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ABSTRACT

In this paper, we deal with the task of determining the au-
dio segment that best represents a given music recording
(similar to audio thumbnailing). Typically, such a segment
has many (approximate) repetitions covering large parts of
the music recording. As main contribution, we introduce a
novel fitness measure that assigns to each segment a fitness
value that expresses how much and how well the segment
“explains” the repetitive structure of the recording. In com-
bination with enhanced feature representations, we show
that our fitness measure can cope even with strong varia-
tions in tempo, instrumentation, and modulations that may
occur within and across related segments. We demonstrate
the practicability of our approach by means of several chal-
lenging examples including field recordings of folk music
and recordings of classical music.

1. INTRODUCTION

Music structure analysis constitutes a fundamental research
topic within the field of music information retrieval. One
major goal of structure analysis is to divide a music record-
ing into temporal segments corresponding to musical parts
and then to group these segments into musically meaning-
ful categories [10]. Such segments may refer to chorus or
verse sections of a popular piece of music, to stanzas of a
folk song, or to the first theme, the second theme or the
entire exposition of a symphony. Such important musical
parts are often characterized by the property of being re-
peated several times throughout the piece. Therefore, find-
ing the repetitive structure of a music recording is an impor-
tant and well-studied subtask within structure analysis, see,
e. g., [1, 2, 5, 6, 9] and the overview articles [3, 10]. Most of
these approaches work well for music where the repetitions
largely agree. However, in general, “repeating parts” are

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2011 International Society for Music Information Retrieval.

far from being simple repetitions. Actually, audio segments
that refer to the same musical part may differ significantly in
parameters such as dynamics, instrumentation, articulation,
and tempo not to speak of pronounced musical variations. In
such cases, structure analysis becomes a hard and ill-posed
task with many yet unsolved problems.

In this paper, we address the problem of finding the
most representative and repetitive segment of a given music
recordings, a task often referred to asaudio thumbnailing,
see, e. g., [1]. Here, opposed to most of the previous ap-
proaches we want to admit even strong musical variations.
As our main contribution, we introduce a fitness measure
that assigns to each audio segment a fitness value that simul-
taneously captures two aspects. Firstly, it indicateshow well
the given segment explains other similar segments (“preci-
sions”) and, secondly, it indicateshow muchof the overall
music recordings is covered by all these segments (“recall”).
Furthermore, our fitness measure is normalized and disre-
gards trivial self-explanations (reflexive relations). Asa fur-
ther contribution of this paper, we introduce a compact time-
lag representation that yields a high-level view on the struc-
tural properties for the entire music recording. First exper-
iments shows that our fitness measure, in combination with
enhanced feature representations, can cope with even strong
variations in tempo, instrumentation, and modulations that
occur within and across the segments.

At this point, we want to note that our work has been
inspired by Paulus and Klapuri [9], even though the task
and concepts of this paper are fundamentally different to [9].
The fitness measure introduced in [9] expresses properties of
an entire structure, whereas our fitness measure expresses
properties of asingle segment. In assigning a fitness value
to a given segment, our idea is to simultaneously account for
all its existing relations within the entire recording.

The remainder of this paper is organized as follows. In
Section 2, we give a motivation of our approach, fix some
notation, and quickly review the concept of self-similarity
matrices. In Section 3, as our main contribution, we describe
the technical details on the construction of our fitness mea-
sure. Finally, experimental results and an outlook on future
work can be found in Section 4 and Section 5, respectively.



2. MOTIVATION AND NOTATION

In the following, we distinguish between a piece of music
(in an abstract sense) and a particular audio recording (a
concrete performance) of the piece. The termpart is used in
the context of the abstract music domain, whereas the term
segmentis used for the audio domain [10]. Musical parts are
often denoted by the lettersA,B,C, . . . in the order of their
first occurrence. For example, the sequenceA1A2B1A3 de-
scribes themusical formconsisting of three repeatingA-
parts interleaved with oneB-part. Then, for a given music
recording of such a piece, the goal of the structure analysis
problem as tackled in this paper would be to find the seg-
ments within the recording that correspond to theA-parts.

Most repetition-based approaches to audio structure anal-
ysis proceed as follows. In the first step, the music record-
ing is transformed into a sequenceX := (x1, x2, . . . , xN )
of feature vectorsxn ∈ F , 1 ≤ n ≤ N , whereF de-
notes a suitable feature space. In the second step, based on
a similarity measures : F × F → R, one defines aself-
similarity matrix S ∈ R

N×N by S(n,m) := s(xn, xm),
1 ≤ n,m ≤ N . In the following, a tuplep = (n,m) ∈ [1 :
N ]2 is called acell of S, and the valueS(n,m) is referred
to as thescoreof the cellp. The crucial observation is that
repeating patterns in the feature sequenceX appear as diag-
onal “stripes” inS [2, 10]. More precisely, these stripes are
paths of cells of high score running in parallel to the main
diagonal. Therefore, in the third step, one extracts all such
paths fromS, where each path encodes the similarity of a
pair of segments. (These two segments are given by the two
projections of the path onto the two axis ofS, see Figure 1.)
In the fourth step, from the given pairwise relations of seg-
ments, one derives entire groups of segments, where each
group comprises all segments of a given type of a musical
part (e. g. all segments corresponding toA-parts). This step
can be thought of forming some kind of transitive closure of
the given path relations [3, 6]. However, this grouping pro-
cess constitutes a main challenge when the extracted paths
are erroneous and incomplete. In [5], a grouping process is
described that balances out inconsistencies in the path rela-
tions by exploiting a constant tempo assumption. However,
when dealing with music of varying tempo, the grouping
process constitutes a challenging research problem.

As one main idea of our approach, we suggest to jointly
perform the third and fourth step thus circumventing the
separate grouping process. We realize this idea by assign-
ing a fitness value to a given segment in such a way that all
related segments simultaneously influence the fitness value.
To express relations between segments, we will introduce
the notion of a path family, see Section 3.1. Intuitively, in-
stead of extracting individual paths, we extract entire groups
of paths, where the consistency within a group is automati-
cally enforced by the construction.
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2.1 Desired Properties

We now motivate some basic properties that serve as a
guideline for the construction of our fitness measure. Let
X = (x1, x2, . . . , xN ) be the feature representation of the
given audio recording. Asegmentα is defined to be a sub-
setα = [s : t] ⊆ [1 : N ] specified by its starting points
and its end pointt (given in terms of feature indices). Let
|α| := t − s + 1 denote the length ofα. In our approach,
we introduce afitness measureϕ that assigns to each seg-
mentα ⊆ [1 : N ] a fitness valueϕ(α) ∈ R. Intuitively, this
fitness value should express to which extent the segmentα
“explains” the repetitive structure ofX . In particular, the
valueϕ(α) should be large in the case that the repetitions of
α cover large portions ofX , otherwise it should be small.

Next, we impose some normalization constraints onϕ.
Note that the segmentα = [1 : N ] explains the entire se-
quenceX perfectly. More generally, each segmentα ex-
plains itself perfectly (this information is encoded by the
main diagonal of a self-similarity matrix). We do not want
such trivial, reflexive self-explanations to be captured byϕ.
Therefore, we require

0 ≤ ϕ(α) ≤
N − |α|

N
. (1)

In particular, one obtainsϕ([1 : N ]) = 0. More generally,
a valueϕ(α) = 0 should mean that the segmentα only ex-
plains itself but no other portions ofX . As an illustrative
example, we consider an “ideal” recording of a piece of mu-
sic having the formA1A2 . . . AK . Let αk be the segment
corresponding toAk, k ∈ [1 : K]. Then our fitness measure
should assume the valueϕ(αk) = K−1

K
for each segment

αk, see Figure 1 illustrating the caseK = 3.



2.2 Self-Similarity Matrices

In general, repeating segments may differ significantly re-
garding tempo, instrumentation and other musical proper-
ties. The degree of the similarity between two repeating seg-
mentsα andα′ crucially depends on the used feature type,
the similarity measure, and the resulting self-similarityma-
trix S. Our fitness measure is generic in the sense that it
can work with general self-similarity matrices that only ful-
fill some basic normalization properties. Actually, we only
require the propertyS(n,m) ≤ 1 for 1 ≤ n,m ≤ N and
S(n, n) = 1 for n ∈ [1 : N ]. Since the construction ofS
is not in the focus of this paper, we only give a quick de-
scription of the type of self-similarity matrix as used in our
experiments. Figure 2 illustrates the following steps. First
of all, we use a variant of chroma-based audio features as de-
scribed in [6, Section 3.3]. Normalizing these features, we
simply use the inner product as similarity measure yielding
a value between0 and1. To enhance structural properties,
we apply temporal smoothing techniques that can deal with
tempo variations, see [6, Section 7.2]. Furthermore, apply-
ing techniques as described in [7], we obtain a transposition-
invariant matrix that can deal with modulation differences
within and across repeating parts. Subsequently, using a
suitable threshold parameterτ > 0 and a penalty param-
eterδ ≤ 0, we post-process the matrix by first setting the
score values of all cells with a score belowτ to the valueδ
and then by linearly scaling the range[τ : 1] to [0 : 1]. Fi-
nally, we setS(n, n) = 1 for n ∈ [1 : N ] (this property may
have been lost by the smoothing step). In the following, we
chooseτ in a relative fashion by keeping25% of the cells
having the highest score and setδ = −2.

3. FITNESS MEASURE

Following the guidelines motivated in Section 2, we now
introduce our novel fitness measure. In assigning a fitness
value to a given segmentα, our idea is to simultaneously
account for all other segments that are related toα. To this
end, in Section 3.1, we introduce the notation of a path fam-
ily that allows for expressing these relations. Then, in Sec-
tion 3.2, we explain how each path family can be assigned
a coverage (“recall”) as well as an average score measure
(“precisions”). The fitness of the segmentα is then deter-
mined by the path family that simultaneously maximizes
coverage and score.

3.1 Path Family

Let X = (x1, x2, . . . , xN ) be a feature sequence andS a
self-similarity matrix as introduced in Section 2.2. Apath
of lengthL is a sequenceπ = (p1, . . . , pL) of cells pℓ =
(nℓ,mℓ) for ℓ ∈ [1 : L] satisfyingpℓ+1 − pℓ ∈ Σ, whereΣ
denotes a set of admissible step sizes. In our setting, we use

 

 

0 50 100 150
0

20

40

60

80

100

120

140

160

180

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0 50 100 150
0

20

40

60

80

100

120

140

160

180

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0 50 100 150
0

20

40

60

80

100

120

140

160

180

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0 50 100 150
0

20

40

60

80

100

120

140

160

180

−2

−1.5

−1

−0.5

0

0.5

1

Time (sec) Time (sec)

T
im

e
(s

e
c)

T
im

e
(s

e
c)

(a) (b)

(c) (d)

Figure 2. Self similarity matrices for the song “In the year 2525”
by Zager and Evans.(a) Initial self-similarity matrix. (b) Path-
enhanced matrix.(c) Transposition-invariant matrix.(d) Thresh-
olded matrix withδ = −2.

Σ = {(1, 2), (2, 1), (1, 1)}, which constrains the slope of
the admissible paths within the bounds of1/2 and2, see [6,
Chapter 4]. Thescoreµ(π) of a pathπ is defined as

µ(π) =

L
∑

ℓ=1

S(nℓ,mℓ) . (2)

Considering the two projections, a pathπ defines two seg-
ments denoted byπ1 := [n1 : nL] andπ2 := [m1 : mL],
see also Figure 1. Vice versa, given two segmentsα andα′,
a pathπ with π1 = α andπ2 = α′ is called analignment
pathbetween the two segments. Given a segmentα and a
self-similarity matrixS, we define apath family overα to
be a setP := {π1, π2, . . . , πK} that consists of pathsπk

and satisfies the following conditions. Firstly,π2
k = α for

all k ∈ [1 : K]. Secondly, the set
{

π1
k | k ∈ [1 : K]

}

con-
sists of pairwise disjoint segments, i. e.,π1

i ∩ π1
j = ∅ for

i, j ∈ [1 : K], i 6= j. Next, extending the definition in (2) in
a straightforward way, thescoreµ(P) of the path familyP
is defined as

µ(P) :=

K
∑

k=1

µ(πk). (3)

Finally, thescoreµ(α) of a segmentα is defined to be the
score of a path familyP∗ having maximal score among all
possible path families overα:

P∗ := argmax
P

µ(P) (4)

µ(α) := µ(P∗). (5)

Actually, the valueµ(α) is not yet the fitness value we are
looking for since neither does it fulfill the basic properties
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Figure 3. S and optimal path familiesP over different segments
α = [s : t] for the song “In the year 2525” by Zager and Evans.
(a) α = [57 : 72] (maximal fitness).(b) α = [80 : 150] (c) Fitness
matrix.

formulated in Section 2 nor does it capture how much of the
audio material is actually covered.

3.2 Definition of Fitness Measure

We now give a formal definition of our fitness measure,
which has all the desired properties. Actually, at this point,
we only need the assumption that the given self-similarity
matrix S ∈ R

N×N has the property thatS(n,m) ≤ 1 for
all cells(n,m) ∈ [1 : N ]2 andS(n, n) = 1 for n ∈ [1 : N ].
We start by defining thenormalized scorēµ(P) of the path
family P overα by

µ̄(P) :=
µ(P)− |α|
∑K

k=1 Lk

, (6)

whereLk defines the length of pathπk. Here, the motivation
for subtracting the length|α| of α is that the segmentα triv-
ially explains itself, see Section 2. It is not hard to see that
the scorēµ fulfills the conditions (1). From the assumption
S(n, n) = 1, one obtains̄µ(P) ≥ 0. Furthermore note that,
when usingΣ = {(1, 2), (2, 1), (1, 1)}, one hasLk ≤ |α|
and

∑

k Lk ≤ N . This together withS(n,m) ≤ 1 implies
the propertyµ̄(P) ≤ (N − |α|)/N . Intuitively, the value
µ̄(P) expresses theaverage scoreor precision of the given
path familyP .

Next, we define some kind ofcoverageor recall measure
for P . To this end, letγ(P) := ∪k∈[1:K]π

1
k ⊆ [1 : N ] be the

union of all segments defined by the first projection of the
pathsπk. Then we define thenormalized coveragēγ(P) of
P by

γ̄(P) :=
|γ(P)| − |α|

N
. (7)

As above, the length|α| is subtracted to compensate for triv-
ial coverage. Obviously, one hasγ̄(P) ≤ (N − α)/N .

Inspired by the F-measure that combines precision and
recall, we define thefitnessϕ(P) of the path familyP to be

ϕ(P) := 2 ·
µ̄(P) · γ̄(P)

γ̄(P) + µ̄(P)
. (8)

In other words, the fitness integrates the normalized score
and coverage into one measure. Finally, thefitnessϕ(α) of
a segmentα is defined to be the fitness value of the score-
maximizing path familyP∗ defined in (4):

ϕ(α) := ϕ(P∗). (9)

Note that the path familyP∗ defines in a natural way a set
of disjoint segments revealing the repetitions ofα within
the sequenceX , see Figure 1. An optimal path familyP∗

for a segmentα can be computed efficiently withO(|α| ×
N) operations using dynamic programming. Actually, the
algorithm, which we do not describe in this paper due to
space limitations, is an extension of classical dynamic time
warping (DTW), see [4, 6].

When computing the fitnessϕ(α) for all possible seg-
mentsα = [s : t] ⊆ [1 : N ], one can obtain a com-
pact fitness representation for the entire music recording.
More precisely, we arrange all fitness values in some time-
lag fitness matrixΦ ∈ R

N×N defined byΦ(s, ℓ) := ϕ([s :
s+ ℓ−1]) for the starting points ∈ [1 : N ] and the segment
lengthℓ ∈ [1 : N − s + 1], whereas all other entries ofΦ
are set to zero, see Figure 3c for an example. Note that each
cell (s, ℓ) of the fitness matrixΦ defines an optimal path
family for the segmentα = [s : s + ℓ − 1]. The maximal
entry ofΦ yields the segment with the highest fitness value,
which can be regarded as the most representative segment of
the recording. In this sense, a solution to our thumbnailing
problem is given by

α∗ := argmax
α

ϕ(α), (10)

where the path family associated toα∗ yields the structure
analysis result.

4. EXPERIMENTS

To investigate the behavior of our fitness measure, we have
conducted various experiments using a number of challeng-
ing audio recordings that exhibit strong acoustic deforma-
tions and musical variations. We first discuss some repre-
sentative examples and then report on an experiment con-
ducted on a corpus of field recordings.

We start with the song “In the year 2525” by Za-
ger and Evans, which already served as example in Fig-
ure 2 and Figure 3. This song has the musical form
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Figure 4. S and optimal path familiesP over differentα for an
Ormandy recording of Brahms’ Hungarian Dance No. 5.(a) α =
[67:87] (maximal fitness)(b) α = [130:195]. (c) Fitness matrix.

AB1B2B3B4C1B5B6C2B7EB8F starting with a slow in-
tro (A-part) and continuing with eight repetitions of a cho-
rus section (B-part), which are interleaved by two tran-
sitional C-parts and oneE-part. The first fourB-parts
are rather similar, whereas the partsB5 andB6 are trans-
posed by one andB7 andB8 by two semitones upwards.
Using a transposition-invariant self-similarity matrixS, all
eight repeatingB-parts are revealed by the path structure,
see Figure 2. Figure 3 shows the time-lag fitness matrix
Φ along with optimal path families for two different seg-
ments. The path family of the fitness-maximizing segment
α∗ = [57:72], which is shown in Figure 3a and corresponds
toB3, consists of eight paths. These paths correspond to the
eightB-parts thus yielding the expected and desired result.
Looking at other segments, one can notice that the fitness
measure tries to balance out score and coverage. For ex-
ample, for the long segment shown in Figure 3b, the lower
path accepts even cells of negative score (as long as the ac-
cumulated score of the entire path is positive) for the sake
of coverage. Here recall that, by definition, all paths of the
family are forced to run over the entire segmentα.

Next, we consider a recording by Ormandy of the Hun-
garian Dance No. 5 by Johannes Brahms, see Figure 4. This
piece has the musical formA1A2B1B2CA3B3B4D con-
sisting of three repeatingA-parts, four repeatingB-parts, as
well as aC- and aD-part. As shown by the figure, the path
structure ofS again reflects this musical form. In particular,
the curved paths reveal that theB-parts are played in differ-
ent tempi. The fitness-maximizing segment isα∗ = [67:87]
and corresponds toB2. As shown by Figure 4a, the path
family consists of four paths, which correctly identify all
four B-parts. The segmentα = [130 : 195] shown in Fig-
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Figure 5. S and optimal path familiesP over differentα for a
Pollini recording of Beethoven’s Op. 31, No. 2, first movement
(“Tempest”). (a) α = [11 : 119] (maximal fitness when using the
lower boundλ = 20 seconds.) (b) α = [483 : 487] (maximal
fitness).(c) Fitness matrix.

ure 4b corresponds toA3B3B4. Here note that because our
fitness measure disregards self-explanations, the fitness of α
is well below the one ofα∗.

In our third example, we consider a Pollini recording
of the first movement of Beethoven’s piano sonata Op. 31,
No. 2 (“Tempest”), see Figure 5. Being in the sonata form,
the rough musical form of this movement isA1A2BA3C
with A1 being the exposition,A2 the repetition of the expo-
sition, B the development,A3 the recapitulation, andC a
short coda. Here, even thoughA3 is some kind of repetition
of A1, there are significant musical differences. For exam-
ple, the first theme inA3 is extended by an additional section
not present inA1 and the second theme inA3 is transposed
five semitones upwards (and later transposed seven semi-
tones downwards) relative to the second theme inA1. Here
note that the modulation does not apply to the entireA3-part
but only to the second theme within theA3-part. Never-
theless, using transposition-invariance, our fitness measure
can still identify the relation of the threeA-parts when us-
ing α = [11 : 119], see Figure 5a. Interestingly, this is not
the fitness-maximizing segment, which is actually given by
α∗ = [483 : 487], see Figure 5b. This example indicates a
problem that occurs when the self-similarity matrix contains
a lot of noise, i. e., scattered cells of relatively high score.
Such cells may form numerous path fragments that, as a
whole family, may yield significant average score as well
as coverage values. To circumvent such problems, one may
introduce a lower boundλ for the minimal possible segment
length. For example, using a lower boundλ = 20 seconds,
the fitness-maximizing segment isα = [11:119].



Finally, we report on an experiment using field record-
ings of the folk song collectionOnder de groene linde
(OGL), which is part of theNederlandse Liederenbank. 1

Each song basically consists of a number of strophes yield-
ing the musical formA1A2 . . . AK . The main challenge is
that the songs are performed by elderly non-professional
singers with serious intonation problems, large tempo
changes, and interruptions—not to speak of poor record-
ing conditions and background noise. In [8], a reference-
based segmentation algorithm, which reverts to an addi-
tional MIDI file used as stanza reference, is described and
tested for47 of these songs. As for evaluation, standard pre-
cision, recall and F-measures are used to measure the accu-
racy of the segmentation boundaries (with a tolerance of±2
seconds). The results of this reference-based method, which
are shown in the last row of Table 1, serve as baseline.

Our approach can be applied for accomplishing the same
segmentation task without reverting to any reference. To
this end, we determine the fitness-maximizing segmentα∗

as in (10) and derive the segmentation from the associ-
ated path family. Using the same evaluation measures as
in [8], our reference-free method yields an F-measure value
of F = 0.821, see Table 1. Assuming some prior knowl-
edge on the minimal length of a stanza, this result can
be improved. For example, using the lower boundλ =
10 seconds one obtainsF = 0.855, see Table 1. This result
is still worse than the results obtained from the reference-
based approach (F = 0.926). Actually, a manual inspec-
tion showed that this degrade was mainly caused by four
particular recordings, where the segmentation derived from
α∗ was “phase-shifted” compared to the ground truth. Em-
ploying a boundary-based evaluation measure resulted in an
F-measure ofF = 0 for these four recordings. Further-
more, we found out that these phase shifts were caused by
the fact that in all of these four recordings the singer com-
pletely failed in the first stanza (omitting and confusing en-
tire verse lines). In a final experiment, we replaced the four
recordings by a slightly shortened version by omitting the
first stanzas, respectively. Repeating the previous experi-
ment on this modified dataset produced an F-measure of
F = 0.920, which is already close to the quality obtained
by baseline method. Overall, these results demonstrates that
our fitness measure can cope even with strong temporal and
spectral variations as occurring in field recordings.

5. CONCLUSIONS

In this paper, we introduced a novel fitness measure that
expresses how representative a given segment is in terms
of repetitiveness. Our experiments showed that the fitness-
maximizing segment often yields a good candidate solution
for the thumbnailing problem, even in the presence of strong

1 www.liederenbank.nl

Strategy P R F
Maximal fitness 0.823 0.8180.821
Maximal fitness (λ = 10) 0.863 0.847 0.855
Maximal fitness (λ = 10, modified dataset) 0.932 0.9090.920
Reference-based method [8] 0.912 0.9400.926

Table 1. Precision, recall, andF-measures for the reference-based
segmentation method [8] and the three reference-free methods de-
scribed in this paper.

acoustic and musical variations across repeating parts. We
also introduced a time-lag fitness matrix that yields a high-
level view on the structural properties for the entire music
recording. For the future, we need to explore in more de-
tail the role of the different parameter settings, including the
role of the self-similarity matrix. We are convinced that our
fitness matrix has great potential for visualizing and search-
ing in hierarchical music structures in novel ways. Finally,
efficiency issues need to be addressed as well as iterative
approaches that allow for deriving the entire musical form.
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