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ABSTRACT

Humans tend to organize perceived information into hi-

erarchies and structures, a principle that also applies to

music. Even musically untrained listeners unconsciously

analyze and segment music with regard to various musi-

cal aspects, for example, identifying recurrent themes or

detecting temporal boundaries between contrasting musi-

cal parts. This paper gives an overview of state-of-the-

art methods for computational music structure analysis,

where the general goal is to divide an audio recording

into temporal segments corresponding to musical parts and

to group these segments into musically meaningful cate-

gories. There are many different criteria for segmenting

and structuring music audio. In particular, one can identify

three conceptually different approaches, which we refer

to as repetition-based, novelty-based, and homogeneity-

based approaches. Furthermore, one has to account for

different musical dimensions such as melody, harmony,

rhythm, and timbre. In our state-of-the-art report, we ad-

dress these different issues in the context of music struc-

ture analysis, while discussing and categorizing the most

relevant and recent articles in this field.

1. INTRODUCTION

The difference between arbitrary sound sequences and mu-

sic is not well-defined: what is random noise for some-

one may be ingenious musical composition for somebody

else. What can be generally agreed upon is that it is the

structure, or the relationships between the sound events

that create musical meaning. This structure starts from

the level of individual notes, their timbral characteristics

and pitch and time intervals. Notes form larger structures,

phrases, chords, and chord progressions, and these again

form larger constructs in a hierarchical manner. At the

level of entire musical pieces the subdivision can be made
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to musical sections, such as intro, chorus, and verse in pop-

ular music. Recovering a description of this structure, of-

ten referred to as musical form, is what is here meant by

music structure analysis. In this paper, we mainly focus on

Western popular music in terms of the musical structures

and acoustic assumptions we make, even though many of

the employed principles can be utilized to analyze other

kinds of music as well. For a tutorial and a review of ear-

lier methods for music structure analysis, we refer to the

book chapter by Dannenberg and Goto [16]. Our objective

is to give an updated overview on this important topic by

discussing a number of new trends and recent research ar-

ticles. Computational analysis of the structure of recorded

music constitutes a very active research field within the

area of music information retrieval. Here we focus on mu-

sic structure analysis at the largest temporal scale, and as-

sume that the musical form can be expressed as a sequence

of musically meaningful parts at this level. 1 The musi-

cal form is of great importance for both understanding as

well as processing music and is often characteristic to the

particular genre.

Structure in music signals arises from certain relation-

ships between the elements—notes, chords, and so forth—

that make up the music. The principles used to create such

relationships include temporal order, repetition, contrast,

variation, and homogeneity. Obviously, the temporal order

of events, as also emphasized by Casey and Slaney [11],

is of crucial importance for building up musically and per-

ceptually meaningful entities such as melodies or harmonic

progressions. Also, the principle of repetition is central to

music, as Middleton [51] states: “It has often been ob-

served that repetition plays a particularly important role

in music—in virtually any sort of music one can think of,

actually. [. . .] In most popular music, repetition processes

are especially strong.” Recurrent patterns, which may be

of rhythmic, harmonic, or melodic nature, evoke in the lis-

tener the feeling of familiarity and understanding of the

music. The principle of contrast is introduced by having

two successive musical parts of different character. For ex-

ample, a quiet passage may be contrasted by a loud one,

a slow section by a rapid one, or an orchestral part by a

solo. A further principle is that of variation, where motives

and parts are picked up again in a modified or transformed

1 One of the few methods aiming at a hierarchical description of the
structure at various time scales is the approximate string matching method
by Rhodes and Casey [70].



form [39]. Finally, a section is often characterized by some

sort of inherent homogeneity, for example, the instrumen-

tation, the tempo, or the harmonic material being similar

within the section.

In view of the various principles that crucially influ-

ence the musical structure, a large number of different

approaches to music structure analysis have been devel-

oped. One can roughly distinguish three different classes

of methods. Firstly, repetition-based methods are em-

ployed to identify recurring patterns. From a technical

point of view, these methods are also often referred to as

sequence approaches, see also Sec. 5. Secondly, novelty-

based methods are used to detect transitions between con-

trasting parts. Thirdly, homogeneity-based methods are

used to determine passages that are consistent with respect

to some musical property. Note that novelty-based and

homogeneity-based approaches are two sides of a coin:

novelty detection is based on observing some surprising

event or change after a more homogenous segment. From

a technical point of view, the homogeneity-based approach

has often been referred to as state approach, see also

Sec. 5. Finally, in all the method categories, one has to

account for different musical dimensions, such as melody,

harmony, rhythm, or timbre. To this end, various feature

representations have been suggested in the literature.

The remainder of this paper is organized as follows. In

Sec. 2, we approach the structure analysis task from differ-

ent angles and give a problem definition used in this paper.

In Sec. 3, we discuss feature representations that account

for different musical dimensions. In Sec. 4, we introduce

the concept of a self-distance matrix often used in music

structure analysis, and show how the various segmentation

principles are reflected in this matrix. Then, in Sec. 5, we

discuss the principles of repetition-based, novelty-based,

and homogeneity-based structure analysis methods. Here,

we also discuss and categorize the most relevant and re-

cent articles in this field. In Sec. 6, we address the issue

of evaluating analysis results, which in itself constitutes a

non-trivial problem. Finally, in Sec. 7, we conclude with a

discussion of open problems.

2. PROBLEM SPECIFICATION

As mentioned before, the task of music structure analy-

sis refers to a range of problems, and different researchers

have pursued slightly different goals in this context. A

common theme, however, is that the temporal scale of the

analysis has been approximately the same in all the cases.

In the rest of the paper, we use the following terminology.

A part is understood to be a musical concept that loosely

refers to either a single instance or all the instances of a

musical section, such as chorus or verse, whereas a seg-

ment is understood to be a technical concept that refers to

the temporal range of a single occurrence of a musical part.

The term group is used to denote one or more segments that

represent all the occurrences of the same musical part.

The methods discussed in the following take an acous-

tic music signal as the input and produce some information

about the structure. The output of the discussed methods

varies from images created for visualization purposes to

representations that specify the time range and musically

meaningful label of each found part. In the simplest form,

no explicit structural analysis is performed, but some trans-

formation of the acoustic features of the piece are used to

yield a visual representation of structural information, e.g.,

the self-similarity matrix visualization by Foote [24].

The next category of methods aim to specify points

within a given audio recording where a human listener

would recognize a change in instrumentation or some other

characteristics. This problem, which is often referred to

as novelty detection, constitutes an important subtask [25].

For example, as we explain later, having computed novelty

points in a preprocessing step may significantly speed up

further structure analysis [62].

Another and yet more complex task level involves

grouping the sections that represent the same underlying

musical part: sections that can be seen as repetitions of

each other [59, 64, 56]. Finding and grouping all repeated

sections provides already a fairly complete description of

the musical form, by considering the non-repeated seg-

ments as separate and mutually unrelated parts.

Some structure analysis methods have been motivated

by finding only one representative section for a piece of

music, a “thumbnail” that provides a compact preview of

the piece [31, 8, 23, 64]. For this purpose, the most often

repeating section is typically suitable.

In this paper, we focus on the structure analysis prob-

lem where the objective is to determine a description that

is close to the musical form of the underlying piece of mu-

sic. Here, the description consists of a segmentation of the

audio recording as well as of a grouping of the segments

that are occurrences of the same musical part. The groups

are often specified by letters A,B,C, . . . in the order of

their first occurrence. Since some of the musical parts have

distinct “roles” in Western music, some methods aim to au-

tomatically assign the groups with labels, such as verse or

chorus [61].

3. FEATURE REPRESENTATION

Since the sampled waveform of an acoustic signal is rela-

tively uninformative by itself, some feature extraction has

to be employed. The first question to be addressed con-

cerns the acoustic and musical features that humans ob-

serve when determining the musical form of a piece. Brud-

erer et al. [10] conducted experiments to find the perceptual

cues that humans use to determine segmentation points in

music. The results suggest that “global structure,” “change

in timbre,” “change in level,” “repetition,” and “change in

rhythm” indicated the presence of a structural boundary to

the test subjects. We now summarize how some of these

aspects can be accounted for by transforming the music

signal into suitable feature representations.

3.1 Frame Blocking for Feature Extraction

The feature extraction in audio content analysis is normally

done in relatively short, 10-100ms frames. In music struc-



ture analysis each frame of a piece is usually compared

to all other frames, which can be computationally inten-

sive. Many of the proposed methods employ a larger frame

length in the order of 0.1-1 s. Not only does this reduce the

amount of data, but it also allows focusing on a musically

more meaningful time scale [63]. The importance of the

temporal resolution of feature extraction on the final struc-

ture analysis results has been emphasized in [52, 62].

The idea of a musically meaningful time scale has been

taken even further in some methods that propose the use

of event-synchronized feature extraction. In other words,

instead of a fixed frame length and hop size, the division

is defined by the temporal locations of sound events [36]

or the occurrences of a metrical pulse, e.g., tatum or

beat [47, 72, 42, 48, 14, 59]. Using a signal-adaptive frame

division has two benefits compared to the use of a fixed

frame length: tempo-invariance and sharper feature dif-

ferences. Tempo-invariance is achieved by adjusting the

frame rate according to the local tempo of the piece, which

facilitates the comparison of parts performed in different

tempi. Event-synchronized frame blocking also allocates

consecutive sound events to different frames, which pre-

vents them from blurring each others’ acoustic features. In

practice, one often calculates the features in short frames

and then averages the values over the length of the event-

synchronized frames [23, 60, 62, 50].

3.2 Features

The instrumentation and timbral characteristics are of

great importance for the human perception of music struc-

ture [10]. Perceptually, timbre is closely related to the

recognition of sound sources and depends on the relative

levels of the sound at critical bands as well as their tem-

poral evolution. Therefore, a majority of the timbre-based

structure analysis methods use mel-frequency cepstral co-

efficients (MFCCs), which parametrize the rough shape of

the spectral envelope and thus encode timbral properties

of the signal [18]. MFCCs are obtained by discrete co-

sine transforming (DCT) log-power spectrum on the mel-

frequency scale:

MFCC(k) =

N−1
∑

b=0

E(b) cos

(

π(2b+ 1)k

2N

)

, (1)

where the subbands b are uniformly distributed on the mel-

frequency scale and E(b) is the energy of band b. A gen-

erally accepted observation is that the lower MFCCs are

closely related to the aspect of timbre [3, 74].

As an alternative to using MFCCs as a timbre

parametrization, Maddage proposed replacing the mel-

spaced filter bank with 4-12 triangular filters in each oc-

tave for the task [46]. Other parametrisations omit the

DCT step and use some non-mel spacing in band defi-

nitions. For example, the MPEG-7 AudioSpectrumEnve-

lope descriptor [35] has been used [78, 41], or very simi-

lar constant-Q spectrograms [2, 11]. Aucouturier and San-

dler [5] compared different parametrisations of timbral in-

formation in music structure analysis and found MFCCs
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Figure 1: Acoustic features extracted from the piece “Tuonelan
koivut” by Kotiteollisuus. The three feature matrices correspond
to MFCCs (first panel), chroma (second panel), and rhythmogram
(third panel). The annotated structure of the piece is given at the
bottom panel, and the parts are indicated with: intro (I), theme
(T), verse (V), chorus (C), solo (S), and outro (O).

to outperform other features such as linear prediction co-

efficients. MFCCs calculated from an example piece are

illustrated in the top panel of Fig. 1.

Another important aspect of music is its pitched con-

tent on which harmonic and melodic sequences are built

upon. In the context of music structure analysis, chroma

features or pitch class profiles have turned out to be a

powerful mid-level representation for describing harmonic

content [8, 29, 52, 13, 48]. Assuming the equal-tempered

scale, the chroma correspond to the set {C,C♯,D, . . . ,B}
that contains the twelve pitch classes used in Western mu-

sic notation. A normalized chroma vector describes how

the signal’s spectral energy is distributed among the 12

pitch classes (ignoring octave information), see Fig. 1 for

an illustration.

Several methods for calculating chroma-based audio

features have been proposed. Most approaches first com-

pute a discrete Fourier transform (DFT) and then suitably

pool the DFT coefficients into chroma bins [8, 29, 31].

Müller et al. [52, 56] propose to use a multirate filter

bank consisting of time-domain band-pass filters that cor-

respond to the semitone bands before the chroma projec-

tion. Ryynänen and Klapuri replace the DFT analysis by

a multipitch estimation front-end [71]. Other chroma-like

features are compared in a music structure analysis appli-

cation by Ong et al. in [58]. Recently, Müller et al. [54]

proposed a method to increase the timbre-robustness of

chroma by removing some information correlating with the

timbre before the octave folding. Some timbre-robustness



is also achieved by the spectral whitening as described in

[71]. For an overview of other variants of chroma and

pitch-based features, see Müller [52] and Gómez [29].

In contrast to timbral and harmonic content, there has

been comparatively little effort in exploiting beat, tempo,

and rhythmic information for music structure analysis. To

extract such information from audio recordings, most ap-

proaches proceed in two steps. In the first step, a detec-

tion function, here called onset accent curve, is calculated,

where high values correlate with the positions of note on-

sets in the music. The calculation typically relies on the

fact that note onsets tend to cause a sudden change of the

signal energy and spectrum [9, 80]. In the second step,

the accent curves are analyzed with respect to quasiperi-

odic patterns. Important for the analysis is to obtain a

shift-invariant representation that is immune to the exact

temporal position of the pattern. Autocorrelation-based

analysis allows for detecting periodic self-similarities by

comparing an accent curve with time-shifted copies it-

self [19, 22, 65]. Alternatively, one can use a short-

time Fourier transform and then omit the phase in or-

der to derive a shift-invariant representation of the accent

curve [65, 32]. Both methods reveal rhythmic properties,

such as the tempo or beat structure. These properties typ-

ically change over time and are therefore often visualized

by means of spectrogram-like representations referred to

as tempogram [12], rhythmogram [38], or beat spectro-

gram [26].

Rhythmic features have not been used in music struc-

ture analysis very widely. For example, Jehan [36] used

loudness curves, and Jensen [37, 38] included rhythmo-

grams 2 for the structure analysis task. Paulus and Kla-

puri noted in [60] that the use of rhythmic information in

addition to timbral and harmonic features provides useful

information to structure analysis, see also Fig. 1. Finally,

Peeters [63] has introduced dynamic features that aim to

parametrize the rhythmic content by describing the tempo-

ral evolution of features.

Even though different features describe different mu-

sical properties, to date very few methods have utilized

more than one feature at a time (except the methods with a

large number of more simple features combined with fea-

ture vector concatenation [79, 57]). In some approaches

MFCC and chroma features have been used to define a sin-

gle, overlaid self-distance matrix [23, 64], see also Sec. 4.

Levy et al. [40] combined information from timbral and

harmony related features by feature vector concatenation.

A similar approach was adopted by Cheng et al. [14].

Paulus and Klapuri [62] combine the information obtained

from MFCCs, chroma features, and rhythmograms using a

probabilistic framework.

2 Recently, Grosche et al. [33] suggested a cyclic variant of a tem-
pogram, which may be a low-dimensional alternative in the structure
analysis context. Similar to the concept of cyclic chroma features, where
pitches differing by octaves are identified, the cyclic tempogram is ob-
tained by identifying tempi that differ by a power of two.

4. SELF-DISTANCE MATRIX

As the musical structure is strongly implied by repetition,

a useful strategy is to compare each point of a given au-

dio recording with all the other points, in order to de-

tect self-similarities. The general idea is to convert a

given audio recording into a suitable feature sequence,

say (x1, x2, . . . , xN ), and then to compare all elements

of the sequence with each other in a pairwise fashion.

More precisely, given a distance function d that speci-

fies the distance between two feature vectors xi and xj ,

it is possible to compute a square self-distance matrix

(SDM) D(i, j) = d(xi, xj) for i, j ∈ {1, 2, . . . , N}. Fre-

quently used distance measures include the Euclidean dis-

tance dE(xi, xj) = ‖ xi − xj ‖, and the cosine distance

dC(xi, xj) = 0.5

(

1−
〈xi, xj〉

‖ xi ‖‖ xj ‖

)

, (2)

where ‖ · ‖ denotes vector norm and 〈·, ·〉 dot product.

If the distance measure d is symmetric, i.e., d(xi, xj) =
d(xj , xi), the resulting SDM is also symmetric along the

main diagonal.

The origins of an SDM representation stems from recur-

rence plots proposed by Eckmann et al. [21] for the anal-

ysis of chaotic systems. The concept of a self-distance

matrix 3 has been introduced to the music domain by

Foote [24] in order to visualize the time structure of a given

audio recording. Naturally, the properties of an SDM cru-

cially depend on the chosen distance measure and the fea-

ture representation.

The distance measures are usually defined to compare

single frames. Often, it is beneficial to also include the lo-

cal temporal evolution of the features in order to enhance

the structural properties of an SDM. To this end, Foote [24]

proposed to average the distance values from a number of

consecutive frames and to use that as the distance value.

This results in a smoothing effect of the SDM. Müller and

Kurth [55] extended these ideas by suggesting a contextual

distance measure that allows for handling local tempo vari-

ations in the underlying audio recording. Instead of using

sliding windows of several consecutive frames, other ap-

proaches calculate the average distance from the feature

vectors within non-overlapping musically meaningful seg-

ments such as musical measure [72, 59]. Jehan [36] cal-

culated SDMs at multiple levels of a temporal hierarchy,

starting from individual frames to musical patterns. Each

higher level in the hierarchy was calculated based on the

SDM of the finer temporal structure.

Recurring patterns in the feature vector sequence

(x1, x2, . . . , xN ) are visible in the SDM. The two most im-

portant patterns induced by the feature patterns are illus-

trated in an idealized SDM in Fig. 2. If the features capture

musical properties (e.g., instrumentation) that stay some-

what constant over the duration of a musical part, blocks of

low distance are formed. In case the features describe se-

quential properties instead of remaining constant within a

3 The dual of SDMs are self-similarity matrices in which each element
describes the similarity between the frames instead of distance. Most of
the following operations can be done with either representation, although
here we discuss only SDMs.
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Figure 3: Left: Self-distance matrix of a piece with tempo varia-
tions. Right: Path-enhanced version. Darker pixels denote lower
distances. Note that some of the stripes are curved expressing
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part, diagonal stripes of low distance are formed. If such a

part is repeated, one finds stripes in the SDM that run paral-

lel to the main diagonal. This is often the case when using

chroma features, which then reveal repeated harmonic pro-

gressions within a piece. Locating and interpreting these

patterns with various methods is the main approach em-

ployed in many of the structure analysis methods described

in the literature.

As Peeters [63] noted, the features alone do not deter-

mine whether blocks or stripes are formed, but the tem-

poral parameters of the feature extraction process are also

important. In other words, the longer the temporal window

is that the feature vector describes, the more likely it is that

blocks are formed in the SDM. Therefore, working with

low resolutions may not only be beneficial for computa-

tional, but also for structural reasons [56, 60]. The effect

of the time scale parameter used in the feature computation

on the resulting SDMs is also illustrated by Fig. 4.

Often a musical part is repeated in another key. Us-

ing chroma features, Goto [31] simulates transpositions by

cyclically shifting the chroma. Adopting this idea, Müller

and Clausen [53] introduced the concept of transposition-

invariant SDMs, which reveals the repetitive structure even

in the presence of key transpositions.

Another way to present repetitive information is to

transform an SDM into a time-lag format [31]. In an SDM
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Figure 4: Example SDMs from features of Fig. 1 at a coarse
(Left) and fine (Right) time scale. Top: MFCCs. Middle:
Chroma features. Bottom: Rhythmogram. Darker pixels denote
lower distances. The annotated structure of the piece is indicated
by the overlay grid, and the part labels are indicated in the top of
the figure with: intro (I), theme (T), verse (V), chorus (C), solo
(S), and outro (O). The figure shows how different parts share
some of the perceptual aspects, but not all, e.g., chorus and solo
have similar harmonic but differring timbral content.

D both the axes represent absolute time, whereas in the

time-lag matrix R one axis is changed to represent time

difference (lag) instead

R(i, i− j) = D(i, j), for i− j > 0. (3)

The ordinate transformation discards the duplicate infor-

mation of a symmetric SDM, see Fig. 2. The diagonal

stripes formed by repeated sequences appear as horizontal

lines in the time-lag representation, and may be easier to

extract. Even though a time-lag representation transforms

the stripe information into a more easily interpretable form,

the block information is transformed into parallelograms

and may now be more difficult to extract. Furthermore, the

time-lag representation only works when repeating parts

occur in the same tempo, which is, in particular for clas-

sical music, often not the case. Structure analysis in the

presence of temporal variations is discussed in [52, 56],

see also Fig. 3 for an illustration.

5. STRUCTURE ANALYSIS APPROACHES

As mentioned before, there are a variety of different meth-

ods proposed for music structure analysis. An overview of

the operational entities of the proposed methods is shown
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in Fig. 5. Furthermore, relevant literature along with a clas-

sification of the involved methods is summarized by Ta-

ble 1. In this section, we describe the main approaches

as well as the interconnections between the operational

entities in more detail. The first categorization of music

structure analysis methods was proposed by Peeters [63]

dividing them into sequence and state approaches. The

sequence approaches assume that there are sequences of

events that are repeated several times in the given musical

signal, thus forming diagonal stripes in the corresponding

SDM. The state approaches in turn consider the piece to be

produced by a finite state machine, where each state pro-

duces some part of the signal. Considering the SDM repre-

sentation, the state approaches can be thought to form the

blocks 4 . As mentioned in Sec. 1, we use the more seman-

tically motivated term repetition-based approach instead

of the more technically motivated term sequence approach.

Similarly, we use the term homogeneity-based approach

instead of the term state approach. Furthermore, we add

a third category referred to as novelty-based approach. In

the following, we describe some instantiations of each of

the categories in more detail and then discuss some com-

bined approaches.

5.1 Novelty-based Approaches

An important principle in music is that of change and con-

trast introducing diversity and attracting the attention of a

listener. The goal of novelty-based procedures is to au-

tomatically locate the points where these changes occur.

A standard approach for novelty detection introduced by

Foote [25] tries to identify segment boundaries by detect-

ing 2D corner points in an SDM of size N × N using

4 In principle a state is capable of emitting also a feature sequence
forming stripes in SDM when repeated. However, the name “state ap-
proach” is more often used of methods that utilize principles of homo-
geneity.
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Figure 6: Top: Two instances of the SDM using MFCCs from
Fig. 4. The checkerboard-like kernel that is correlated along the
main diagonal is shown at two different positions on the left and
right. Bottom: Resulting novelty curve.

a kernel matrix of a lower dimension. The kernel con-

sists of an M × M matrix (with M < N ) which has a

2× 2 checkerboard-like structure and is possibly weighted

by a Gaussian radial function. The kernel is illustrated

within the small rectangles on top of the two SDMs in

Fig. 6. The kernel is then correlated along the main diag-

onal of the SDM. This yields a novelty function, the peaks

of which indicate corners of blocks of low distance. Us-

ing MFCCs, these peaks are good indicators for changes

in timbre or instrumentation. For an illustration, we re-

fer to Fig. 6. Similarly, using other feature representation

such as chroma features or rhythmograms, one obtains in-

dicators for changes in harmony, rhythm, or tempo.

Jensen uses a different approach for locating the main

diagonal blocks in an SDM [38] by formulating the seg-

mentation as an optimization problem. The cost function to

be optimized tries to minimize the average distance within

blocks (defined by neighboring segment boundaries) of the

SDM while keeping the number of segments small. Tzane-

takis and Cook [76] propose to segment a signal by first

extracting a set of features from the signal and then calcu-

lating a Mahalanobis distance between successive frames.

Large differences in the distance values indicate possible

segmentation points. For other methods to music segmen-

tation, we refer to the publication by Turnbull et al. [75],

in which several acoustic features and both supervised as

well as unsupervised segmentation methods are evaluated.

5.2 Homogeneity-based Approaches

A direct continuation of the novelty-based procedure is to

analyze the content of the created segments and to classify

them building up homogenous clusters. Such an approach

was introduced by Cooper and Foote in [15], where, after

a novelty-based segmentation, the content of each segment

is modeled by a normal distribution. Then, the similar-

ity between two segments is computed using the Kullback-

Leibler divergence between two multivariate normal dis-

tributions [28]. Having the distances for all segment pairs,



Author / publication Task Acoustic features Approach Method

Aucouturier et al. [4] full structure spectral envelope homogeneity HMM
Barrington et al. [7] full structure MFCC / chroma homogeneity dynamic texture model
Bartsch & Wakefield [8] thumbnailing chroma repetition stripe detection
Chai [13] full structure chroma repetition stripe detection
Cooper & Foote [15] summarisation magnitude spectrum homogeneity segment clustering
Dannenberg & Hu [17] repetitions chroma repetition dynamic programming
Eronen [23] chorus detection MFCC+chroma repetition stripe detection
Foote [24] visualization MFCC self-similarity matrix
Foote [25] segmentation MFCC novelty novelty vector
Goto [31] repetitions chroma repetition stripe detection (RefraiD)
Jehan [36] pattern learning MFCC+chroma+loudness homogeneity hierarchical SDMs
Jensen [38] segmentation MFCC+chroma+rhythmogram novelty diagonal blocks
Levy & Sandler [41] full structure MPEG-7 timbre descriptor homogeneity temporal clustering
Logan & Chu [43] key phrase MFCC homogeneity HMM / clustering
Lu et al. [44] thumbnailing constant-Q spectrum repetition stripe detection
Maddage [46] full structure chroma homogeneity rule-based reasoning
Marolt [48] thumbnailing chroma repetition RefraiD
Mauch et al. [50] full structure chroma repetition greedy selection
Müller & Kurth [56] multiple repetitions chroma statistics repetition stripe search & clustering
Ong [57] full structure multiple repetition RefraiD
Paulus & Klapuri [59] repeated parts MFCC+chroma repetition cost function
Paulus & Klapuri [62] full description MFCC+chroma+rhythmogram combined fitness function
Peeters [63] full structure dynamic features homogeneity HMM, image filtering
Peeters [64] repeated parts MFCC+chroma+spec. contrast repetition stripe detection
Rhodes & Casey [70] hierarchical structure timbral features repetition string matching
Shiu et al. [72] full structure chroma repetition state model stripe detection
Turnbull et al. [75] segmentation various novelty various
Wellhausen & Höynck [78] thumbnailing MPEG-7 timbre descriptor repetition stripe detection

Table 1: A summary of discussed methods for music structure analysis.

the segments are grouped with spectral clustering [77]. Lo-

gan and Chu [43] used a similar Gaussian parametrization

on segments of fixed length and applied agglomerative hi-

erarchical clustering. The method proposed by Goodwin

and Laroche [30] performs the segmentation and cluster-

ing at the same time. The method itself resembles the opti-

mization procedure described by Jensen [38], with the dif-

ference that the searched path can now return to a state de-

fined earlier if it is globally more efficient for the structure

description.

The concept of state is taken more explicitly in methods

employing hidden Markov models (HMMs) for the anal-

ysis, see, e.g., [5, 27]. Here, the basic assumption is that

each musical part can be represented by a state in an HMM,

and the states produce observations from the underlying

probability distribution. In an HMM, the probability of a

state sequence q = (q1, q2, . . . , qN ) given the observation

sequence X = (x1, x2, . . . , xN ) can be calculated by

P (q|X) ∝ P (x1|q1)

N
∏

n=2

P (xn|qn)p(qn|qn−1), (4)

where P (xn|qn) is the likelihood of observing xn if the

state is qn, and p(qn|qn−1) is the transition probability

from state qn−1 to state qn. The analysis operates by train-

ing the HMM with the piece to be analyzed, and then by

decoding (finding the most probable state sequence) the

same signal with the model. Effectively this implements

vector quantization of the feature vectors with some tem-

poral dependency modeling expressed by the state tran-

sition probabilities. Though this model has a certain ap-

peal, it does not work very well in practice because the

result is often temporally fragmented, as noted by Peeters

et al. [68]. The fragmentation is due to the fact that the in-

dividual states tend to model individual sound events rather

than longer musical parts.

To alleviate the problem of temporal fragmentation,

several post-processing methods have been proposed.

Here, the state sequence produced by an HMM is only

used as a mid-level representation for further analysis,

where each state represents a certain context-dependent

short sound event [41]. Fig. 7 shows the resulting state

sequences of an example piece after analyzing it with

fully connected HMMs with 8 and 40 states, respectively.

The state sequence representation is included also for gen-

eral audio parametrization in the MPEG-7 standard as the

SoundModelStatePathType descriptor [35]. Abdallah et

al. [1] proposed to calculate histograms of the states with

a sliding window over the entire sequence and then to use

the resulting histogram vectors as new feature representa-

tion. Based on these state histograms, probabilistic clus-

tering is applied. This method was extended to include

statistical modeling of the cluster durations [2]. Levy et

al. [42] increased the amount of the contextual knowledge

using a variant of a fuzzy clustering approach applied on

the histograms. This approach was formalized by Levy

and Sandler [41] using a probabilistic framework. De-

spite the relatively simple approach, the temporal cluster-

ing method [42] has proven to work quite well.

A slightly different approach to reduce the resulting

fragmentation was proposed by Peeters [68]. He per-

formed initial segmentation based on an SDM and then

used the average feature value over each individual seg-

ment as initial cluster centroids that he further updated

using k-means clustering. The obtained cluster centroids

were then used to initialize the training of an HMM which

produced the final clustering. In a recent publication Bar-

rington et al. [7] propose to use dynamic texture mixture
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Figure 7: State sequences resulting from a fully connected HMM
using 40 (Top) and 8 (Middle) states applied to the MFCC fea-
ture sequence of Fig. 1. The bottom panel shows the annotated
ground truth structure.

models (DTM) for the structure analysis. DTM is basically

a state model, where each (hidden) state produces observa-

tions that have a temporal structure. The main novelty of

the method compared to the HMM-based state methods is

that the observation model itself takes the temporal behav-

ior of the produced observations into account, and there

will be less need for heuristic post-processing.

5.3 Repetition-based Approaches

The repetition of musical entities, as already noted in

Sec. 1, is an important element in imposing structure on

a sequence of musical sounds. Here, the temporal order

in which the sound events occur is crucial to form musi-

cally meaningful entities such as melodies or chord pro-

gressions. Therefore, the task of extracting the repetitive

structure of a given audio recording of a piece of music

amounts to first transform the audio into a suitable feature

sequence and then to find repeating subsequences in it.

As was explained in Sec. 4, one possible approach is to

compute an SDM and to search for diagonal stripes parallel

to the main diagonal. Even though it is often easy for hu-

mans to recognize these stripes, the automated extraction

of such stripes constitutes a difficult problem due to signif-

icant distortions that are caused by variations in parameters

such as dynamics, timbre, execution of note groups (e.g.,

grace notes, trills, arpeggios), modulation, articulation, or

tempo progression [56, 52]. To enhance the stripe struc-

ture, many approaches apply some sort of low-pass filter-

ing to smooth the SDM along the diagonals [78, 8]. A sim-

ilar effect can be achieved by averaging the distance values

from a number of consecutive frames and to use that as the

distance value [24]. Marolt [48] proposed to enhance the

stripes by calculating multiple SDMs with different sliding

window lengths and then by combining them with element-

wise multiplication. Lu et al. [44] employed multiple iter-

ations of erosion and dilation filtering along the diagonals

to enhance the stripes by filling small breaks and removing

too short line segments. Ong [57] extended the erosion and

dilation filtering into two-dimensional filter to enhance the

entire SDM. Goto [31] employed a two-dimensional lo-

cal filter to enhance the stripes; similar enhancement was

later utilized by Eronen [23]. Peeters [64] proposed to low-

pass filter along the diagonal direction, and high-pass filter

along the anti-diagonal direction to enhance the stripes.

Most of the above approaches assume that the repeating

parts are played in the same tempo, resulting in stripes that

run exactly in parallel to the main diagonal. However, this

assumption may not hold in general. For example, in clas-

sical music there are many recordings where certain parts

are repeated in different tempi or where significant tempo

changes (e.g. riterdando, accelerando, rubato) are realized

differently in repeating parts. Here, the stripes may be even

curved paths as indicate by Fig. 3. Müller et al. [55, 52]

introduced smoothing techniques that can handle such sit-

uations by incorporating contextual information at various

tempo levels into a single distance measure.

After enhancing the stripe structure, the stripe segments

can be found, e.g., by thresholding. The RefraiD approach

proposed by Goto [31] has later been employed by several

studies [48, 57]. It uses the time-lag version of SDM to

select the lags that are more likely to contain repeats, and

then detect the line segments along the horizontal direc-

tion of the lags. Each of the found stripes specifies two

occurrences of a sequence: the original one and a repeat.

For chorus detection, or simple one-clip thumbnailing, se-

lecting a sequence that has been repeated most often has

proven to be an effective approach. In the case that a more

comprehensive structural description is wanted, multiple

stripes have to be detected as well as some logical reason-

ing to deduce the underlying structure as proposed by Dan-

nenberg [17].

Similar to the dynamic programming approaches used

for segmentation [30, 38], some of the stripes can be

found by a path search. Shiu et al. [73] interpret the self-

similarity values as probabilities and define a local tran-

sition cost to prefer diagonal movement. Then, Viterbi

search is employed to locate the optimal path through the

lower (or upper) triangle of the SDM. The stripes have

large similarity values, thus the probability values are also

large and the path is likely to go through the stripe loca-

tions. Another method to locate stripe segments by grow-

ing them in a greedy manner was proposed by Müller and

Kurth [56]. These approaches are advantageous in that

they are able to handle tempo differences in the repeats.

Rhodes and Casey [70] employed a string matching

method to the HMM state sequence representation to cre-

ate a hierarchical description of the structure. Though

the algorithm was presented to operate on a finite alpha-

bet formed by the HMM states, the authors suggest that

similar operations could be accomplished with feature vec-

tors after modifying the matching algorithm to accept vec-

tor inputs. Aucouturier and Sandler [6] proposed another

method for inspecting the HMM state sequences with im-

age processing methods. The main idea is to calculate a

binary co-occurrence matrix (resembling an SDM) based

on the state sequence, which elements have the value 1,

if the two frames have the same state assignment, and the

value 0 otherwise. Then a diagonal smoothing kernel is
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applied on the matrix to smooth out small mismatches be-

tween sequences. Finally, stripes are searched from the

resulting matrix with Hough transform, which is claimed

to be relatively robust against bad or missing data points.

5.4 Combined Approaches

Most methods for music structure analysis described so

far rely on a single strategy. For example, homogeneity-

based approaches try to locate blocks of low distance on

the SDM main diagonal and then to classify them. Or,

repetition-based approaches try to extract stripes from the

SDM and then to deduce the repetitive structure. An al-

ternative approach is to focus on modeling the properties

of a good structural description, and in doing so, to com-

bine different segmentation principles. This is the idea of

Paulus and Klapuri [59, 62], who proposed a cost func-

tion for structural descriptions of a piece that considers all

the desired properties, and then, for a given acoustic in-

put, minimized the cost function over all possible struc-

tural descriptions. A similar approach was also suggested

by Peiszer [69]. In [59], the cost function included terms

representing the within-group dissimilarity (repeats should

be similar), the amount unexplained (the structural descrip-

tion would cover as much of the piece as possible), and the

complexity (the structure should not be fragmented). The

effect of the balancing of these three terms is illustrated in

Fig. 8.

The main weakness of the cost function based method

described above—as well as with most of the other meth-

ods relying on locating individual stripes or blocks in the

SDM—is that they operate only on parts of the SDM.

In other words, when locating stripes, each of the stripes

is handled separately without any contextual information.

Considering structure analysis as a data clustering prob-

lem, each of the formed clusters should be compact (hav-

ing small within-group distances), and the clusters should

be well-separated (having large between-group distances).

Paulus and Klapuri [62] formalized these ideas using a

probabilistic framework. Here, replacing the cost function,

a fitness measure is defined for jointly measuring within-

group distance (which should be small) and between-group

distance (which should be large). To this end, for each

segment pair, two distances were calculated: a stripe dis-

tance that measures the distance of the feature sequences

corresponding to the two segments (using dynamic time

warping) and a block distance that measures the average

distance over all frame pairs of the two segments, see also

Fig. 9. Maximizing the fitness measure then resulted in

a reasonable trade-off between these two types of com-

plementary information. Multiple feature representations

(MFCCs, chroma features, rhythmogram) were integrated

into the fitness measure to account for the various musical

dimensions, see Sec. 3.

In [62], the combinatorial optimization task over all

descriptions was approximately solved by limiting the

set of possible segments. To this end, a set of candi-

date segmentation points was created using a novelty-

based method [25], and then a greedy algorithm over the

remaining search space was applied. As a result, the

method combines all the segmentation principles discussed

in Sec. 5: a novelty-based approach was used to reduce the

number segment candidates, and homogeneity-based and

repetition-based approaches were integrated in the fitness

measure. One drawback of the described approach is that

the final structure description crucially depends on the first

novelty detection step, which was found to be a bottle-neck

in some cases.

6. EVALUATION

Music is multi-faceted and complex. Even though it is

structured and obeys some general rules, music also lives

from expanding and even breaking these rules. Therefore it

can be problematic to give a concise and unique structural

description for a piece of music. As a consequence, eval-

uating the performance of an automated structure analysis

method is not as simple as it may initially seem. We now

briefly discuss some of the evaluation metrics proposed in

the literature.

To evaluate the accuracy of segmentation boundaries,

most evaluation procedures involve some sort of recall rate,

precision rate, and F-measure while accepting a small tem-

poral deviation [75]. An alternative is to calculate the mean

(or median) time between a claimed and annotated seg-

mentation point [75]. The evaluation of music thumbnail-

ing requires user studies, since the quality of the output is

usually measured subjectively instead of an objective met-



ric, as described by Chai [13] and Ong [57].

Evaluating the result of a method producing a descrip-

tion of the full structure of a piece is less straightforward.

Many of the evaluation metrics adopt an approach simi-

lar to evaluating clustering results: pairs of frames are in-

spected, and if they belong to any occurrence of the same

musical part, they are considered to belong to the same

cluster, denoted by the set FA in case of ground truth

and the set FE in the case of analysis result. Based on

these two sets, it is possible to calculate the pairwise pre-

cision rate RP = |FA ∩ FE |/|FE |, the pairwise recall rate

RR = |FA ∩ FE |/|FA|, and the F-measure

F =
2RPRR

RP +RR

. (5)

Using the above evaluation metric was proposed by Levy

and Sandler [41]. Another closely related metric is the

Rand index [34], used by Barrington et al. [7]. Abdallah et

al. [1] proposed to match the segments in the analysis result

and ground truth and to calculate a directional Hamming

distance between frame sequences after the match. A sim-

ilar approach with a differing background was proposed

by Peeters [64]. A second evaluation metric proposed by

Abdallah et al. [1] treats the structure descriptions as sym-

bol sequences and calculates the mutual information be-

tween the analysis result and the ground truth. The mutual

information concept was developed further by Lukashe-

vich [45], who proposed an over- and under-segmentation

measures based on the conditional entropies of the sequen-

tial representations of structures.

A property that can be considered to be a weakness in

the metrics relying on pairs of frames, is that they disre-

gard the order of the frames. In other words, they do not

penalize hierarchical level differences between the com-

puted parts such as splittings of segments into smaller

parts. Chai [13], and Paulus and Klapuri [59] proposed

heuristics finding a common hierarchical level for the com-

puted structure result and the ground truth structure. How-

ever, the evaluation method is rather complicated, and the

results are still subject for discussion.

Finally, it should be noted that most of the suggested

evaluation metrics only consider one type of provided

ground truth annotation. As the experiments by Brud-

erer et al. [10] suggest, the perception of musical struc-

tures is generally ambiguous. Thus the descriptions pro-

vided by two persons on the same piece may differ. A

small-scale comparison of descriptions made by two an-

notators was presented by Paulus and Klapuri [62], and

slight differences in the hierarchical levels as well as in

the grouping were noted (using the F-measure (5) as the

metric, human vs. human result was 89.4% whereas the

employed computational method reached 62.4%). Peeters

and Deruty [67] proposed a more well-defined ground truth

annotation scheme that allows annotating the structure of a

piece from several different aspects and temporal scales at

the same time. The annotation can then be transformed to

focus on the aspect relevant to the current application, e.g.,

by reducing it to be a temporal segmentation and grouping,

as with earlier data sets.

The first systematic evaluation of different structure

analysis methods methods took place in the Music Struc-

ture Segmentation task at the Music Information Re-

trieval Evaluation eXchange (MIREX) 2009 5 . MIREX

itself is a framework for evaluating music information re-

trieval algorithms where the evaluation tasks are defined

by the research community under the coordination of In-

ternational Music Information Retrieval Systems Evalu-

ation Laboratory at the University of Illinois at Urbana-

Champaign [20]. The evaluation task was kept relatively

straightforward: providing a temporal segmentation of an

entire piece and grouping of segments to parts. The eval-

uation data was provided from the OMRAS2 metadata

project [49], and it consisted of 297 songs, mostly by The

Beatles (179 songs), and the remaining songs were from

four other performers making the data rather homogenous.

It should also be noted that a large part of the data was

publicly available before the evaluation and may have been

used in the development of some of the methods. The five

submissions from four teams represent slightly different

approaches: one searches diagonal stripes from SDM in

a greedy manner [50] (F = 60.0%), one aims at maxi-

mizing a fitness function from a combined approach [62]

(F = 53.0%), and one uses agglomerative hierarchical

clustering on smaller segments [66] (F = 53.3%). The

details of the two other submissions (F = 57.7% and

F = 58.2%) were not published. Despite the differring

approaches, there were no significant performance differ-

ences between the methods and depending on the evalua-

tion metric the ranking order changed considerably (with

the Rand index metric the ranking is almost reversed).

7. CONCLUSIONS

This paper has given an overview of the music struc-

ture analysis problem, and the methods proposed for solv-

ing it. The methods have been divided into three cate-

gories: novelty-based approaches, homogeneity-based ap-

proaches, and repetition-based approaches. The compar-

ison of different methods has been problematic because

of the differring goals, but an effort at this was made in

MIREX2009. The results of the evaluations suggest that

none of the approaches is clearly superior at this time, and

that there is still room for considerable improvements.

Perhaps one of the largest problems in music structure

analysis is not directly technical, but more conceptual: the

ground truth for this task should be better defined. The

need for this is indicated by the fact that the annotations

made by two persons disagree to a certain degree [62].

Defining the ground truth better requires interdisciplinary

work between engineers and musicologists. The current

results suggest that the structure description should not

only be on a single level, but include also the informa-

tion of hierarchical recurrences—similar to human percep-

tion. Another major task consists in collecting and anno-

tating a representative data set, which is free for use in re-

search projects worldwide. Also, contrary to many earlier

5 http://www.music-ir.org/mirex/2009/index.php/

Structural_Segmentation



data sets, it would be beneficial to have multiple parties in-

volved to ensure data diversity and agreement on the target

data. Having more accurate ground truth and a represen-

tative data set, the evaluation metrics can be defined more

rigorously too: none of the current metrics corresponds to

the perceived performance very accurately.

To date, the research has mostly been focusing on West-

ern popular music, in which the sectional form is relatively

prominent. It would be both challenging and interesting

to broaden the target data set to include classical and non-

Western music. Some of the principles employed by the

current methods have been applied for these types of music

too, but there is still a large need for research to cope with

the complexity and diversity of general music data. As

has been discussed in this paper, it is not enough to only

use a single musical aspect in the analysis—also humans

typically utilize multiple cues simultaneously. Related to

this, more perceptually (and musically) motivated features

should be investigated, as well as the distance measures

used to compare frame-level features. Methods combin-

ing several musically motivated information sources have

shown promising results, and such trends should be pur-

sued further.
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