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ABSTRACT

The computer-based harmonic analysis of music recordings with the goal to automatically extract chord
labels directly from the given audio data constitutes a major task in music information retrieval. In most
automated chord recognition procedures, the given music recording is first converted into a sequence of
chroma-based audio features and then pattern matching techniques are applied to map the chroma features
to chord labels. In this paper, we analyze the role of the feature extraction step within the recognition
pipeline of various chord recognition procedures based on template matching strategies and hidden Markov
models. In particular, we report on numerous experiments which show how the various procedures depend
on the type of the underlying chroma feature as well as on parameters that control temporal and spectral
aspects.

1. INTRODUCTION

A chord is defined as the simultaneous sounding of two

or more different notes [16]. The progression of chords

over time closely relates to the harmonic content of a

piece of music, which plays a central attribute of Western

tonal music. Such harmonic chord progressions are not

only of musical importance, but also constitute a pow-

erful mid-level representation for the underlying musi-

cal signal and can be applied for various tasks such as

music segmentation, cover song identification, or audio

matching. There are many variants for defining the task

of chord recognition depending on the music representa-

tion, the temporal resolution, the level of abstraction, or

the chords to be considered in the analysis. In this pa-

per, we consider the case of audio representations where

a piece of music is given in the form of a recorded per-

formance. Here, the chord recognition task consists in

first splitting up the recording into segments and then as-

signing a chord label to each segment. The segmentation

specifies the start time and end time of a chord, and the

chord label specifies which chord is played during this

time period.

Chord recognition is one of the central tasks in the field

of music information retrieval (MIR), which is also re-

flected by numerous contributions see, e. g., [2, 3, 5, 8,

16, 21, 22, 23, 24]. Most of the described chord recogni-

tion procedures proceed in a similar fashion. In the first

step, the given music recording is converted into a se-

quence of chroma-based audio features. These features

are often further processed, for example, by applying

suitable smoothing filters to even out temporal outliers or

by applying logarithmic compression or whitening pro-

cedures to enhance small yet perceptually relevant spec-

tral components. In the next step, pattern matching tech-

niques are applied to map the chroma features to chord

labels that correspond to the various musical chords to

be considered. In the last step, further post-filtering tech-

niques are applied to smooth out local misclassifications.

Often, hidden Markov models (HMMs) are used which

jointly perform the pattern matching and temporal filter-

ing steps within one optimization procedure.

Even though numerous procedures for automated chord

labeling have been described in the literature, the delicate

interplay of the various feature extraction, filtering, and

pattern matching components is still not sufficiently in-

vestigated and understood. The situation is complicated

by the fact that the components’ behavior may crucially

depend on a variety of parameters that allow for adjust-

ing temporal, spectral, or dynamical aspects. In [22], the

influence of various aspects and parameters of a typical

HMM-based chord recognizer is investigated. In [3], a

detailed investigation is described to better understand

the interrelation of different chord recognition compo-
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nents with a focus on the impact of filtering and pattern

matching strategies. However, the impact of different

feature extraction strategies was not investigated being

left for future work.

In this paper, we continue this strand of research by an-

alyzing the impact of various types of chroma features

in the context of the chord recognition task. In particu-

lar, we report on numerous experiments which show how

different recognition procedures substantially depend on

the underlying chroma representation and on parameters

that control temporal and spectral aspects. The remain-

der of this paper is organized as follows. We first give

an overview of different chord recognition procedures

(Section 2) and describe various types of chroma features

(Section 3). As the main contribution of this paper, we

then report on our extensive experiments (Section 4) and

discuss the results. The paper concludes with some per-

spectives on future work (Section 5).

2. CHORD RECOGNITION

As mentioned in the introduction, a typical chord recog-

nition system consists of two main steps, see Fig. 1

for an illustration. In the first step, the given audio

recording (Fig. 1(b)) is transformed into a sequence X =
(x1,x2, . . . ,xN) of feature vectors xn ∈ F , n ∈ [1 : N] :=
{1, . . . ,N}. Here, F denotes a suitable feature space.

Most recognition systems are based on so-called chroma

features or pitch class profiles (see Fig. 1(c)), which we

discuss in detail in Section 3. In the second step, using

suitable pattern matching techniques, each feature vector

xn is mapped to a chord label λxn ∈Λ, see Fig. 1(d). Here,

Λ denotes a suitably defined set of all possible chord la-

bels. In the following, we consider the case that Λ con-

sists of the twelve major and minor triads, i. e.,

Λ = {C,C♯, . . . ,B,Cm,C♯m, . . . ,Bm}. (1)

The restriction to these 24 chord classes, even though

problematic from a musical point of view, is often made

in the chord recognition literature.

There are many ways of performing the pattern match-

ing step based on template-based matching strategies [5],

hidden Markov models (HMMs) [23, 24, 3], or more

complex Bayesian networks [16]. For an overview of

such methods and the influence of various model param-

eters, we refer to [3, 16, 22]. Since in this paper we fo-

cus on the feature extraction step, we now give a brief
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Fig. 1: Chord recognition task illustrated by the first measures

of the Beatles song “Let It Be”. (a): Score of the first three

measures. (b): Audio representation of these measures. (c):

Chroma representation. (d): Chord recognition result indicat-

ing correct (C), false negative (FN), and false positive (FP) la-

bels.

summary of the pattern matching techniques used in the

subsequent experiments and refer to the literature for de-

tails.

2.1. Template-based Approach
As the first pattern matching technique, we use a simple

template-based labeling strategy. Here, the idea is to pre-

compute a set T ⊂ F of templates that correspond to

the set of chord labels. The elements of T are denoted

by tλ ∈ T , λ ∈ Λ. Intuitively, each template is given

in the form of a kind of prototype chroma vector that

corresponds to a specific musical chord. Furthermore,

we fix a distance measure d : F ×F →R that allows for

comparing different chroma features. In the following,

we use the cosine measure defined by

d(x,y) = 1−
〈x|y〉

||x|| · ||y||
, (2)
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for x,y ∈ F \ {0}. In the case x = 0 or y = 0, we set

d(x,y) = 1. Here, ||·|| denotes the Euclidean norm (also

referred to as ℓ2-norm).

Then, the template-based chord recognition procedure

consists in assigning the chord label that minimizes the

distance between the corresponding template and the

given feature vector x = xn:

λx := argmin
λ∈Λ

d(tλ ,x). (3)

Note that this procedure works in a purely framewise

fashion without considering any temporal context.

There are several strategies for determining suitable

chord templates based on musical knowledge or learn-

ing procedures using labeled training data. In the fol-

lowing, we consider binary templates and averaged tem-

plates. The set T b consists of 24 binary templates, each

of which being a 12-dimensional binary vector with three

non-zero entries equal to one. These non-zero entries

correspond to the three chromas the corresponding chord

is composed of. For example, the binary template corre-

sponding to the major chord C = {C,E,G} is given by

tb
C = (1,0,0,0,1,0,0,1,0,0,0,0)T . (4)

Furthermore, the set T a consists of averaged templates,

which are learned from training material by averaging

suitable chroma vectors obtained from labeled audio

data. For example, the averaged template ta
C is obtained

by averaging all chroma vectors from the training set la-

beled as C.

The two template-based chord recognition approaches

are denoted by Tb and Ta, respectively.

2.2. Gaussian-based Approach
Next, we introduce a chord recognition procedure based

on Gaussian distributions. Here, the chord templates

are replaced by chord models each specified by a mul-

tivariate Gaussian distribution given in terms of a mean

vector µ and a covariance matrix Σ. As for the aver-

aged templates, µ and Σ are learned from labeled audio

data. Then, the distance of a given chroma vector to a

chord model is expressed by a Gaussian probability value

and the assigned label is determined by the probability-

maximizing chord model (instead of the cost-minimizing

chord template), see [3]. The Gaussian-based chord

recognition approach is denoted by GP.

2.3. HMM-based Approach

Finally, we summarize an HMM-based chord recogni-

tion procedure, which was originally suggested by Sheh

and Ellis [23] and is now the most widely used chord

labeling approach. The strength of this approach is that

HMMs also account for the temporal context in the clas-

sification stage, which can be considered as a kind of

context-aware filtering of the matching results. To this

end, in addition to the Gaussian models, one needs tran-

sition probabilities that express the likelihood of passing

over from one chord label to any of the other chord la-

bels. These probabilities are given by a transition ma-

trix Ω ∈ [0,1]24×24, which can be specified manually

based on musical knowledge or automatically by using

a training procedure reverting to suitable training mate-

rial. For the labeling procedure, one then needs a Viterbi

decoding algorithm to determine a chord label sequence

that jointly maximizes the output probabilities defined by

the Gaussian distributions and the transition probabili-

ties, see [23]. The determination of the transition matrix

also plays a crucial role in the chord recognition context

and has been studied in various contributions [2, 22, 3].

In our experiments, we determine Ω using training data

with annotated chord labels, see Section 4.1. The HMM-

based chord recognition approach is denoted by HMM.

The HMM-based approach used in our experiments is

conceptually state-of-the-art. However, as the focus of

our evaluation lies on the feature side, we revert to a very

basic variant. More advanced implementations are intro-

duced in [3, 24, 16].

3. FEATURE EXTRACTION

Chroma-based audio features, sometimes also referred to

as pitch class profiles, are a well-established tool in pro-

cessing and analyzing music data [1, 6, 17] and were in-

troduced to the chord recognition task by Fujishima [5].

Assuming the equal-tempered scale, the chroma corre-

spond to the set {C,C♯,D, . . . ,B} that consists of the

twelve pitch spelling attributes as used in Western music

notation. A chroma vector can be represented as a 12-

dimensional vector x = (x(1),x(2), . . . ,x(12))T , where

x(1) corresponds to chroma C, x(2) to chroma C♯, and

so on. Normalized chroma-based features indicate the

short-time energy distribution among the twelve chroma

and closely correlate to the harmonic progression of the

underlying piece. This is the reason why basically ev-

ery chord recognition procedure relies on some type of

chroma feature.

There are many ways for computing chroma features.

For example, the transformation of an audio recording
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Fig. 2: Score and various feature representations of the first 10

seconds (corresponding to the first three measures) of Let it Be

by The Beatles.

into a chroma representation (or chromagram) may be

performed either by using short-time Fourier transforms

in combination with binning strategies [1] or by employ-

ing suitable multirate filter banks [17]. Furthermore, the

properties of chroma features can be changed by intro-

ducing suitable post- and pre-processing steps modifying

spectral, temporal, and dynamical aspects. This leads to

a large number of feature types which can behave quite

differently depending on the subsequent analysis task. In

this section, we summarize the types of chroma features

that will be used in our subsequent experiments. Note

that there are many more chroma variants. However, our

selection covers interesting variants that demonstrate the

importance of the feature extraction step.

3.1. Pitch Features

As basis for the chroma feature extraction, we first de-

compose a given audio signal into 88 frequency bands

with center frequencies corresponding to the pitches A0

to C8 (MIDI pitches p = 21 to p = 108). For deriving this

decomposition, we use a multirate filter bank consisting

of elliptic filters as described in [17]. Then, for each

subband, we compute the short-time mean-square power

(i. e., the samples of each subband output are squared)

using a rectangular window of a fixed length and an over-

lap of 50 %. In the following, we use a window length

of 200 milliseconds leading to a feature rate of 10 Hz

(10 features per second). The resulting features, which

we denote as Pitch, measure the local energy content of

each pitch subband and indicate the presence of certain

musical notes within the audio signal, see [17] for further

details. To account for tuning problems, we employ a

tuning strategy similar to [6]. To this end, one computes

an average spectral vector and estimates the tuning devi-

ation parameter from the maximum spectral coefficient.

This tuning deviation parameter is then used to suitably

shift the center frequencies of the subband-filters of the

above multirate filter bank. A similar approach is de-

scribed in [19].

3.2. CP Feature

From the Pitch representation, one can obtain a chroma

representation by simply adding up the corresponding

values that belong to the same chroma. To archive in-

variance in dynamics, we normalize each chroma vector

with respect to the Euclidean norm. The resulting fea-

tures are referred to as Chroma-Pitch denoted by CP, see

Fig. 2(b).

3.3. CLP Features
To account for the logarithmic sensation of sound inten-
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sity [14, 25], one often applies a logarithmic compres-

sion when computing audio features [11]. To this end,

the local energy values e of the pitch representation are

logarithmized before deriving the chroma representation.

Here, each entry e is replaced by the value log(η ·e+1),
where η is a suitable positive constant. Then, the chroma

values are computed as explained in Section 3.2. The re-

sulting features, which depend on the compression pa-

rameter η , are referred to as Chroma-Log-Pitch denoted

by CLP[η ], see Fig. 2(c).

3.4. CENS Features
Adding a further degree of abstraction by considering

short-time statistics over energy distributions within the

chroma bands, one obtains CENS (Chroma Energy Nor-

malized Statistics) features, which constitute a family of

scalable and robust audio features. These features have

turned out to be very useful in audio matching and re-

trieval applications [20, 13]. In computing CENS fea-

tures, a quantization is applied based on logarithmically

chosen thresholds. This introduces some kind of loga-

rithmic compression similar to the CLP[η ] features. Fur-

thermore, these features allow for introducing a tempo-

ral smoothing. Here, feature vectors are averaged using

a sliding window technique depending on a window size

denoted by w (given in frames) and a downsampling fac-

tor denoted by d, see [17] for details. In the following,

we do not change the feature rate and consider only the

case d = 1 (no downsampling). Therefore, the resulting

feature only depends on the parameter w and is denoted

by CENS[w], see Fig. 2(d) and Fig. 2(e).

3.5. CRP Features
To boost the degree of timbre invariance, a novel fam-

ily of chroma-based audio features has been introduced

in [18]. The general idea is to discard timbre-related in-

formation in a similar fashion as pitch-related informa-

tion is discarded in the computation of mel-frequency

cepstral coefficients (MFCCs). Starting with the Pitch

features, one first applies a logarithmic compression and

transforms the logarithmized pitch representation using a

DCT. Then, one only keeps the upper coefficients of the

resulting pitch-frequency cepstral coefficients (PFCCs),

applies an inverse DCT, and finally projects the result-

ing pitch vectors onto 12-dimensional chroma vectors.

These vectors are referred to as CRP (Chroma DCT-

Reduced log Pitch) features. The upper coefficients to

be kept are specified by a parameter p ∈ [1 : 120]. In our

experiments, we use p = 55. Furthermore, similar to the

CENS[w] features, we apply temporal smoothing by intro-

ducing a window parameter w that is used to average the

CRP features in a band-wise fashion. The resulting fea-

tures are denoted by CRP[w], see Fig. 2(f) and Fig. 2(g).

3.6. CISP Features

Finally, we use a chroma type, where the tonal com-

ponents are enhanced and the spectral resolution is in-

creased by considering instantaneous frequencies. These

features were originally introduced by Ellis and have

been used in the chord recognition context as well as for

cover song identification [4]. The basis for these fea-

tures is a spectrogram.1 To enhance the spectral reso-

lution, the instantaneous frequency for each coefficient

is estimated exploiting the phase information. Further-

more, based on the instantaneous frequencies, a sepa-

ration of noise and harmonic components is performed

and only harmonic components are preserved. Finally,

to account for tuning deviations, the mapping of spectral

coefficients to chroma bins is globally adjusted by up to

±0.5 semitones to minimize the deviations of the instan-

taneous frequency values from the chroma bin centers

using a histogram-based technique. To obtain the final

features, denoted by CISP, adjacent frames are averaged

in 100 ms windows to yield a feature rate of 10 Hz, see

Fig. 2(h).

4. EXPERIMENTS

In this section, we examine the behavior of the four chord

labeling procedures in dependence on the underlying fea-

ture types and associated parameter settings. We start

by describing the experimental setup (including the data

collection and evaluation measure) and then report on

various series of experiments.

4.1. Experimental Setup
In our experiments, we use a collection of Beatles songs,

which is a widely used benchmark dataset with publicly

available ground-truth chord annotations [15]. Although

this dataset is limited to only one artist, the results still

show certain tendencies of the chord recognition accu-

racies. The collection, which we denote as D , consists

of 180 songs. We further partition D into three sub-

collections Dk, k ∈ {1,2,3}, by first ordering the record-

ings alphabetically according to the songs’ titles, and

1In our experiments, we use an implementation available in the

ISP toolbox http://kom.aau.dk/project/isound/. Here, dis-

crete Fourier transforms are calculated over windowed frames of length

93 ms with 75% overlap. Consequently, each frame corresponds to

23 ms of the audio and each coefficient covers a frequency range of

10.8 Hz.
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then by putting the first 60 recordings into D1, the second

60 recordings into D2, and the last 60 recordings into D3.

The original annotations supplied by Harte [9] were

reduced to the 24 chord labels following the widely

spread convention of the MIREX Audio Chord Estima-

tion task.2 Here, only the first two intervals of each chord

are considered, where augmented chords are mapped to

major chords and diminished chords to minor chords.

In some cases, there are passages where no meaning-

ful chord information exists. Such regions are annotated

as “N” and are left unconsidered in our evaluation (i. e.,

having no influence on the recognition accuracy).

In our evaluation, we first quantize and segment the

chord annotations to match the frames being specified

by the feature extraction step. The evaluation is then

performed framewise using standard precision and re-

call measures by comparing the automatically generated

labels with the reference labels. More precisely, a ref-

erence label is considered correct (C) if it agrees with

the computed label, otherwise it is called a false negative

(FN). Each incorrectly computed label is called a false

positive (FP), see also Fig. 1(d). From this one obtains

precision, recall, and F-measure defined by

P =
C

C+FP
, R =

C

C+FN
, F =

2 ·P ·R

P+R
(5)

for each song.

In our evaluation, we employ a 3-fold cross validation.

Here, two of the three sub-collections are used to train

the recognizer that is then tested on the remaining one.

F-measure values are averaged over all songs of the re-

spective sub-collection Dk. The final F-measure for the

overall dataset D is the mean of the values obtained for

the three sub-collections.

For determining the averaged templates to be used in

Ta as well as µ and Σ to be used in GP and HMM, we

revert to the observation by Goto [7] that the twelve

cyclic shifts of a 12-dimensional chroma vector corre-

spond to the twelve possible transpositions. Therefore,

exploiting the reference chord labels, we first transpose

all chroma features to C or Cm, then determine the mod-

els for these two chords, and finally obtain models for

all 24 chords by suitably transposing the C and Cm mod-

els. This procedure guarantees the same amount of train-

ing data for all major and minor chords, respectively.

2http://www.music-ir.org/mirex/wiki/2010:Audio_

Chord_Estimation

To generate the transition matrix Ω, we first determine

for each frame the corresponding reference label. Then,

for all λi,λ j ∈ Λ we define the transition probabilities

Ω(λi,λ j) =
C(λi,λ j)

∑λk∈Λ C(λi,λk)
. Here, C(λi,λ j) specifies the

number of chord transitions from label λi to the label λ j,

and ∑λk∈Λ C(λi,λk) serves as a normalization counting

the transition from λi to all labels λk ∈ Λ including itself.

4.2. Dependency on Feature Type

In a first experiment, the dependency of the chord recog-

nition results on the underlying feature type is investi-

gated. Fig. 3 summarizes the results of the evaluation for

the five different feature types in combination with the

four recognizers. In this experiment, we use the com-

pression parameter η = 100 for CLP[η ] and the window

parameters w = 1 and w = 11 for CENS[w] and CRP[w].
The role of these parameters is further analyzed in Sec-

tion 4.3 and Section 4.4.

To better understand the influence of the 3-fold cross val-

idation used in our experiments, Fig. 3(a)-(c) shows the

recognition accuracies for the three folds independently.

Averaging over the results of the three folds, one ob-

tains the final results of the cross validation shown in

Fig. 3(d). The F-measure values for the different parts

of D are very consistent, e. g., using CP together with

HMM leads to F = 0.531 for D3 (Fig. 3(a)), F = 0.528 for

D2 (Fig. 3(b)), F = 0.522 for D1 (Fig. 3(c)), and in aver-

age F = 0.527 for the entire dataset D (Fig. 3(d)). This

indicates that the partition and selection of training and

testing data only has a marginal influence on the overall

chord recognition results for this particular dataset.

In the following experiments, we only revert to the av-

erage values of the cross validation. As Fig. 3(d) re-

veals, the chord recognition accuracies depend on the

complexity of the respective recognizer. For example, in

the case of CLP[100], one obtains an F-measure value of

F = 0.553 for the basic binary template-based method Tb.

Considering training data to learn averaged templates,

the accuracy of Ta is increased to F = 0.610. Further

adding covariance information as used in GP gives only

slight improvements (F = 0.615). However, when us-

ing the most advanced method HMM one gets the highest

accuracy of F = 0.725. The reason for this is that HMM in-

troduces a context-aware smoothing in the classification

stage. Considering the temporal context of chords leads

to better results in comparison to the methods working in

a purely framewise fashion.

Our results also reveal that the chord recognition quality
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(a)
Tb Ta GP HMM

CP 0.449 0.427 0.434 0.531
CLP[100] 0.540 0.607 0.616 0.716
CENS[1] 0.458 0.435 0.439 0.581
CENS[11] 0.534 0.552 0.562 0.633
CRP[1] 0.523 0.573 0.573 0.708
CRP[11] 0.607 0.659 0.661 0.712
CISP 0.426 0.482 0.505 0.707

(b)
Tb Ta GP HMM

CP 0.476 0.416 0.423 0.528
CLP[100] 0.566 0.610 0.612 0.720
CENS[1] 0.474 0.425 0.420 0.588
CENS[11] 0.565 0.557 0.567 0.650
CRP[1] 0.532 0.592 0.591 0.729
CRP[11] 0.615 0.676 0.678 0.733
CISP 0.436 0.484 0.501 0.721

(c)
Tb Ta GP HMM

CP 0.456 0.412 0.408 0.522
CLP[100] 0.552 0.613 0.618 0.738
CENS[1] 0.441 0.430 0.413 0.583
CENS[11] 0.540 0.552 0.543 0.631
CRP[1] 0.529 0.583 0.577 0.711
CRP[11] 0.615 0.665 0.657 0.714
CISP 0.425 0.480 0.490 0.713

(d)
Tb Ta GP HMM

CP 0.460 0.418 0.421 0.527
CLP[100] 0.553 0.610 0.615 0.725
CENS[1] 0.458 0.430 0.424 0.584
CENS[11] 0.546 0.554 0.557 0.638
CRP[1] 0.528 0.583 0.581 0.716
CRP[11] 0.612 0.667 0.665 0.720
CISP 0.429 0.482 0.499 0.714

(e)

   CP   CLP[100] CENS[1] CENS[11]  CRP[1]  CRP[11]   CISP  
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Fig. 3: Dependency of recognition rate on feature type using

(a): Training: D1∪D2, Test: D3, (b): Training: D1∪D3, Test:

D2, (c): Training: D2 ∪D3, Test: D1, and (d): 3-fold cross

validation on D (averaged over (a),(b) and (c)). (e): Visual

representation of (d).

substantially depends on the used feature type and im-

plementation details. For example, using the most basic

feature CP results in very low F-measure values (e. g.,

F = 0.527 for CP with HMM) regardless of which recog-

nizer is used. However, simply applying a logarithmic

compression enhancing weaker components of the fea-

ture leads to a significant increases in F-measure (e. g.,

F = 0.725 for CLP[100] with HMM). We will further an-

alyze the effect of the compression parameter η in Sec-

tion 4.3.

CENS[1] shows a very similar behavior as CP (w = 1 actu-

ally disables the temporal smoothing on the feature side).

This indicates that the internal quantization of these fea-

tures is not beneficial for chord recognition. However,

when applying a temporal smoothing by setting the win-

dow parameter w = 11 (corresponding to one second) the

recognition accuracy significantly increases for all rec-

ognizers. This effect is even noticeable for HMM which

already involves a smoothing in the classification step

(F = 0.584 for CENS[1] and F = 0.638 for CENS[11]). We

will further investigate the choice of the window param-

eter w in Section 4.4.

CRP[1] is designed to boost timbre invariance. These fea-

tures already incorporate an internal logarithmic com-

pression leading to similar results as for CLP[100] (F =
0.716 for CRP[1] with HMM). Further adding temporal

smoothing on the feature side, the F-measure increases to

F = 0.720 for CRP[11] with HMM. In particular, these fea-

tures lead to high F-measures, even in the case of the sim-

ple framewise recognizers (e. g., F = 0.612 in the case of

Tb). Here, a carefully designed feature seems to lessen

the influence of the recognizer on the chord recognition

accuracy, see also Fig. 3(e) for a visual representation of

the recognition results.

CISP attempts to emphasize harmonic components of the

signal. This should improve the chord recognition qual-

ity for all recognizers. However, in practice, CISP shows

a special behavior. On the one hand, using CISP re-

sults in high F-measure values in combination with HMM

(F = 0.714). On the other hand, combining CISP fea-

tures with any of the framewise recognizers Tb, Ta, and

GP results in very low F-measure values (e. g., F = 0.429

for Tb). Here, one reason is that for this feature type

the intensities of chroma bands corresponding to chord

notes are only slightly more pronounced than those cor-

responding to non-chord notes, see Fig. 2(h). In general,

the ratio of chroma intensities of chord notes to those of

non-chord notes seems to have a large influence on the

chord recognition results. In particular the frame-wise

recognizers tend to be very sensitive to this ratio. Here,

high ratios (as in CP and CENS[w]) as well as low ratios

(as in CISP) lead to poor recognition results. HMM, how-

ever, is able to compensate for the low intensity ratios
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Tb Ta GP HMM
CP 0.460 0.418 0.421 0.527
CLP[1] 0.508 0.511 0.522 0.643
CLP[10] 0.544 0.578 0.586 0.700
CLP[100] 0.553 0.610 0.615 0.725
CLP[1000] 0.541 0.606 0.620 0.734
CLP[10000] 0.521 0.579 0.608 0.730

Fig. 4: Dependency of recognition rate on compression param-

eter η for CLP[η ] (using 3-fold cross validation on D).

of CISP, but not for the high intensity ratios of CP and

CENS[w], see Fig. 3(e).

The results of the experiments discussed in this section

show that the choice of the chroma feature has a signif-

icant influence on the different recognition procedures.

Even the most advanced recognizer HMM has a substan-

tial dependence on the underlying feature type. Note that

using an HMM-based recognizer in combination with a

poor choice of chroma feature leads to results of lower

quality than using a basic recognizer with a good feature

(e. g., F = 0.527 for HMM with CP but F = 0.553 for Tb

with CLP[100]). In particular, a logarithmic compression

of the intensities as well as a temporal smoothing on the

feature side have a beneficial effect, regardless of the rec-

ognizer used.

4.3. Dependency on Logarithmic Compression

In this section, we further investigate the role of

the logarithmic intensity compression of the chroma

features. Fig. 4 shows the chord recognition re-

sults for CP (no compression) and CLP[η ] for η ∈
{1,10,100,1000,10000}. The experiments show that

logarithmic compression (or similar enhancement proce-

dures such as spectral whitening) is an essential step in

all chord recognition procedures.

For example, using HMM with CP one obtains F = 0.527.

Simply applying a logarithm one gets F = 0.643 for

CLP[1]. Enlarging the compression parameter η steadily

increases the chord recognition accuracy, e. g., F = 0.725

for η = 100 and HMM. Here one reason for this effect is

that weak spectral components, which are often relevant

in view of the perception of harmony, are enhanced by

the compression. See also Fig. 2(b) and Fig. 2(c) for

illustration of this effect. However, for very large com-

pression factors such as η = 10000, the chord recogni-

tion accuracy decreases (F = 0.730). Here, the enhance-

ment of irrelevant noise-like components outweigh the

harmonically relevant components.

For Ta and GP, the logarithmic compression has the same

significant effect on the recognition accuracy as for HMM.

However, Tb does not benefit from the logarithmic com-

pression in the same way as the other methods do, see

the visual representation in Fig. 4. One reason for this

is that the weaker components enhanced by the compres-

sion typically correspond to harmonics. Higher harmon-

ics, however, are not taken into account by idealized bi-

nary templates as used in Tb, whereas Ta, GP, and HMM,

however, adapt to the harmonics in the training stage.

4.4. Dependency on Smoothing
In this section we continue the investigation of the tem-

poral smoothing of the features controlled by the window

parameter w. Fig. 5 and Fig. 6 show the chord recogni-

tion accuracies for different choices of the window pa-

rameter w ∈ {1,3,5, . . . ,25} for CENS[w] and CRP[w], re-

spectively, using the four chord recognizers.

As the experiments in Section 4.2 already revealed, tem-

poral smoothing is an essential step for the framewise

chord recognition procedures (Tb, Ta, and GP) yielding

significant improvements. This observation is confirmed

by the results in Fig. 5. For example, using Ta with

CENS[w] setting w = 1 (no temporal smoothing) results

in F = 0.430. Enlarging w, the recognition accuracy

gradually increases and reaches a value of F = 0.599

for w = 23 (corresponding to 2.3 sec). Further enlarg-

ing w leads to a decrease in accuracy again. For CRP[w]
one observes a very similar effect, see Fig. 6. The rea-

son for this notable improvement is that smoothing re-

moves temporal fluctuations and local outliers in the fea-

tures. On the other hand, however, smoothing reduces

the temporal resolution and may prevent the recognizers

to detect chords of short durations. For this particular

dataset, a smoothing window corresponding to roughly

two seconds of the audio turns out to be the best trade-off

between increased robustness to outliers and decreased

temporal resolution. This trade-off, however, is data-

dependent and depends on the chord change rate of the

audio material.
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Tb Ta GP HMM
CENS[1] 0.458 0.430 0.424 0.584
CENS[3] 0.484 0.472 0.468 0.592
CENS[5] 0.501 0.499 0.495 0.599
CENS[7] 0.518 0.521 0.518 0.609
CENS[9] 0.533 0.540 0.538 0.617
CENS[11] 0.546 0.555 0.554 0.623
CENS[13] 0.557 0.568 0.567 0.626
CENS[15] 0.566 0.578 0.578 0.628
CENS[17] 0.573 0.586 0.587 0.631
CENS[19] 0.578 0.592 0.593 0.631
CENS[21] 0.582 0.596 0.597 0.631
CENS[23] 0.585 0.599 0.601 0.629
CENS[25] 0.587 0.583 0.588 0.617

Fig. 5: Dependency of recognition rate on window parameter

w for CENS[w] (using 3-fold cross validation on D).

In the case of HMM, temporal smoothing of the features

has a less significant effect on the chord recognition ac-

curacy. This recognizer already incorporates a kind of

context-aware smoothing in the classification stage. Us-

ing HMM, as shown in Fig. 5, the combination of two con-

ceptually different smoothing strategies only slightly im-

proves the recognition rates from F = 0.584 for CENS[1]
to F = 0.631 for CENS[19]. For CRP[w], as shown in

Fig. 6, the improvements are marginal. But even in

this case adding some temporal smoothing on the fea-

ture side does not worsen the chord recognition quality

(e. g., F = 0.716 for CRP[1] and F = 0.720 for CRP[11].

Interestingly, GP with smoothing on the feature side has

a similar effect as HMM without smoothing on the feature

side (e. g., F = 0.692 for GP with CRP[21] and F = 0.716

for HMM with CRP[1]). This indicates that the actual

choice of smoothing strategy has only a small influence

on the final chord recognition rates. Similar effects are

also observed in the experiments in [3].

5. CONCLUSIONS

In this paper, we analyzed the chord recognition quality

of different automatic chord recognition procedures in
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Tb Ta GP HMM
CRP[1] 0.528 0.583 0.581 0.716
CRP[3] 0.556 0.611 0.611 0.716
CRP[5] 0.575 0.631 0.632 0.718
CRP[7] 0.591 0.646 0.649 0.718
CRP[9] 0.603 0.658 0.662 0.720
CRP[11] 0.612 0.666 0.671 0.720
CRP[13] 0.620 0.673 0.679 0.718
CRP[15] 0.625 0.677 0.685 0.718
CRP[17] 0.630 0.679 0.689 0.716
CRP[19] 0.632 0.680 0.691 0.714
CRP[21] 0.633 0.680 0.692 0.712
CRP[23] 0.632 0.679 0.692 0.709
CRP[25] 0.631 0.676 0.676 0.691

Fig. 6: Dependency of recognition rate on window parameter

w for CRP[w] (using 3-fold cross validation on D).

combination with different feature types. As our exper-

imental results showed, small differences in the imple-

mentation of the chroma variants can have a significant

influence on the chord recognition accuracy. In particu-

lar, a logarithmic compression step in the chroma extrac-

tion turned out to be crucial. Furthermore, our results

reveal that temporal feature smoothing plays an impor-

tant role in chord recognition in particular for recogniz-

ers that work in a purely framewise fashion. The Viterbi-

decoding in the HMM-based recognizer also introduces a

different kind of smoothing in the classification step. The

combination of the two conceptually different smoothing

strategies only adds a small improvement. In summary,

one can note that the Gaussian-based framewise recog-

nizer in combination with an appropriate feature smooth-

ing yields already good recognition rates. Exploiting mu-

sical knowledge, e.g. in the form of statistical priors as

used in HMMs or more general graphical models [16],

one can further improve the recognition results.

For the future, we plan to extend our evaluation to com-

prise larger datasets of different genres [10]. In particular

for building more complex statistical models, more com-

prehensive datasets with chord annotations are needed.

Furthermore, we plan to extend our evaluation to not
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only express the chord recognition quality using sim-

ple F-measures for an entire dataset, but to investigate

the quality for each song (or even bar/beat) individually.

This allows for detecting error-prone passages and an-

alyzing the underlying musical or physical effects fre-

quently leading to chord recognition errors. Further-

more, inspecting consistencies and inconsistencies in the

recognition results of different recognition strategies and

features, one could get a deeper insight and better un-

derstanding of the limitations of current state-of-the-art

automatic chord recognition. Another promising line of

research in this direction is the development of multi-

layered analysis methods that exploit the availability of

multiple versions and representations of a given musical

work [12].
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