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Abstract. Analyzing human motion data has become an important
strand of research in many fields such as computer animation, sport
sciences, and medicine. In this paper, we discuss various motion repre-
sentations that originate from different sensor modalities and investigate
their discriminative power in the context of motion identification and
retrieval scenarios. As one main contribution, we introduce various mid-
level motion representations that allow for comparing motion data in a
cross-modal fashion. In particular, we show that certain low-dimensional
feature representations derived from inertial sensors are suited for speci-
fying high-dimensional motion data. Our evaluation shows that features
based on directional information outperform purely acceleration based
features in the context of motion retrieval scenarios.

1 Introduction

There are many ways for capturing and recording human motions including me-
chanical, magnetic, optical, and inertial devices. Each motion capturing (mocap)
technology has its own strengths and weaknesses with regard to accuracy, expres-
siveness, and operating expenses, see [4,13] for an overview. For example, optical
marker-based mocap systems typically provide high-quality motion data such as
positional information given in joint coordinates or rotational information spec-
ified by joint angles. However, requiring an array of calibrated high-resolution
cameras as well as special garment equipment, such systems are not only cost
intensive but also impose limiting constraints on the actor and the recording
environment. On the other side, in recent years low-cost inertial sensors, which
can be easily attached to the body or even fit in a shoe, have become popular
in computer game and sports applications [7,9]. Another use of inertial sensors
is shown in [8], where the inertial sensor data is used to regularize marker-less
tracking results. However, inertial information such as joint accelerations, angu-
lar velocities, or limb orientations, is often being of less expressive power and
affected by noise.
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Fig. 1. (a) Actor wearing a suit with 41 retro-reflective markers as used by an optical
mocap system. (b) Actress wearing a suit with 5 Xsens MTx Sensors. (c) Positions of
41 markers provided by the optical system. (d) Locations of the sensors. (e) Limbs’
positions and orientations defined by the positions of markers. (f) Inertial sensors mea-
suring the orientation of the limb they are attached to. (g) Limb orientation expressed
with respect to a global coordinate system.

In this paper, we address the issue of cross-modal motion comparison inves-
tigating the expressiveness of various motion representations in the context of
general motion identification and retrieval scenarios. As one main contribution,
we introduce various mid-level feature representations that facilitate cross-modal
comparison of various motion types. Here, the main challenge consists of find-
ing a good trade-off between robustness and expressiveness: on the one hand, a
mid-level representation has to be robustly deducible from the data outputted
by different mocap systems; on the other hand, the representation has to con-
tain enough information for discriminating motions within a certain application
task. In particular, we show that certain low-dimensional orientation-based mo-
tion features are suited for accurately retrieving high-dimensional motion data
as obtained from optical motion capturing.

The remainder of the paper is organized as follows. In Sect. 2, we describe
different sensor modalities and discuss some of their properties. In particular, we
go into more detail on acceleration and orientation data as obtained from recent
inertial sensors. Then, in Sect. 3, we introduce various mid-level feature repre-
sentations that can be derived from the different sensor modalities. In Sect. 4,
we study the performance of these mid-level representations in the context of
cross-modal motion retrieval. Finally, in Sect. 5 we conclude with an outlook on
future work. Further related work is discussed in the respective sections.
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2 Sensor Modalities

In this paper, we focus on two types of mocap systems, optical and inertial sys-
tems, which differ largely in acquisition cost, in the requirements on the recording
conditions, and in the kind of data they provide. We now summarize some of
the fundamental properties of such systems, while introducing several motion
representations and fixing some notation.

2.1 Positional Motion Data

Optical marker-based mocap technology, as used in the passive marker-based
Vicon MX system1 or the active marker-based PhaseSpace system2, allows for
recording human motions with high precision. Here, the actor is equipped with
a set of active or passive markers, which are tracked by an array of calibrated
high-resolution cameras. From synchronously recorded 2D images of the marker
positions, the system can then reconstruct 3D coordinates of marker positions
or other skeletal kinematic chain representations. One particular strength of
optical marker-based systems is that they provide positional motion data of
high quality. However, requiring an array of calibrated high-resolution cameras as
well as special garment equipment, such systems are cost intensive in acquisition
and maintenance. Furthermore, many of the available optical mocap systems are
vulnerable to bright lighting conditions thus posing additional constraints on the
recording environment (e. g., illumination, volume, indoor). In our experiments,
we use a set of 41 retro-reflective markers which are attached to an actor’s suit
at well defined locations following a fixed pattern, see Fig. 1 (a).

2.2 Inertial Motion Data

In contrast to marker-based reference systems, inertial sensors impose compar-
atively weak additional constraints on the overall recording setup with regard
to location, recording volume, and illumination. Furthermore, inertial systems
are relatively inexpensive as well as easy to operate and to maintain. Therefore,
such sensors have become increasingly popular and are now widely used in many
commercial products. On the downside, inertial sensors do not provide any high-
qualitative positional data, but only accelerations and rate of turn data given
in the sensor’s local coordinate system. Note that these measured accelerations
always contain, as one component, the acceleration caused by gravity. Therefore,
the measured acceleration a can be thought of a superposition a = q[m + g]
consisting of the gravity g and the actual acceleration m of the motion. Here,
the quantity a is given in the sensors’s local coordinate system, while m and g

are given in the world coordinate system. The term q[·] represents the transfor-
mation from the global coordinate system to the sensor’s local coordinate system
(see below). This fact is often exploited in many portable devices such as recent

1 www.vicon.com
2 www.phasespace.com

www.vicon.com
www.phasespace.com
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Fig. 2. Illustration of the different feature values. (a) Measured acceleration as with
respect to the sensors local coordinate system. (b) Pitch θs of a sensor with respect to
the plane defined by â respectively ĝ. (c) Roll ϕs of a sensor with respect to the plane
defined by â respectively ĝ.

mobile phones to calculate the device’s orientation with respect to the canonical
direction of gravity [2].

In the context of cross-modal comparison of optical and inertial data, one
could integrate over the inertial data to obtain 3D positions. This, however, is not
practical since inertial data is prone to noise leading to very poor positional data
when being integrated [12]. Therefore, inertial data is often used indirectly to
influence and control certain parameters within a motion generation engine. For
example, inertial information may be used to identify and retrieve high-quality
motions that were previously recorded by optical mocap systems [11]. Here, to
make the 3D positional data comparable with inertial information, one obvious
way is to suitably differentiate the 3D positional data to obtain velocities and
accelerations. Such data, however, is very local in nature with respect to the
temporal dimension thus making comparisons on this level susceptible to short-
time artifacts and outliers. In the following sections, we investigate this issue in
more detail and introduce mid-level representations that facilitate a more robust
cross-modal comparison.

In our experiments, we use inertial sensors supplied by Xsens3. Each MTx
unit contains an accelerometer, a rate gyro, as well as a magnet field sensor.
These units combine the information of the contained sensors to calculate their
full 3 degree of freedom (DOF) orientation q with respect to a global coordinate
system, see e. g. [1,3]. In the following, we refer to such a combination of inertial
and additional sensors as inertial unit. In order to express the orientation q

we use rotations expressed as unit quaternions (see [10]). Each such quaternion
defines a 3D rotation R

3 → R
3, which we also refer to as q. Let q[x] denote the

rotated vector for a vector x ∈ R
3. The inverse rotation is referred to by q.

3 Feature Representations

In order to compare human motion data across different sensor modalities, one
needs common mid-level representations that can be generated from the data

3 www.xsens.com

www.xsens.com
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Fig. 3. Motion sequence consisting of six arm rotations, where the speed of the arm ro-
tations increases with each repetition. The pitch of the left forearm is shown, calculated
by using θ̃2 (gray) and θ2 (black).

outputted by the different sensors. In the context of this paper, our goal is to
retrieve full-body motions from a database containing motion data captured by
an optical mocap system using 41 markers, where the query is given in form of
a motion clip captured by five inertial sensors s1, . . . , s5 placed at the hip next
to the spine (s1) both lower arms (left s2, right s3) and both lower legs (left
s4, right s5), see Fig. 1 (d). Since all information supplied by the five inertial
sensors can be simulated using the 41 marker position (as shown in Sect. 3.1),
we use features close to the inertial data as common mid-level representation.

3.1 Virtual Sensors

Local accelerations and directional information as provided by inertial sensors
can also be defined from positional information coming from an optical mocap
system. To this end, for a given inertial sensor fixed to a limb in a specific way, we
use a suitable combination of markers to define the location and local coordinate
system of a corresponding virtual sensor, see Fig. 1 (e). The orientation q of a
virtual sensor is then the transformation from the local coordinate system to
the global coordinate system (see Fig. 1 (g)), while the global acceleration m

is obtained by double differentiation of the virtual sensor’s global position. By
adding the gravity g and transforming this quantity to the virtual sensor’s local
coordinate system using q one finally gets the local acceleration a = q[m + g].

3.2 Local Acclerations

As a first simple feature representation, we directly use the local accelerations as
outputted by the accelerometers. Using five inertial sensor units s1, . . . , s5, this
results in five local accelerations as ∈ R

3 for s ∈ [1 : 5] := {1, . . . , 5}. We then
simply stack these five acceleration vectors to form a single vector

va = (aT

1 , . . . ,aT

5 )T ∈ R
15. (1)
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3.3 Directions Relative to Acceleration

A more robust motion representation is obtained by measuring directions rather
than magnitudes. To this end, we define a global up-direction using the direction
of the gravity vector g. We are now able to define a two degrees of freedom
orientation of the sensor’s local coordinate system relative to this global up-
direction. Inspired by aviation, we call these two parameters pitch θs and roll

ϕs, see Fig. 2. In many applications these quantities can be approximated using
only the measured acceleration as. These approximations denoted by θ̃s and ϕ̃s,
are defined as follows:

âs =
as

‖as‖
, (2)

θ̃s = arccos
〈

âs, (1, 0, 0)T
〉

, (3)

ϕ̃s = arccos
〈

âs, (0, 1, 0)T
〉

. (4)

Here, note that if the sensor’s local Y -axis is perpendicular to the global up-
direction, the pitch is determined by the rotation around the Y -axis. The result-
ing angle can be approximated by using an inner product between the X-axis
and âs approximating the up-direction, see Fig. 2 (b). Similarly, the roll can be
derived from the inner product between the Y -axis and the upward direction, see
Fig. 2 (c). We refer to the resulting pitch and roll features as acceleration-based

directional features. Again, we stack these features for all five sensors s1, . . . , s5

to form a single vector

vâ = (θ̃1, ϕ̃1, . . . , θ̃5, ϕ̃5)
T ∈ R

10. (5)

Here, pitch θ̃s and roll ϕ̃s are calculated using as as approximation for g. Recall
from Sect. 2.2 that each measured acceleration is a superposition as = qs[ms+g].
Thus θ̃s and ϕ̃s are only good approximations if ms is negligible. However, for
fast and dynamic motions, the component ms is large, which leads to corrupted
pitch and roll values, see Fig. 3

3.4 Directions Relative to Gravity

To address the above mentioned problem, one needs to approximate the global
upward direction in a more robust way—in particular during dynamic phases,
where ms is not negligible. To achieve such an estimation, simple accelerome-
ters do not suffice. We therefore use an inertial unit that outputs not only the
local accelerations but also the sensor’s orientation with respect to the global
coordinate system, see Sect. 2.2. Then, the direction ĝ can be estimated by trans-
forming the direction of the global Z-axis by means of the sensor’s orientation
qs. More precisely, we define

ĝs = qs

[

(0, 0, 1)T
]

, (6)

θs = arccos
〈

ĝs, (1, 0, 0)T
〉

, (7)

ϕs = arccos
〈

ĝs, (0, 1, 0)T
〉

. (8)
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As before, we stack the pitch and roll features for all five sensors s1, . . . , s5 to
form a single vector

vĝ = (θ1, ϕ1, . . . , θ5, ϕ5)
T ∈ R

10. (9)

The components are referred to as gravity-based directional features. The values
θs and ϕs exactly define (up to measurement errors) pitch and roll as introduced
in Sect. 3.3. The improvements in the case of highly dynamic motions are illus-
trated by Fig. 3, which shows the values of θ̃2 and θ2 over a motion sequence
containing six arm rotations (between frames 210 and 575). Here, the arm ro-
tations are performed at increasing speed, where the last rotation is performed
almost three times faster than the first one. While θ2 clearly shows the periodic
fluctuation of the pitch during the rotation, θ̃2 fails to display any meaningful
information when the motion becomes faster.

4 Cross-modal Comparison

In this section, we evaluate the feature representations in the context of a cross-
modal retrieval scenario, where we search in a database which comprises high-
dimensional 3D mocap while using low-dimensional inertial sensors as query
input.To this end, we assembled two databases DBxse and DBc3d. Each of the
databases contains ten instances of the ten motion classes shown in Fig. 4 (a),
which results in a total of 100 motion sequences per database. While the database
DBxse was recorded using five inertial sensors set up as shown in Fig. 1 (d), the
database DBc3d was assembled from excerpts of the HDM05 database which
consists of high-quality motions recorded by a 12 camera Vicon optical mocap
system, see [6]. Finally, we computed virtual sensors for DBc3d as described in
Section 3.1 matching the sensor setup as used for DBxse.

4.1 Class Confusion

Depending on the used feature representation, we now examine how well high-
dimensional motion sequences in DBc3d can be characterized by low-dimensional
sensor input from DBxse. To this end, we rank the motion documents from
DBc3d according to their similarity to a given query document from DBxse. More
precisely, we consider a document from DBc3d a match when it is an instance of
the same motion class as the given query document from DBxse. As similarity
measure we use the classical dynamic time warping (DTW) distance described
in [5], where, in our case, the highest ranked motion document has the smallest
DTW distance. By considering the distribution of motion classes among the ten
best-ranked documents one gets a good impression how the motion classes are
confused under a given feature representation. A common means to visualize this
are confusion matrices, which are shown for the three feature representations va,
vâ and vĝ in Fig. 4 (b). The rows of a confusion matrix represent the motion
classes of the query, whereas the columns represent the motion classes of the
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va 0.35 0.72 0.83 0.67 0.95 0.37 0.66 0.39 0.33 0.61 0.59
vâ 0.57 0.64 0.62 1.00 0.68 0.42 0.62 0.43 0.49 0.86 0.63
vĝ 0.97 0.68 0.67 0.97 0.98 0.56 0.50 0.64 0.79 0.88 0.77

(c)

Fig. 4. (a) Motion classes used for the experiments in Sect. 4. (b) Confusion matrices
(left) and true match distributions (right) of the three different feature representations.
(c) Averaged maximal F-Measures for every feature representation and motion class.
The last column shows for every feature representation the average over all motion
classes.

ten best-ranked documents. Dark entries indicate a large percentage of a motion
class, whereas light colors indicate a low percentage. For example, the matrices
show that most of the motion classes are confused with the motion class CW (first
column) when using the feature representation va. Here, the reason is that the
motion class CW shows a lot of variance among the different motion instances
even when performed by the same actor. In particular, the risk of confusion
with the motion class CW is high for dynamic motions classes such as KI, PU, RB,
and RF, because dynamic motions under the feature representation va have a
very noisy character without much characteristic features. In contrast, using the
directional feature representation vĝ this confusion is reduced significantly.
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4.2 F-measure

To further quantify the retrieval results, we use another measure from the re-
trieval domain referred to as maximum F-measure. Let k, k ∈ [1 :K] be the rank
of a given document, where K is the maximum rank (in our case K = 100). Now,
for every k, precision Pk and recall Rk are defined as Pk := |T ∩ Mk|/|Mk| and
Rk := |T ∩Mk|/|T |. Here, Mk is the set of all documents up to rank k and T the
set of all possible matches (in our case |T |=10). Combining precision and recall
values for a given rank k yields the (standard) F-measure Fk :=2·Pk·Rk/(Pk+Rk).
Now, the maximum F-measure is defined as F :=max Fk, k∈ [1 :K]. The table in
Fig. 4 (c) shows the averaged maximum F-measure for each motion class,where
the was calculated by averaging the maximum F-measures over all queries of
each motion class, and every feature representation. Finally, the last column
shows the average over all motion classes. The better a given feature represen-
tation discriminates a motion class against all other motion classes the larger is
the corresponding entry in the table. It can be seen that the feature represen-
tation vâ is well suited to identify instances of motion class JO (1.00), whereas
the feature representation vĝ performs particularly well for the motion classes
CW (0.97), JO (0.97), and JJ (0.98). Furthermore, the identification rates for
the class CW show a drastic improvement under the feature representation vĝ

(0.97) in comparison to va (0.35). Also, the arm rotations RB and RF are much
better characterized under the feature representation vĝ (0.64 and 0.79) com-
pared to the acceleration based feature representations va (0.39 and 0.33) and
vâ (0.43 and 0.492). Interestingly, there are some exceptions where vĝ does not
outperform the other two feature representations. For example, in case of motion
class PU, vĝ (0.50) is worse compared to vâ (0.62) and va (0.66). Here, on the
one hand, the orientations of both arms—including roll and pitch—shows large
variations among the actors. On the other hand, all punching motion exhibit
characteristic peaks in the acceleration data, which can be captured particulary
well by va. However, in general, one can notice that vĝ is much better suited to
identify most motion classes than the feature representations va and vâ.

5 Conclusions

In this paper, we have presented a systematic analysis of various feature repre-
sentations in the context of a cross-modal retrieval scenario, where inertial-based
query motions are used to retrieve high-quality optical mocap data. Because of
the increasing relevance of motion sensors for monitoring and entertainment
purposes, the fusion of various sensor modalities as well as cross-domain motion
analysis and synthesis will further gain in importance. For example, first ap-
proaches have been presented that allow for identifying high-quality 3D human
motions from sparse inertial sensor input [11]. The reconstruction of high-quality
3D human motions using database knowledge has become a major principle
used in computer animation and the gaming industry. Here, our analysis results
and methods constitute a suitable foundation for estimating the performance of
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the various motion representations. As one main result, we showed that direc-
tional features relating the sensor to the direction of gravity outperform purely
acceleration-based features. In particular, it turns out that rate-of-turn data is
necessary to enhance the roll and pitch estimates in the case of dynamic, fast
changing motions. In this context, we plan to investigate which kind of sensor in-
put in combination with pre-recorded motion data is necessary for reconstructing
full body human motions.
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