
62%

Jazz (mp3)

2%

3%
8%

23%

65%

Classical (mp3)

single 2-run 3-run 4-run 5 or more

1%

1%
5%

19%

74%

Pop (GSM)

1%

2%
7%

22%

68%

Jazz (GSM)

1%

2%
6%

21%

70%

Classical (GSM)

Figure 3. Percentages of sub-prints occurring as singles, or
in higher runs in mp3 and GSM files from genre-specific
RWC collections (first 3 min). The distributions for the
WAV encoded reference files are almost identical.

responding to 0.37 sec of the audio. These frames overlap
by a factor of 31/32 yielding one frame for every 11.6 ms.
In the second step, by suitably pooling spectral coefficients,
the frequency axis of the spectrogram is adapted to the hu-
man auditory system. More precisely, energy values are
computed for 33 non-overlapping spectral bands. These
bands are logarithmically spaced and cover the frequency
range from 300 Hz to 2000 Hz. Finally, in the third step,
fingerprints are derived. Given the energy in frame t ∈
[0 : T] := {0, 1, 2, . . . , T} for some T ∈ N and spectral
band k ∈ [1 : 33] denoted by E(t, k), we first compute en-
ergy differences ∆(t, k) along the frequency axis ∆(t, k) =
E(t, k) − E(t, k + 1) for all t ∈ [0 : T] and k ∈ [1 : 32].
Then, the energy values are quantized in order to obtain a
binary representation X ∈ {0, 1}T×32 by determining the
sign of energy differences along the time axis

X(t, k) =
{

1 if ∆(t, k) > ∆(t− 1, k)
0 otherwise ,

for t ∈ [1 : T]. Let X[t] ∈ {0, 1}32 denote the tth col-
umn of X . Following [4], such a binary vector is also re-
ferred to as sub-print. Furthermore, fixing a length param-
eter K (in the following we use K = 256), a binary block
F ∈ {0, 1}K×32 is referred to as fingerprint consisting of
the sub-prints F [k], k ∈ [1 : K]. Each of the sub-prints
represents 11.6 ms of the audio with 32-bit, see Figure 2 for
a schematic illustration of a fingerprint.

2.2 Temporal Correlation

As pointed out in [4], because of the high amount of overlap
between adjacent frames, the sub-prints are temporally cor-
related. In fact, they are correlated so strongly that often one

Figure 4. Probability of an iTunes mp3 encoded sub-print
at a given position m in an n-run having an identical coun-
terpart in a reference fingerprint depending on the length of
the n-run it belongs to.

sub-print is followed by one or more identical sub-prints.
We call such a sequence of identical consecutive sub-prints
an n-run (see Figure 2). For the remainder of this paper, n-
runs with n = 1 will also be called singles and n-runs with
n > 1 are referred to as higher runs.

To better understand the temporal correlation of sub-
prints, we analyzed a large collection of audio recordings
of various genres with respect to the occurrence of n-
runs. Specifically, we used the sub-collections RWC-Jazz,
RWC-Pop, and RWC-Classical provided by the RWC Music
Database [2]. Overall, there are 211 recordings with a total
duration of 16 hours. We consider each of these recordings
in three different versions of different quality. Firstly, we re-
fer to the CD quality versions denoted as reference versions.
Furthermore, we consider two encoded (distorted) versions
derived from the reference employing lossy audio codecs.
As a mildly compressed version, we use an mp3 version
encoded with 128 kbps using iTunes. This version can be
regarded to be of “standard” quality. Finally, as a heavily
compressed version of poor audio quality, we encode the
reference versions using the (full rate) 13kbps GSM Voice
codec. Originally intended for the compression of speech
signals, this codec introduces severe audible distortions to
music signals. This version is included in our analysis as an
extreme case.

Figure 3 shows the percentage of sub-prints that occur in
an n-run of identical sub-prints for versions encoded with
iTunes mp3 128kbps or GSM. As our results show, the sub-
prints are temporally correlated. For all three datasets and
both encodings about 30% of all sub-prints occur in higher
runs. For example, in the case of RWC-Jazz (mp3), 23% are

Figure 5. Probability of a GSM encoded sub-print at a given
position in an n-run having an identical counterpart in a ref-
erence fingerprint depending on the length of the n-run it
belongs to.

a member of a 2-run, 9% of a 3-run, 4% of a 4-run, and 3%
of a 5-run or even longer run.

2.3 Robustness

We hypothesize that such sub-prints occurring in n-runs are
more likely to have unaltered counterparts in distorted ver-
sions of the same song than sub-prints occurring on their
own, i.e. as singles. In other words, as the survival rate of
sub-prints in higher runs is higher, they are more robust.

To test this hypothesis we measure the probability of a
sub-print extracted from a distorted version being identical
to its reference counterpart. This is done by computing sub-
prints of the first 3 min for both reference and distorted ver-
sions. Because some distortions introduce a minor, linear
frame-shift (±1), we then align both sub-print lists so that
as many as possible sub-prints are directly opposite an iden-
tical counterpart. This we call optimal alignment. Subse-
quently, we categorize the distorted sub-prints as members
of n-runs along with their position m ∈ [1 : n] in the run
and record how many sub-prints of each category have un-
altered, aligned counterparts in the reference sub-print list.

Figures 4 and 5 show the probabilities of sub-prints that
are members of an n-run (column group) at positionm (col-
umn) having an unaltered counterpart in the reference fin-
gerprint, i.e. their survival probabilities. Our results for
iTunes encoded mp3 audio (Figure 4) clearly show that sub-
prints belonging to higher runs are more likely to have an
unaltered counterpart in the reference fingerprint than sub-
prints occurring as singles. Taking the RWC-Pop values
as example, a single sub-print has a relatively low survival

probability of 23%, while a member of a 6-run has a sur-
vival probability between 45% and 65%. Note that, because
of the low value for singles, the relative survival rate gain
from singles to higher runs is larger for the pop songs than
for jazz or classical music. For example, the maximal pos-
sible gain factor from single to 6-run for RWC-Pop is ×2.8,
while the gain factor for the RWC-Classical from the single
with 52% to the maximal 6-run with 95% is only ×1.8.

For GSM encoded files the effect becomes even more sig-
nificant (Figure 5). Here, the survival probabilities are much
lower, e.g., 0.7% for singles in the case of RWC-Classical.
For 5-runs this probability increases to values between 5.1%
and 8.0%, a gain factor of ×11.4.

As a second important result, we observe, that in most
cases those members of n-runs, that take a central position
in their run, are even more likely to have an identical ref-
erence counterpart than n-run elements at edge positions.
For example, in the case of RWC-Pop (mp3), see Figure 4,
sub-prints at edge positions of a 6-run have a survival prob-
ability of 45%. For sub-prints at center position, however,
this probability is significantly higher at 65%. In the case of
RWC-Classical (GSM), see Figure 5, sub-prints at edge po-
sitions of a 5-runs survive with 5.7% probability, sub-prints
at the center position, however, with 8.0%. We define this
central position in an n-run as mcentral = bn/2c + 1. In
Figures 4 and 5 it is shown in black.

3. IMPROVING THE SEARCH ALGORITHM

In this section, we first explain the original Haitsma/Kalker
lookup algorithm. Then we describe our proposed improve-
ments, which are based on the increased robustness of sub-
prints contained in higher runs. Finally, we present an ex-
periment that measures actually achieved overall speedups
validating our chosen approach.

3.1 Original Algorithm

Suppose we are given a database containing a large number
of audio documents, which are converted into binary repre-
sentations as described in Section 2.1. Then, given a query
fingerprint FQ ∈ {0, 1}K×32, the identification task con-
sists of finding a document with binary representation X
as well as a position t such that the fingerprint defined by
FD := (X[t], . . . , X[t + K − 1]) is similar to FQ. More
precisely, as in [4], we require that the bit error rate (BER)
between FQ and FD is below a threshold τ = 0.35. We then
also say that FD is a match for FQ.

To avoid an exhaustive fingerprint search in the database,
an index-based pre-processing step is used to cut down
the search space. Here, the binary representations of all
database documents are indexed by means of the 32-bit sub-
prints using an index structure that consists of a suitable
lookup table as illustrated by Figure 1. Then, based on the

assumption that at least one sub-print FQ[k], k ∈ [1 : K],
of the query appears unaltered in the document to be iden-
tified, a lookup is performed to first retrieve all sub-prints
that coincide with FQ[k]. Each of these retrieved candidate
sub-print consists of a document identifier and a position
parameter t. Let X be the binary representation of the cor-
responding document, then the BER is computed between
FQ and FD := (X[t − k + 1], . . . , X[t − k + K]). If the
BER falls below the threshold τ = 0.35, the algorithm ter-
minates and returns the associated document identifier. If
no such FD can be found, the algorithm terminates without
identifying the query.

Since a position k, that corresponds to an unaltered sub-
print in the database, is not known a-priori, in [4] an outer
loop is executed querying the index structure for sub-prints
F [k] in the order in which they appear in FQ, i.e. with in-
dices k = 1, 2, 3, . . . ,K. This loop is aborted as soon as
a matching fingerprint is found. Therefore, the overall run-
ning time of the algorithm crucially depends on the position
of the index at which an unaltered sup-print of a matching
fingerprint occurs for the first time.

3.2 Sub-Print Re-Ordering

To take advantage of the observed sub-print properties, we
change the order in which sub-prints are looked up in the
database. Instead of simply iterating through the sub-prints
of the query fingerprint from beginning to end, we prioritize
those sub-prints that are more likely to lead to matching fin-
gerprints. This means that we need to look up the central
sub-prints of higher runs first, ordered by the length of the
run they belong to in descending order. Then we look up the
singles and then all remaining sub-prints, again ordered by
the length of the run they belong to.

Figure 6 shows an example for this re-ordering scheme.
Because the longest run is the 3-run, we rank its central el-
ement (3) first. The second longest run is the 2-run, thus its
central element (8) lands on rank 2. Since there are no other
higher runs, we then proceed to add all singles in the order
in which they appear. And eventually, we add the remaining
sub-prints from the two higher runs (2, 4 and 9).

The idea behind this is, that if a central sub-print does not
lead to a match, it is more likely that another central sub-
print leads to a match (even if it is a member of a shorter
n-run) than a non-central sub-print of an n-run we already
know of that its central sub-print does not match.

More formally, for a fingerprint FQ of length K = 256
we calculate the rank(k,m, n) with k,m, n ∈ [1 : K] of
each sub-print FQ[k] that is themth element of an n-run, and
order all sub-prints according to their rank in descending
order. The rank function is defined as

rank(k,m, n) = k +Km+K2n+K3nδm−1,bn/2c (1)

!!""!!"!"!""!"""!!""!!""!!""!!"" #"#
!!""!!""!!""!!""!!""!!""!!"""""" #$#
!!""!!""!!""!!""!!""!!""!!"""""" #%#
!!""!!""!!""!!""!!""!!""!!"""""" #&#
!"""!!""!!""!!""!!""!!""!!""!""" #'#
!!""!"""!!"!!!""!!""!!!"!!"""!"" #(#
!!""!!""!!!"!"""!!""!""!!!""!!"" #)#
!!""!!""!!""!!""!!""!!""""""!!"" #*#
!!""!!""!!""!!""!!""!!""""""!!"" #+#
!"""!!"""!""!!""!!""!!""!!""!!""#"!#

%#
*#
"#
'#
(#
)#
"!#
$#
&#
+#

,-./012345#6247#895:45# ;:/81<:1:<#895:45#
,23=>:#

%/1-3#

$/1-3#

Figure 6. Optimization of the sub-print order.

Query iTunes 128kbps Lame 32kbps GSM
Orig. 4.15 36.59 100.84
256 1.41 (×2.9) 12.82 (×2.9) 67.62 (×1.5)
512 1.31 (×3.2) 8.90 (×4.1) 60.58 (×1.7)
1024 1.25 (×3.3) 6.48 (×5.6) 43.79 (×2.3)
2048 1.22 (×3.4) 5.06 (×7.2) 27.04 (×3.7)
4096 1.20 (×3.5) 4.17 (×8.8) 18.08 (×5.6)
8192 1.24 (×3.3) 3.73 (×9.8) 14.30 (×7.0)

Table 1. Average number of sub-print lookups until a
sub-print match is found, depending on query distortion
and fingerprint length (based on 100,000 randomly selected
queries). Denoted in parentheses are the factors between the
optimized and the original approach.

and consists of four terms, each containing a weight factor
based on K. The last term is only 6= 0 if and only if the sub-
print is central. In that case, the term dominates the outcome
of the function. If it is not central, the length n of the run
becomes the deciding factor, as K2n will be greater than
the two remaining terms k and Km. Amongst sub-prints
belonging to the same run length n, position m within the
run and k in the fingerprint become tie-breakers.

Additionally to re-ordering, in a second optimization
step, we also use a longer query fingerprint. This did not
make sense before optimizing the lookup order, as we were
not able to recognize more robust sub-prints. But with
the suggested re-ordering scheme, enlarging the fingerprint
increases our chances of finding more and longer n-runs,
therefore significantly increasing our chances of finding a
surviving sub-print counterpart in the reference data.

A side effect of this strategy is the necessity of computing
a larger query fingerprint, which puts some additional com-
putational burden on the client and requires a longer audio
fragment. For the BER computation we still only use 256
sub-prints as there is nothing to be gained by using more
sub-prints.

3.3 Experimental Verification

To test both approaches, sub-print re-ordering and finger-
print enlargement, we measured the average number of
sub-print lookups needed to find a matching fingerprint in
a database of 200 songs for 100,000 randomly selected
queries.

Note, that in this experiment we focus on sub-print com-
parisons, not full fingerprint comparisons. Therefore, the
number of songs in the database is irrelevant. Nevertheless,
sub-print matches lead to fingerprint comparisons. In order
to measure the total search time, those also need to be taken
into account, if the number of song pointers per sub-print
is not distributed uniformly. For the purpose of this exper-
iment we assume a uniform distribution, in particular one
that is independent from the used rank function.

The results in Table 1 show that with our optimization
scheme between 1.5 and 9.8 times fewer lookups are neces-
sary. Even without enlarging the query fingerprint, we were
still able to achieve 2.9 times fewer iterations for mp3 files
encoded at 128kbps. This equates to only 1.41 sub-print
lookups on average.

It also deserves to be mentioned that for audio data with
stronger distortions (e.g. GSM, mp3 32kbps) our techniques
tend to yield larger benefits. One reason for this is that for
strongly distorted audio material many more lookups are
necessary when no re-ordering is used (100.84 for GSM as
opposed to 4.15 for mp3 128kbps).

4. RUNTIME ANALYSIS

Why do we care so much about the sub-print lookups? Re-
alistically, a large scale audio fingerprinting system will
have to be able to manage not just 10,000 songs [4], but
rather 100 million songs—perhaps even more. 1 Assum-
ing ±25, 000 sub-prints per song, this results in a total of
25, 000 · 108 = 25 · 1011 sub-prints. This means that the
lookup table proposed by Haitsma/Kalker is not sparsely
populated as they claim, but on average each entry con-
tains a list of pointers to 582 (= 25 · 1011/232) songs.
Assuming that each of these pointers has at least a size of
4 bytes to reference a song, plus an offset into the song’s
reference fingerprint of 2 bytes, we must manage roughly
232 · (4 + 2) · 582 bytes = 15 terabytes for the pointer lists
alone. Obviously, with current technology, we cannot sim-
ply load the data-structure into the main memory of a regular
PC.

Instead, just like the songs’ sub-prints, the data-structure
also has to live in secondary storage (e.g. flat files, a
relational database management system (RDBMS), a no-
SQL database, or a simple Berkeley DB). In the case of an

1 In May 2011 MusicBrainz [6] stated on its website to have more than
10 million tracks in its database. This number is probably going to increase
significantly as the years go by.

!"#$%&'()*
&'(* *&+*
&'(* *)"#$%&'(*
),-..&'(*/0)1(*
*

Figure 7. Trivial table design for the reference song lookup
with an RDBMS.

RDBMS, a single table containing the columns (song-)id (at
least 4 bytes), sub-print (4 bytes) and (sub-print-)offset (at
least 2 bytes) is sufficient (Figure 7). One database index on
the sub-print column and another on id and offset ensure fast
access. 2 Assuming the aforementioned setup, the measur-
able runtime behavior of the algorithm is governed by three
main factors:

1. Number of songs in the database.

2. Speed of lookup from secondary storage.

3. Probability of a query sub-print having an identical
reference counterpart.

Note that only the number of fingerprint lookups and
BER computations depend directly and linearly on the num-
ber of songs in the database. This means that the overall
runtime is linear with respect to the size of the database.

As for the secondary storage, even though solid state
drives and the decreasing price of RAM slightly blur the
lines, accessing secondary storage still takes much more
time than performing relatively simple arithmetic operations
like computing a BER. Therefore we can safely assume that
each SQL-select operation to look up a fingerprint in the
database takes orders of magnitude longer than the associ-
ated BER computation. Besides the collection’s size, sec-
ondary storage access is therefore a determining factor for
the absolute runtime of the algorithm.

Finally, how many times we have to look up complete
fingerprints and access secondary storage depends highly on
the probability that a given query sub-print has an identi-
cal reference counterpart. As shown above, we can signif-
icantly increase the probability of finding an identical sub-
print quickly by re-ordering the sub-prints. This is a decid-
ing factor for the runtime of this algorithm and unlike the
other two mentioned factors it has nothing to do with avail-
able hardware or the size of the problem.

2 For 100 million songs, this database design leads to the impressive
storage requirement of 25 terabytes (= (4 + 4 + 2) · 25 · 1011 bytes),
plus additional space for the indices. Not surprisingly, Haitsma/Kalker at-
tempted to reduce this by sub-sampling reference fingerprints [5].

5. CONCLUSION

In this paper we presented an optimization scheme of the
Haitsma/Kalker audio fingerprinting search algorithm. The
suggested approach exploits strong temporal correlations
between sub-prints as an indicator for sub-print robustness.
This can lead to significant savings in the number of re-
quired lookups leading to a significant overall speed-up for
the identification task.

Future research may focus on applying the proposed
strategy on other existing algorithms or creating new ones,
in which only reliable sub-prints are taken into account to
begin with, which may lead to shorter, more robust finger-
prints and reduced overall storage requirements. Also the
combination of our re-ordering strategy with the reliability
considerations proposed by Haitsma/Kalker is subject for
future research.

Acknowledgement. P. Grosche and M. Müller are sup-
ported by the Cluster of Excellence on Multimodal Com-
puting and Interaction at Saarland University.

6. REFERENCES

[1] Pedro Cano, Eloi Batlle, Ton Kalker, and Jaap Haitsma. A re-
view of algorithms for audio fingerprinting. In Proceedings of
the IEEE International Workshop on Multimedia Signal Pro-
cessing (MMSP), pages 169–173, St. Thomas, Virgin Islands,
USA, 2002.

[2] Masataka Goto, Hiroki Hashiguchi, Takuichi Nishimura, and
Ryuichi Oka. RWC music database: Popular, classical and jazz
music databases. In Proceedings of the International Confer-
ence on Music Information Retrieval (ISMIR), Paris, France,
2002.

[3] Gracenote. http://www.gracenote.com/.

[4] Jaap Haitsma and Ton Kalker. A highly robust audio finger-
printing system. In Proceedings of the International Confer-
ence on Music Information Retrieval (ISMIR), pages 107–115,
Paris, France, 2002.

[5] Jaap Haitsma, Ton Kalker, and Steven Schimmel. Efficient
storage of fingerprints. US Patent 7,477,739, January 2009.

[6] MusicBrainz. http://musicbrainz.org/.

[7] Shazam. http://www.shazam.com/.

[8] Avery Wang. An industrial strength audio search algorithm. In
Proceedings of the International Conference on Music Infor-
mation Retrieval (ISMIR), pages 7–13, Baltimore, USA, 2003.

