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ABSTRACT far from being simple repetitions. Actually, audio segnsent
that refer to the same musical part may differ significantly i
In this paper, we deal with the task of determining the au- parameters such as dynamics, instrumentation, artionlati
dio segment that best represents a given music recording and tempo not to speak of pronounced musical variations. In
(similar to audio thumbnailing). Typically, such a segment  sych cases, structure analysis becomes a hard and ill-posed

has many (approximate) repetitions covering large parts of task with many yet unsolved problems.
the music recording. As main contribution, we introduce a

. . ) In this paper, we address the problem of finding the
novel fithess measure that assigns to each segment a fitness . - . .
most representative and repetitive segment of a given music
value that expresses how much and how well the segment

N - - . recordings, a task often referred toasdio thumbnailing
explains” the repetitive structure of the recording. Imto )
o ) . see, e.g., [1]. Here, opposed to most of the previous ap-
bination with enhanced feature representations, we show . ; L
! . . proaches we want to admit even strong musical variations.
that our fithess measure can cope even with strong varia- . - . .
. . . . . As our main contribution, we introduce a fithess measure
tions in tempo, instrumentation, and modulations that may ) . : .
o that assigns to each audio segment a fithess value that simul-
occur within and across related segments. We demonstrate

o taneously captures two aspects. Firstly, it indicatas well
the practicability of our approach by means of several chal- : ; o ¥ .
. . ) . . . the given segment explains other similar segments (“preci-
lenging examples including field recordings of folk music

. . ) sions”) and, secondly, it indicatémw muchof the overall
and recordings of classical music. . . . . Y
music recordings is covered by all these segments (“rgcall
Furthermore, our fitness measure is normalized and disre-
1. INTRODUCTION gards trivial self-explanations (reflexive relations). s\&ir-

Music structure analysis constitutes a fundamental regear ~ ther contribution of this paper, we introduce a compact+ime
topic within the field of music information retrieval. One  lag representation that yields a high-level view on thecstru
major goal of structure analysis is to divide a music record- tural properties for the entire music recording. First expe
ing into temporal segments corresponding to musical parts iments shows that our fithess measure, in combination with
and then to group these segments into musically meaning- enhar.]ced feature representations_,, can cope with eyergstron
ful categories [10]. Such segments may refer to chorus or var|at|or_1$ in tempo, instrumentation, and modulations tha
verse sections of a popular piece of music, to stanzas of a 0¢Cur within and across the segments.

folk song, or to the first theme, the second theme or the At this point, we want to note that our work has been
entire exposition of a symphony. Such important musical inspired by Paulus and Klapuri [9], even though the task
parts are often characterized by the property of being re- and concepts of this paper are fundamentally differentjto [9
peated several times throughout the piece. Therefore, find- The fitness measure introduced in [9] expresses propefties o
ing the repetitive structure of a music recording is an impor  an entire structure whereas our fitness measure expresses
tant and well-studied subtask within structure analyss, s properties of asingle segmentin assigning a fitness value
e.g.[1, 2,5, 6, 9] and the overview articles [3, 10]. Most of  to a given segment, our idea is to simultaneously account for
these approaches work well for music where the repetitions all its existing relations within the entire recording.

largely agree. However, in general, “repeating parts” are The remainder of this paper is organized as follows. In

Section 2, we give a motivation of our approach, fix some
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not made or distributed for profit or commercial advantage that copies the technical details on the construction of our fithess mea-
bear this notice and the full citation on the first page. sure. Finally, experimental results and an outlook on &itur

(© 2011 International Society for Music Information Retrieva work can be found in Section 4 and Section 5, respectively.



2. MOTIVATION AND NOTATION

In the following, we distinguish between a piece of music
(in an abstract sense) and a particular audio recording (a
concrete performance) of the piece. The tgamt is used in

the context of the abstract music domain, whereas the term
segmenis used for the audio domain [10]. Musical parts are
often denoted by the letters, B, C, . .. in the order of their
first occurrence. For example, the sequeAg¢d, B; A5 de-
scribes themusical formconsisting of three repeating-
parts interleaved with on8-part. Then, for a given music
recording of such a piece, the goal of the structure analysis
problem as tackled in this paper would be to find the seg-
ments within the recording that correspond to thearts.

Most repetition-based approaches to audio structure anal-
ysis proceed as follows. In the first step, the music record-
ing is transformed into a sequen&e := (z1,z2,...,TN)
of feature vectors;, € F, 1 < n < N, whereF de-
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Figure 1. ldealized self-similarity matrixS for a recording of
musical formA; A2 As. The figures show an optimal path fam-
ily P := {m,ms, w3} for the segmenty = [s : t] = [120:190] =
71'% = 71'% = 71'%.

notes a suitable feature space. In the second step, based orp.1 Desired Properties

a similarity measure : 7 x F — R, one defines aelf-
similarity matrix S € RY*Y by S(n,m) := s(xpn, Tm),

1 < n,m < N. In the following, a tupleo = (n,m) € [1:
N]? is called acell of S, and the valueS(n, m) is referred

to as thescoreof the cellp. The crucial observation is that
repeating patterns in the feature sequekicappear as diag-
onal “stripes” inS [2, 10]. More precisely, these stripes are
paths of cells of high score running in parallel to the main
diagonal. Therefore, in the third step, one extracts alhsuc
paths fromS, where each path encodes the similarity of a
pair of segments. (These two segments are given by the two
projections of the path onto the two axis®fsee Figure 1.)

In the fourth step, from the given pairwise relations of seg-

We now motivate some basic properties that serve as a
guideline for the construction of our fithess measure. Let
X = (z1,22,...,2N) be the feature representation of the
given audio recording. Aegment. is defined to be a sub-
seta = [s : t] C [1 : N] specified by its starting point
and its end point (given in terms of feature indices). Let
|a| :==t — s + 1 denote the length af. In our approach,
we introduce ditness measure that assigns to each seg-
menta C [1 : N] afithess valueo(a) € R. Intuitively, this
fitness value should express to which extent the segment
“explains” the repetitive structure oX. In particular, the
valuep(«) should be large in the case that the repetitions of

ments, one derives entire groups of segments, where each , cover large portions ok, otherwise it should be small.

group comprises all segments of a given type of a musical
part (e. g. all segments correspondingitgarts). This step

can be thought of forming some kind of transitive closure of
the given path relations [3, 6]. However, this grouping pro-

cess constitutes a main challenge when the extracted paths

are erroneous and incomplete. In [5], a grouping process is
described that balances out inconsistencies in the path rel
tions by exploiting a constant tempo assumption. However,
when dealing with music of varying tempo, the grouping
process constitutes a challenging research problem.

As one main idea of our approach, we suggest to jointly
perform the third and fourth step thus circumventing the

separate grouping process. We realize this idea by assign-

ing a fitness value to a given segment in such a way that all
related segments simultaneously influence the fitness .value
To express relations between segments, we will introduce
the notion of a path family, see Section 3.1. Intuitively, in
stead of extracting individual paths, we extract entireigo

of paths, where the consistency within a group is automati-
cally enforced by the construction.

Next, we impose some normalization constraintsgon
Note that the segment = [1 : N] explains the entire se-
guenceX perfectly. More generally, each segmenex-
plains itself perfectly (this information is encoded by the
main diagonal of a self-similarity matrix). We do not want
such trivial, reflexive self-explanations to be capturedsby
Therefore, we require

N —|af

< <
0<p(a) < N

)

In particular, one obtaing([1 : N]) = 0. More generally,

a valuep(a) = 0 should mean that the segmenbnly ex-
plains itself but no other portions of. As an illustrative
example, we consider an “ideal” recording of a piece of mu-
sic having the formA; A, ... Ax. Let o be the segment
corresponding tol, k € [1 : K]. Then our fitness measure
should assume the valug oy, ) % for each segment
ay, see Figure 1illustrating the case= 3.



2.2 Self-Similarity Matrices

In general, repeating segments may differ significantly re-
garding tempo, instrumentation and other musical proper-
ties. The degree of the similarity between two repeating seg
mentsa anda’ crucially depends on the used feature type,
the similarity measure, and the resulting self-similanitg-

trix S. Our fithess measure is generic in the sense that it

can work with general self-similarity matrices that only-fu
fill some basic normalization properties. Actually, we only
require the property(n,m) < 1for1 < n,m < N and
S(n,n) = 1forn € [1 : N]. Since the construction &

is not in the focus of this paper, we only give a quick de-
scription of the type of self-similarity matrix as used inrou
experiments. Figure 2 illustrates the following steps.st=ir

of all, we use a variant of chroma-based audio features as de-

scribed in [6, Section 3.3]. Normalizing these features, we
simply use the inner product as similarity measure yielding
a value betweef and1. To enhance structural properties,

we apply temporal smoothing techniques that can deal with
tempo variations, see [6, Section 7.2]. Furthermore, apply
ing techniques as described in [7], we obtain a transpasitio

invariant matrix that can deal with modulation differences

within and across repeating parts. Subsequently, using a

suitable threshold parameter> 0 and a penalty param-
etero < 0, we post-process the matrix by first setting the
score values of all cells with a score belevio the value)

and then by linearly scaling the ranfye: 1] to [0 : 1]. Fi-
nally, we setS(n,n) = 1forn € [1 : N] (this property may
have been lost by the smoothing step). In the following, we
chooser in a relative fashion by keepinzp% of the cells
having the highest score and get —2.

3. FITNESS MEASURE

Following the guidelines motivated in Section 2, we now

introduce our novel fitness measure. In assigning a fitness

value to a given segmeit, our idea is to simultaneously
account for all other segments that are related.td@o this
end, in Section 3.1, we introduce the notation of a path fam-
ily that allows for expressing these relations. Then, in-Sec
tion 3.2, we explain how each path family can be assigned

a coverage (“recall”) as well as an average score measure

(“precisions”). The fitness of the segments then deter-
mined by the path family that simultaneously maximizes
coverage and score.

3.1 Path Family

Let X = (z1,z9,...,zy) be a feature sequence afda
self-similarity matrix as introduced in Section 2.2. path
of length L is a sequence = (p1,...,pr) of cellsp, =
(ng, myg) for £ € [1: L] satisfyingpe+1 — pe € X, whereX
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Figure 2. Self similarity matrices for the song “In the year 2525”
by Zager and Evans(a) Initial self-similarity matrix. (b) Path-
enhanced matrix(c) Transposition-invariant matrix(d) Thresh-
olded matrix withd = —2.

¥ =1{(1,2),(2,1),(1,1)}, which constrains the slope of
the admissible paths within the boundslg® and2, see [6,
Chapter 4]. Thescorep(w) of a pathr is defined as

(m) = ZS(ng,mg) )
=1

Considering the two projections, a pattdefines two seg-
ments denoted by! := [n; : ny] and#w? := [my : my],
see also Figure 1. Vice versa, given two segmeardadcd/,
a pathr with 7! = o andn? = o/ is called analignment
pathbetween the two segments. Given a segmeahd a
self-similarity matrixS, we define gath family overa to
be a setP := {m,m,..., 7k} that consists of paths;
and satisfies the following conditions. Firstly = « for
all k € [1: K]. Secondly, the sefr} |k € [1 : K]} con-
sists of pairwise disjoint segments, i. e}, N 7r] = { for
i,j € [1: K],i # j. Next, extending the def|n|t|on in (2)in
a straightforward way, thecorep(P) of the path familyP

is defined as
K
= ().
k=1

Finally, thescoreu(a) of a segmenty is defined to be the
score of a path family?* having maximal score among all
possible path families over:

)

3)

P* o= arg;nax,u(’P) 4)
() 1(P"). (%)

Actually, the valueu(«a) is not yet the fitness value we are

denotes a set of admissible step sizes. In our setting, we uselooking for since neither does it fulfill the basic propestie
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Figure 3. S and optimal path familie® over different segments
a = [s : t] for the song “In the year 2525” by Zager and Evans.
(@) a = [57:72] (maximal fitness)(b) « = [80:150] (c) Fitness
matrix.

formulated in Section 2 nor does it capture how much of the
audio material is actually covered.

3.2 Definition of Fitness Measure

We now give a formal definition of our fithess measure,
which has all the desired properties. Actually, at this poin
we only need the assumption that the given self-similarity
matrix S € RV*Y has the property tha§(n, m) < 1 for

all cells(n,m) € [1: N]? andS(n,n) = 1forn € [1 : N].

We start by defining theormalized scorgi(P) of the path
family P overa by

w(P) —

o
K
D L

whereL, defines the length of path,. Here, the motivation
for subtracting the lengtlw| of « is that the segment triv-
ially explains itself, see Section 2. It is not hard to se¢ tha
the scoreu fulfills the conditions (1). From the assumption
S(n,n) = 1, one obtaingi(P) > 0. Furthermore note that,
when using® = {(1,2),(2,1),(1,1)}, one hasl; < |qof
and)’, L, < N. This togetherwnhS‘(n m) < 1 implies
the propertya(P) < (N — |a|)/N. Intuitively, the value
(P) expresses thaverage scorer precision of the given
path familyP.

Next, we define some kind @bverageor recall measure
for P. To this end, lety(P) := Ugei.xymp C [1: N] be the
union of all segments defined by the first projection of the
pathsr;.. Then we define theaormalized coveragg(P) of
P by

A(P) = (6)

P)l ol

3(p) = NP

()

As above, the lengtly| is subtracted to compensate for triv-
ial coverage. Obviously, one hasP) < (N — a)/N.

Inspired by the F-measure that combines precision and
recall, we define théitnessy(P) of the path familyP to be

i(P) -~(P)

AP =2 Sipy TPy

(8)

In other words, the fitness integrates the normalized score
and coverage into one measure. Finally, fibeessy(«) of

a segment is defined to be the fithess value of the score-
maximizing path familyP* defined in (4):

@(P*). 9)

Note that the path familfP* defines in a natural way a set

of disjoint segments revealing the repetitionscofvithin

the sequencé&’, see Figure 1. An optimal path famify*

for a segmenty can be computed efficiently wit®(|a| x

N) operations using dynamic programming. Actually, the
algorithm, which we do not describe in this paper due to
space limitations, is an extension of classical dynamietim
warping (DTW), see [4, 6].

When computing the fitness(«) for all possible seg-
mentsa = [s : t| € [1 : NJ, one can obtain a com-
pact fitness representation for the entire music recording.
More precisely, we arrange all fitness values in some time-
lag fitness matrix € RY*Y defined by® (s, £) := ¢([s :
s+ ¢ —1]) for the starting point € [1 : N] and the segment
length? € [1 : N — s + 1], whereas all other entries @f
are set to zero, see Figure 3c for an example. Note that each
cell (s, ¢) of the fitness matrixp defines an optimal path
family for the segmenty = [s : s + ¢ — 1]. The maximal
entry of ® yields the segment with the highest fitness value,
which can be regarded as the most representative segment of
the recording. In this sense, a solution to our thumbnailing
problem is given by

pla) =

(10)

o = argmax p(«),
«

where the path family associateddo yields the structure
analysis result.

4. EXPERIMENTS

To investigate the behavior of our fithess measure, we have
conducted various experiments using a number of challeng-
ing audio recordings that exhibit strong acoustic deforma-
tions and musical variations. We first discuss some repre-
sentative examples and then report on an experiment con-
ducted on a corpus of field recordings.
We start with the song “In the year 2525" by Za-

ger and Evans, which already served as example in Fig-
ure 2 and Figure 3. This song has the musical form
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Figure 4. S and optimal path familie® over differenta for an
Ormandy recording of Brahms’ Hungarian Dance No(&).« =
[67:87] (maximal fitness)b) oo = [130:195]. (c) Fitness matrix.

AB;, B3B3 B4C1 Bs BgCo By EBg F' starting with a slow in-
tro (A-part) and continuing with eight repetitions of a cho-
rus section B-part), which are interleaved by two tran-
sitional C-parts and onev-part. The first fourB-parts
are rather similar, whereas the paBs and Bg are trans-
posed by one and, and Bs by two semitones upwards.
Using a transposition-invariant self-similarity matéx all
eight repeating3-parts are revealed by the path structure,
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Figure 5. S and optimal path familie® over differenta for a
Pollini recording of Beethoven’s Op. 31, No. 2, first moveirnen
(“Tempest”). (a) a = [11:119] (maximal fithess when using the
lower bound\ = 20 seconds.) (b) a = [483 : 487] (maximal
fitness).(c) Fitness matrix.

ure 4b corresponds td; B3 B4. Here note that because our
fithess measure disregards self-explanations, the fitfiess o
is well below the one ofi*.

In our third example, we consider a Pollini recording
of the first movement of Beethoven’s piano sonata Op. 31,
No. 2 (“Tempest”), see Figure 5. Being in the sonata form,

see Figure 2. Figure 3 shows the time-lag fithess matrix the rough musical form of this movement.is A, BA;C

® along with optimal path families for two different seg-

with A; being the expositiond, the repetition of the expo-

ments. The path family of the fitness-maximizing segment sition, B the developmentd; the recapitulation, and’ a

a* = [57:72], which is shown in Figure 3a and corresponds

short coda. Here, even thoudh is some kind of repetition

to Bs, consists of eight paths. These paths correspondto the of A, there are significant musical differences. For exam-

eight B-parts thus yielding the expected and desired result.

ple, the first theme inl5 is extended by an additional section

Looking at other segments, one can notice that the fitness not present i, and the second theme ity is transposed
measure tries to balance out score and coverage. For ex-five semitones upwards (and later transposed seven semi-
ample, for the long segment shown in Figure 3b, the lower tones downwards) relative to the second themé inHere

path accepts even cells of negative score (as long as the ac-note that the modulation does not apply to the emtisepart
cumulated score of the entire path is positive) for the sake but only to the second theme within th;-part. Never-

of coverage. Here recall that, by definition, all paths of the
family are forced to run over the entire segmant
Next, we consider a recording by Ormandy of the Hun-

theless, using transposition-invariance, our fithess oreas
can still identify the relation of the threg-parts when us-
ing o = [11:119], see Figure 5a. Interestingly, this is not

garian Dance No. 5 by Johannes Brahms, see Figure 4. This the fithess-maximizing segment, which is actually given by

piece has the musical form; A; B; BoC AsBsB4D con-
sisting of three repeating-parts, four repeating-parts, as
well as aC- and aD-part. As shown by the figure, the path
structure ofS again reflects this musical form. In particular,
the curved paths reveal that tieparts are played in differ-
ent tempi. The fitness-maximizing segmentis= [67:87]
and corresponds t®,. As shown by Figure 4a, the path
family consists of four paths, which correctly identify all
four B-parts. The segment = [130: 195] shown in Fig-

a* = [483:487], see Figure 5b. This example indicates a
problem that occurs when the self-similarity matrix consai

a lot of noise, i. e., scattered cells of relatively high scor
Such cells may form numerous path fragments that, as a
whole family, may vyield significant average score as well
as coverage values. To circumvent such problems, one may
introduce a lower bound for the minimal possible segment
length. For example, using a lower boukd= 20 seconds,

the fithess-maximizing segmentds= [11:119].



Finally, we report on an experiment using field record-
ings of the folk song collectiorOnder de groene linde
(OGL), which is part of theNederlandse Liederenbartk
Each song basically consists of a number of strophes yield-
ing the musical formd; A5 ... Ax. The main challenge is
that the songs are performed by elderly non-professional
singers with serious intonation problems, large tempo
changes, and interruptions—not to speak of poor record-
ing conditions and background noise. In [8], a reference-
based segmentation algorithm, which reverts to an addi-
tional MIDI file used as stanza reference, is described and
tested forl7 of these songs. As for evaluation, standard pre-

P R F
0.823 0.8180.821
0.863 0.847 0.855
0.932 0.909.920
0.912 0.940926

Strategy

Maximal fitness

Maximal fitness A = 10)

Maximal fitness A = 10, modified dataset)
Reference-based method [8]

Table 1. Precision, recall, anfi-measures for the reference-based
segmentation method [8] and the three reference-free miette-
scribed in this paper.

acoustic and musical variations across repeating parts. We
also introduced a time-lag fithess matrix that yields a high-
level view on the structural properties for the entire music
recording. For the future, we need to explore in more de-

cision, recall and F-measures are used to measure the accu-aj| the role of the different parameter settings, incluptine

racy of the segmentation boundaries (with a tolerancef
seconds). The results of this reference-based methodhwhic
are shown in the last row of Table 1, serve as baseline.

Our approach can be applied for accomplishing the same
segmentation task without reverting to any reference. To
this end, we determine the fitness-maximizing segraént
as in (10) and derive the segmentation from the associ-
ated path family. Using the same evaluation measures as
in [8], our reference-free method yields an F-measure value
of F = 0.821, see Table 1. Assuming some prior knowl-
edge on the minimal length of a stanza, this result can
be improved. For example, using the lower bound=
10 seconds one obtaind" = 0.855, see Table 1. This result

is still worse than the results obtained from the reference- 2]

based approact¥(= 0.926). Actually, a manual inspec-
tion showed that this degrade was mainly caused by four
particular recordings, where the segmentation derivea fro
o* was “phase-shifted” compared to the ground truth. Em-
ploying a boundary-based evaluation measure resulted in an
F-measure o' = 0 for these four recordings. Further-
more, we found out that these phase shifts were caused by
the fact that in all of these four recordings the singer com-
pletely failed in the first stanza (omitting and confusing en
tire verse lines). In a final experiment, we replaced the four
recordings by a slightly shortened version by omitting the

first stanzas, respectively. Repeating the previous experi [g]

ment on this modified dataset produced an F-measure of
F = 0.920, which is already close to the quality obtained
by baseline method. Overall, these results demonstrades th
our fitness measure can cope even with strong temporal and
spectral variations as occurring in field recordings.

5. CONCLUSIONS

. . , [
In this paper, we introduced a novel fithess measure that

expresses how representative a given segment is in terms
of repetitiveness. Our experiments showed that the fitness-
maximizing segment often yields a good candidate solution [
for the thumbnailing problem, even in the presence of strong

1 www.liederenbank.nl

(1]

(3]

(4]

(5]

(7]

(8]

role of the self-similarity matrix. We are convinced that ou
fithess matrix has great potential for visualizing and dearc
ing in hierarchical music structures in novel ways. Finally
efficiency issues need to be addressed as well as iterative
approaches that allow for deriving the entire musical form.
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