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Abstract

In this work, we present an approach to fuse video with
orientation data obtained from extended inertial sensors
to improve and stabilize full-body human motion capture.
Even though video data is a strong cue for motion analy-
sis, tracking artifacts occur frequently due to ambiguities
in the images, rapid motions, occlusions or noise. As a
complementary data source, inertial sensors allow for drift-
free estimation of limb orientations even under fast motions.
However, accurate position information cannot be obtained
in continuous operation. Therefore, we propose a hybrid
tracker that combines video with a small number of inertial
units to compensate for the drawbacks of each sensor type:
on the one hand, we obtain drift-free and accurate position
information from video data and, on the other hand, we ob-
tain accurate limb orientations and good performance un-
der fast motions from inertial sensors. In several experi-
ments we demonstrate the increased performance and sta-
bility of our human motion tracker.

1. Introduction
In this paper, we deal with the task of human pose track-

ing, also known as motion capturing (MoCap) [14]. A ba-
sic prerequisite for our system is a 3D model of the per-
son and at least one calibrated camera view. The goal of
MoCap is to obtain the 3D pose of the person, which is
in general an ambiguous problem. Using additional a pri-
ori knowledge such as familiar pose configurations learned
from motion capture data helps considerably to handle more
difficult scenarios like partial occlusions, background clut-
ter, or corrupted image data. There are several ways to
employ such a priori knowledge to human tracking. One
option is to learn the space of plausible human poses and
motions [2, 4, 12, 13, 21, 19]. Another option is to learn
a direct mapping from image features to the pose space
[1, 9, 19, 25]. To constrain the high dimensional space of
kinematic models, a major theme of recent research on hu-
man tracking has been dealing with dimensionality reduc-
tion [27, 28]. Here, the idea is that a typical motion pat-
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Figure 1: Tracking result for two selected frames.
(a) Video-based tracker. (b) Our proposed hybrid tracker.

tern like walking should be a rather simple trajectory in a
lower dimensional manifold. Therefore, prior distributions
are learned in this lower dimensional space. Such meth-
ods are believed to generalize well with only little training
data. Inspired by the same ideas of dimensionality reduc-
tion, physical and illumination models have been recently
proposed to constrain and to represent human motion in a
more realistic way [6, 3, 11, 23]. A current trend of re-
search tries to estimate shape deformations from images be-
sides the body pose by either directly deforming the mesh
geometry [7] or by a combination of skeleton-based pose
estimation with surface deformation [10].

Recently, inertial sensors (e.g. gyroscopes and ac-
celerometers) have become popular for human motion anal-
ysis. Often, sensors are used for medical applications, see,
e. g., [8] where accelerometer and gyroscope data is fused.
However, their application concentrates on the estimation
of the lower limb orientation in the sagittal plane. In [26], a
combination of inertial sensors and visual data is restricted
to the tracking of a single limb (the arm). Moreover, only a
simple red arm band is used as image feature. In [24], data
obtained from few accelerometers is used to retrieve and
play back human motions from a database. [17] presents a
system to capture full-body motion using only inertial and
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magnetic sensors. While the system in [17] is very appeal-
ing because it does not require cameras for tracking, the
subject has to wear a suit with at least 17 inertial sensors,
which might hamper the movement of the subject. In ad-
dition, long preparation time before recording is needed.
Moreover, inertial sensors suffer from severe drift problems
and cannot provide accurate position information in contin-
uous operation.

1.1. Contributions

Even using learned priors from MoCap data, obtaining
limb orientations from video is a difficult problem. Intu-
itively, because of the cylindrical shape of human limbs, dif-
ferent limb orientations project to very similar silhouettes in
the images. These orientation ambiguities can be easily cap-
tured by the inertial sensors but accurate positions cannot
be obtained. Therefore, we propose to use a small number
of sensors (we use only five) fixed at the body extremities
(neck, wrists and ankles) as a complementary data source
to visual information. One the one hand, we obtain stable
and drift-free accurate position information from video data
and, on the other hand, we obtain accurate limb orientations
from the inertial sensors. In this work, we present how to
integrate orientation data from sensors in a contour-based
video motion capture algorithm. In several experiments, we
show the improved performance of tracking with additional
small number of sensors.

2. Twists and Exponential Maps
This section recalls the basics of twists and exponential

maps, for further details see [16]. Every 3D rigid motion
can be represented by a homogeneous matrix M ∈ SE(3).

M =

„
R r

01×3 1

«
, (1)

where R ∈ SO(3) is a rotation matrix and r ∈ R3 is
a translation. For each matrix M ∈ SE(3) there is a
corresponding twist in the tangent space se(3). An ele-
ment of se(3) can either be represented by θξ, θ ∈ R and
ξ ∈ R6 = {(v, ω)|v ∈ R3, ω ∈ R3, ‖ω‖2 = 1} or by

θbξ = θ

„ bω v
01×3 0

«
∈ R4×4 , (2)

where ω̂ is the skew-matrix representation of ω. In the form
θξ or θξ̂, ξ and ξ̂ are referred to as normalized twists, and θ
expresses the velocity of the twist.

2.1. From Twist to Homogeneous Matrix
Elements from se(3) are mapped to SE(3) using the ex-

ponential map for twists

M = exp(θbξ) =

„
exp(θbω) (I − exp(θbω))(bωv + ωωT vθ)

01×3 1

«
(3)

where exp(θω̂) is the exponential map from so(3) to SO(3)
which can be calculated using the Rodriguez formula

exp(θbω) = I + bω sin(θ) + bω2(1− cos(θ)). (4)

Note that only sine and cosine functions of real numbers
need to be computed.

2.2. Kinematic Chains

The dynamics of the subject are modeled by a kinematic
chain F , which describes the motion constraints of an artic-
ulated rigid body such as the human skeleton [5]. The un-
derlying idea behind a kinematic chain is that the motion of
a body segment is given by the motion of the previous body
segment in the chain and an angular rotation around a joint
axis. Specifically, the kinematic chain is defined with a 6
DoF (degree of freedom) root joint representing the global
rigid body motion and a set of 1 DoF revolute joints de-
scribing the angular motion of the limbs. Joints with higher
degrees of freedom like hips or shoulders are represented by
concatenating two or three 1 DoF revolute joints. The root
joint is expressed as a twist of the form θξ with the rota-
tion axis orientation, location, and angle as free parameters.
Revolute joints are expressed as special twists with no pitch
of the from θjξj with known ξj (the location and orienta-
tion of the rotation axis as part of the model representation).
Therefore, the full configuration of the kinematic chain is
completely defined by a (6 + n) vector of free parameters

Θ := (θξ, θ1, . . . , θn) (5)

as described in [18]. Now, for a given point x ∈ R3 on the
kinematic chain, we define J (x) ⊆ {1, . . . , n} to be the
ordered set that encodes the joint transformations influenc-
ing x. Let X = (x1 ) be the homogeneous coordinate of x
and denote π as the associated projection with π(X) = x.
Then, the transformation of a point x using the kinematic
chain F and a parameter vector Θ is defined by

FΘ(x) = π(g(Θ)X) = π(exp(θξ̂)
Y

j∈J (x)

exp(θj ξ̂j)X). (6)

Here, FΘ : R3 → R3 is the function representing the
total rigid body motion g(Θ) of a certain segment in the
chain. Equation (6) is commonly known as the product of
exponentials formula [16], denoted throughout this paper
as FΘ. In our tracking system, we always seek for differ-
ential twist parameters represented in global frame coordi-
nates Θd, subsequently we accumulate the motion to obtain
the new absolute configuration in body coordinates Θ(t).
Therefore, we have our current configuration at time t − 1
given by Θ(t− 1) and seek for the update Θd to find Θ(t).
Recall that Θ(t) is the vector of twist parameters that rep-
resent the map between the body and the global frame at
time t. However, at each iteration we update the model and
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Figure 2: Absolute twists in continuous line and differential
twists in dashed line. XT denotes a point in global coordi-
nates and XB denotes a point in body coordinates.

the corresponding twists with the current Θ(t − 1) obtain-
ing the current configuration in global coordinates. Then,
we seek for the transformation gT (Θd) that will transform
the model configuration at frame t−1 in global coordinates
to the model configuration at frame t also in global coor-
dinates. For example, given a point in global coordinates
XT (t− 1), we would obtain the point in the next time t as

gT (Θd)XT (t− 1) = XT (t) (7)

where Θd are the differential twist parameters at time t in
the global frame, see Figure 2. Intuitively, we can think
of gT (Θd) not as a change of coordinates but rather as the
twist parameters that give us the instantaneous angular and
linear velocity at time t for a point in the global frame. For
simplicity, let us denote the differential twist parameters in
global coordinates by Θ.

3. Video-based Tracker

In order to relate the surface model to the human’s im-
ages we find correspondences between the 3D surface ver-
tices and the 2D image contours obtained with background
subtraction, see Figure 3. We first collect 2D-2D correspon-
dences by matching the projected surface silhouette with the
background subtracted image contour. Thereby, we obtain
a collection of 2D-3D correspondences since we know the
3D counterparts of the projected 2D points of the silhouette.
In the presented experiments we only use the silhouettes as
image features. We then minimize the distance between the
transformed 3D points FΘ(Xi) and the projection rays de-
fined by the 2D points pi. This gives us a point-to-line con-
straint for each correspondence. Defining Li = (ni,mi) as
the 3D Plücker line with unit direction ni and moment mi

of the corresponding 2D point pi, the point to line distance

(a) (b) (c)

Figure 3: (a) Original Image, (b) Background subtracted
image, (c) Projected surface mesh after convergence.

di can be expressed as

di = ‖FΘ(Xi)× ni −mi‖ (8)

Similar to Bregler et al. [5] we now linearize the Equation
by using exp(θξ̂) =

∑∞
k=0

(θbξ)k

k! . With I as identity matrix,
this results in

π((I +
X

j∈J (x)

θj
bξj) Xi)× ni −mi = 0 . (9)

Having N correspondences, we minimize the sum of
squared point-to-line distances di

arg min
Θ

NX
i=1

‖di‖2 = arg min
Θ

NX
i=1

‖FΘ(Xi)× ni −mi‖2 (10)

which after linearization can be re-ordered into an equation
of the form A1Θ = b1, see Figure 4. Collecting a set of
such equations leads to an over-determined system of equa-
tions, which can be solved using numerical methods like the
Householder algorithm. The Rodriguez formula can be ap-
plied to reconstruct the group action g from the estimated
twists θjξj . Then, the 3D points can be transformed and the
process is iterated until convergence. The used video-based
tracker is similar to the one presented in [18].

4. Hybrid Tracker
The input of our tracking system consists of:

• Rigid surface mesh of the actor obtained from a laser
scanner
• Multi-view images obtained by a set of calibrated and

synchronized cameras
• Global orientation data coming from the sensors

We used five inertial sensors fixed at the body extremities
(wrists, lower legs, and neck). The final goal is to manipu-
late the available data in order to relate it linearly (see Fig-
ure 4) to the differential kinematic chain parameters Θ that
determine the motion from two consecutive frames.
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Figure 4: Linear equations derived from orientation data
and image silhouettes are combined into a linear equation
system.

5. Integration of Sensor Data

5.1. Sensor Data

In our experiments, we use an orientation estimation de-
vice MTx provided by XSens [29]. An Xsens MTx unit
provides two different streams of data: three dimensional
local linear acceleration ~aS and local rate of turn or angu-
lar velocity ωS . Orientation data can be obtained from the
angular velocity ω(k) provided by the sensor units. Besides
angular velocity, the MTx units provide a proprietary al-
gorithm that can accurately calculate absolute orientations
relative to a static global frame F I , which we will refer to
as inertial frame. The inertial frame F I is computed inter-
nally in each of the sensor units in an initial static position
and is defined as follows: The Z axis is the negative direc-
tion of gravity measured by the internal accelerometer. The
X axis is the direction of the magnetic north pole measured
by a magnetometer. Finaly, the Y axis is defined by the
cross product Z × X . For each sensor, the absolute orien-
tation data is provided by a stream of quaternions that de-
fine, at every frame, the map or coordinate transformation
from the local sensor coordinate system to the global one
qIS(t) : FS ⇒ F I . Unfortunately, the world frame defined
in our tracking system differs from the global inertial frame.
The tracking coordinate frame FT is defined by a calibra-
tion cube placed in the recording volume, in contrast to the
inertial coordinate frame which is defined by the gravity and
magnetic north directions. Therefore, in order to be able to
integrate the orientation data from the inertial sensors into
our tracking system, we must know the rotational offset qTI

between both worlds, see Figure 5.
Since the Y axis of the cube is perpendicular to the

ground and so is gravity, the Y axis of the tracking frame
and the Z axis of the inertial frame are aligned. Therefore,
qTI is a one parametric planar rotation that can be estimated
beforehand using a calibration sequence. Thus, we can eas-
ily transform the quaternions so that they define a map from
the local sensor frame to the tracking frame FT :

qTS = qTI ◦ qIS (11)

where ◦ denotes quaternion multiplication [20].

Figure 5: Global frames: tracking frame FT and inertial
frame F I . Local frame: sensor frame FS .

5.2. Integration of Orientation Data into the Video-
based Tracker

In this section we explain how to integrate the orien-
tation data from the sensors as additional equations that
can be appended into the big linear system, see Figure 4.
Here we have to be very careful and know, at all times, in
which frame the rotation matrices are defined. Three co-
ordinate systems are involved: the global tracking frame
FT , the body frame FB (the local frame of a segment in
the chain, e.g. the leg), and the sensor frame FS . Re-
call from Sect. 5.1 that the orientation data is given as a
quaternion qTS(t) : FS → FT defining the transformation
from the local sensor frame FS to the global tracking frame
FT , which we will refer to as ground-truth orientation. In
order to relate the orientation data to the differential twist
parameters Θ, we will compare the ground-truth orienta-
tions qTS(t) of each of the sensors with the estimated sensor
orientations from the tracking procedure q̂TS(t), which we
will denote as tracking orientation. For the sake of simplic-
ity in the operations, we consider from now on the ground-
truth orientation qTS to be represented as a rotation matrix
3×3 (quaternions can be easily transformed to rotation ma-
trices [20]). The columns of the rotation matrix qTS are
simply the sensor basis axes in world coordinates. Let us
also define R(Θ(t)) as the total accumulated motion of a
body segment at time t, i.e. R(Θ(t)) : FB → FT . For the
sake of clarity we will drop the dependency of Θ and just
writeR(t). The transformation from the sensor frame to the
body frame qD(t) : FS → FB is constant during tracking
because the sensor and body frame are rigidly attached to
the body segment and move together. Thus, we can com-
pute this rotational displacement qD in the first frame by

qD = R(0)−1qTS(0) , (12)

where R(0) is the accumulated motion of the body part in
the first frame. Now consider the local rotation RB(Θ) of
frame FB from time t − 1 to time t, see Figure 6. The
rotation RB(Θ) defined in the body frame is related to the
rotation RT (Θ) defined in the global frame by the adjoint



transformation AdR−1(t−1)

RB(Θ) = R(t− 1)−1RT (Θ)R(t− 1) (13)

Thereby, the tracking orientation q̂TS is given by the longer

path FS
qD

=⇒ FBt
RB

=⇒ FBt−1

R(t−1)
=⇒ FT , see Figure 6. Now

we can compare this transformation matrix to the ground-
truth orientation given by the sensors qTS

R(t− 1)RB(Θ)qD = qTS(t) . (14)

SubstitutingRB(Θ) by its expression in (13) it simplifies to

RT (Θ)R(t− 1)qD = qTS(t) . (15)

Therefore, for each sensor s, we can minimize the norm of
both matrices with respect to Θ

arg min
Θ

5X
s=1

‚‚‚RT
s (Θ)Rs(t− 1)qD

s − qTS
s (t)

‚‚‚ . (16)

Equation (16) can again be reordered into the form of
A2Θ = b2 and integrated into the linear system as soft con-
strains, see Figure 4. Nonetheless, it is interesting to take a
closer look at equation (15). Substituting the rotational dis-
placement qD in equation (15) by its expression in equation
(12) we obtain

RT (Θ)R(t− 1)R(0)−1qTS(0) = qTS(t) . (17)

Expressing R(t− 1) in terms of instantaneous rotations

RT (Θ)(

0Y
j=t−1

RT (j))R(0)−1qTS(0) = qTS(t) . (18)

Simplifying R(0)−1 we obtain

RT (Θ)(

1Y
j=t−1

RT (j))qTS(0) = qTS(t) . (19)

This last equation has a very nice interpretation because

the columns of the matrix (
1Y

j=t−1

RT (j))qTS(0) are simply the

coordinates of the sensor axis in the first frame (columns of
qTS(0)), rotated by the accumulated tracking motion from
the first frame forward (i.e. not including the initialization
motion in frame 0). This last result was very much ex-
pected and the interpretation is the following: if we have
our rotation matrices defined in a reference frame FT , we
can just take the sensor axes in global coordinates in the
first frame (columns of qTS(0)) and rotate them at every
frame by the instantaneous rotational motions of the track-
ing. This will result in the estimated sensor axes in world
coordinates, which is exactly the tracking orientation de-
fined earlier in this Section. Therefore, the problem can be
simplified to additional 3D-vector to 3D-vector constraint
equations which can be very conveniently integrated in our

FT

F S F SF S

qD qDqD

R(t¡ 1)

R(0)

FB FB FB

qTS(t)

qTS(0)

t

t

t¡ 1

t¡ 10

0

RB(£)

Figure 6: Integration of orientation data into the video-
based tracker. Ground-truth orientation: clockwise down
path from FS at time t to FT . Tracking orientation: anti-
clockwise upper path from FS at time t to FT .

twist formulation. Being x̂(t−1), ŷ(t−1), ẑ(t−1) the track-
ing orientation basis axes in frame t−1, and x(t), y(t), z(t)
ground-truth orientation basis axes in the current frame t,
the constraint equations are

RT (Θ)

24x̂(t− 1) ŷ(t− 1) ẑ(t− 1)

35=

24x(t) y(t) z(t)

35
(20)

which can be linearized similarly as we did in the video-
based tracker with image points to mesh points correspon-
dences (2D-point to 3D-point). The difference now is that
since we rotate vectors, only the rotational component of the
twists is needed. For example, the equation for the X-axis
correspondence (x̂(t− 1), x(t)) would be

(I +
X

j∈J (x)

θjcωj)x̂(t− 1) = x(t) (21)

which depends only on θjω̂j . In other words, the constraint
equations do not depend at all on the joint axis location nor
in the translational motion of the body. This implies that
we can integrate the sensor information into the tracking
system independently of the initial sensor orientation and
location at the body limb.

6. Experiments
In this section, we evaluate our multisensor-fusion ap-

proach for motion tracking by comparing the video-based
tracker with our proposed hybrid tracker. Learning-based
stabilization methods or joint angle limits can also be in-
tegrated into the video-based tracker. However, we did
not include further constraints into the video-based tracker
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Figure 7: Error curves for video-based tracking (red) and
hybrid tracking (black), referring to the orientations of the
left lower leg for a hopping and jumping motion sequence.

to demonstrate a general weakness of silhouette-based ap-
proaches. We note that the video-based tracker works well
for many sequences, however in these experiments we fo-
cus on the occasions where it fails. Even though bench-
marks for video-based tracking are publicly available [22],
so far no data set comprising video as well as inertial data
exist for free use. Therefore, for our experiments, we gen-
erated a data set consisting of 54 takes each having a length
of roughly 15 seconds. In total, more than 10 minutes of
tracking results were used for our validation study, which
amounts to more than 24 thousand frames at a frame rate
of 40 Hz. All takes have been recorded in a lab environ-
ment using eight calibrated video cameras and five inertial
sensors fixed at the two lower legs, the two hands, and the
neck. Our evaluation data set comprises various actions in-
cluding standard motions such as walking, sitting down and
standing up as well as fast and complex motions such as
jumping, throwing, arm rotations, and cartwheels. For each
of the involved four actors, we also generated a 3D mesh
model using a laser scanner.

For a given tracking procedure, we introduce a frame-
wise error measure by considering the angular distance be-
tween the two orientations qTS and q̂TS , see Sect. 5.2. This
angular distance measured in degrees is defined by the for-
mula

dquat(q
TS , q̂TS) =

360

π
arccos

˛̨̨D
qTS , q̂TS

E˛̨̨
. (22)

For a given motion sequence, we compute the error measure
for each frame yielding an error curve.

In Figure 7, such error curves are shown for two different
tracking procedures using the original video-based tracker
(red) and the enhanced hybrid tracker (black). For the
video-based tracking, there are large deviations between the
ground-truth orientations and tracking orientations roughly
starting with frame 200. Actually, as a manual inspection
revealed, the actor performs in this moment a sudden turn
resulting in a failure of the video-based tracking, where the
left leg was erroneously twisted by almost 180 degrees. In
contrast, the hybrid tracker could successfully track the en-
tire sequence. This is also illustrated by Figure 8. Sim-
ilarly, the figure also shows a tracking error in the right

(a) (b)

Figure 8: Tracking result for video-based tracking (a) and
hybrid tracking (b) for frame 450 of the motion sequence
used in Figure 7. Ground-truth orientations in solid lines
and tracking orientations in by dashed lines.

hand, which is corrected by the hybrid tracker as well. As
a second example, we consider a very fast motion, where
an actor first rotates his right and afterwards his left arm.
Figure 9 shows the error curves for left and right hand for
each of the tracking procedures. The curves reveal that the
video-based tracker produced significant orientation errors
in both hands. This shows that the hand orientations cannot
be captured well considering only visual cues. Again, the
hybrid tracker considerably improved the tracking results,
see also Figure 10. These examples demonstrate how the
additional orientation priors resolve ambiguities from im-
age cues. To estimate the quality of our hybrid tracker on
more sequences, we computed the error measures (for lower
legs, the two hands, and the neck) for each of the five sen-
sors for all sequences and each actor of the data set. A total
of 120210 error measures were computed separately for the
hybrid and video tracker. We denote mean values and stan-
dard deviations of our error measure by µV , σV and µH ,
σH for the video-based and hybrid tracker, respectively. As
summarized in Table 1, the sequences of each actor have
been improved significantly, dropping the mean error from
30◦ to 13◦. This is also supported by the standard devia-
tions. Let τ(s) denote the percentage of frames where at
least one of the five sensors shows an error of more than s
degrees. To show the percentage of corrected severe track-
ing errors, we computed τV (45) and τH(45) for every actor,
see Tab. 1. As it turns out, most of the tracking errors are
corrected, dropping the percentage of erroneously tracked
frames from 19.29% to 2.51% of all frames. These findings
are supported by the normalized histograms of the occur-
ring values of the error measure, see Fig. 11. Furthermore,
the hybrid tracker does not increase the computation time
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Figure 9: Error curves for video-based tracking (red) and
hybrid tracking (black) obtained for an arm rotation se-
quence (first performed by the right and then by the left
arm). Top: Left hand. Bottom: Right hand.

(a) (b) (c) (d)

Figure 10: Tracking result and orientations for two selected
frames of the sequence used in Figure 9. (a),(c) Video-based
tracking. (b),(d) Hybrid tracking.

of the video-based tracker which is less than 4 s per frame.
One reason for the large amount of corrected errors is

that the orientation of limbs is hard to estimate from silhou-
ettes, since the cylindrical shape projects to the same silhou-
ettes in many orientations. By combining the visual with
orientation cues, these ambiguities are resolved, resulting
in a largely improved performance with the hybrid tracker.

7. Conclusions
In this paper, we presented an approach for stabilizing

full-body markerless human motion capturing using a small
number of additional inertial sensors. Generally, the goal
of reconstructing a 3D pose from 2D video data suffers
from inherent ambiguities. We showed that a hybrid ap-
proach combining information of multiple sensor types can
resolve such ambiguities, significantly improving the track-
ing quality. In particular, our orientation-based approach
could correct tracking errors arising from rotationally sym-
metric limbs. Using only a small number of inertial sensors
fixed at outer extremities stabilized the tracking for the en-
tire underlying kinematic chain.

In the future, we plan to extend our tracker to also make
use of acceleration data and rate of turn data, which seem
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Figure 11: Normalized histogram, for each actor, of quater-
nion distances comparison for the whole database.

Actor 1 Actor 2 Actor 3 Actor 4 Average
µV [deg] 26.10 40.80 26.20 31.10 30.29
µH [deg] 11.50 14.86 13.98 13.85 13.47
σV [deg] 33.79 46.99 29.23 38.07 37.08
σH [deg] 9.89 13.01 12.25 14.43 12.28

τV (45) [%] 14.27 29.50 16.53 19.42 19.29
τH(45) [%] 0.47 3.33 2.12 6.45 2.51

Table 1: Mean values µ and standard deviations σ for video-
based (V ) and hybrid (H) tracker for all sequences of the
database, separated by actor. Percentage of large tracking
errors denoted by τ(45).

to be ideally suited to stabilize tracking in outdoor settings,
for fast motions, and in the presence of occlusions. To this
end, we need suitable strategies that do not destabilize the
tracking process in the presence of sensor noise and local
artifacts. Furthermore, we want to investigate in how far
such fusion techniques make monocular tracking feasible.
Finally, we make the multimodal data set used in this pa-
per publicly available at [15] to further support this line of
research.
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