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ABSTRACT

The automated extraction of tempo and beat information

from music recordings is a challenging task. Especially

in the case of expressive performances, current beat track-

ing approaches still have significant problems to accurately

capture local tempo deviations and beat positions. In this

paper, we introduce a novel evaluation framework for de-

tecting critical passages in a piece of music that are prone

to tracking errors. Our idea is to look for consistencies

in the beat tracking results over multiple performances of

the same underlying piece. As another contribution, we

further classify the critical passages by specifying musi-

cal properties of certain beats that frequently evoke track-

ing errors. Finally, considering three conceptually different

beat tracking procedures, we conduct a case study on the

basis of a challenging test set that consists of a variety of

piano performances of Chopin Mazurkas. Our experimen-

tal results not only make the limitations of state-of-the-art

beat trackers explicit but also deepens the understanding of

the underlying music material.

1. INTRODUCTION

When listening to a piece of music, most humans are able

to tap to the musical beat without difficulty. In recent years,

various different algorithmic solutions for automatically

extracting beat position from audio recordings have been

proposed. However, transferring this cognitive process into

an automated system that reliably works for the large va-

riety of musical styles is still not possible. Modern pop

and rock music with a strong beat and steady tempo can

be handled by many methods well, but extracting the beat

locations from highly expressive performances of, e.g., ro-

mantic piano music, is a challenging task.

To better understand the shortcomings of recent beat

tracking methods, significant efforts have been made to

compare and investigate the performance of different

strategies on common datasets [6, 10, 13]. However, most

approaches were limited to comparing the different meth-

ods by specifying evaluation measures that refer to an en-
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tire recording or even an entire collection of recordings.

Such globally oriented evaluations do not provide any in-

formation on the critical passages within a piece where

the tracking errors occur. Thus, no conclusions can be

drawn from these experiments about possible musical rea-

sons that lie behind the beat tracking errors. A first analysis

of musical properties influencing the beat tracking quality

was conducted by Dixon [6], who proposed quantitative

measures for the rhythmic complexity and for variations in

tempo and timings. However, no larger evaluations were

carried out to show a correlation between these theoretical

measures and the actual beat tracking quality.

In this paper, we continue this strand of research by

analyzing the tracking results obtained by different beat

tracking procedures. As one main idea of this paper, we

introduce a novel evaluation framework that exploits the

existence of different performances available for a given

piece of music. For example, in our case study we revert

to a collection of recordings for the Chopin Mazurkas con-

taining in average over 50 performances for each piece.

Based on a local, beat-wise histogram, we simultaneously

determine consistencies of beat tracking errors over many

performances. The underlying assumption is, that tracking

errors consistently occurring in many performances of a

piece are likely caused by musical properties of the piece,

rather than physical properties of a specific performance.

As a further contribution, we classify the beats of the crit-

ical passages by introducing various types of beats such

as non-event beats, ornamented beats, weak bass beats, or

constant harmony beats. Each such beat class stands for a

musical performance-independent property that frequently

evokes beat tracking errors. In our experiments, we evalu-

ated three conceptually different beat tracking procedures

on a corpus consisting of 300 audio recordings correspond-

ing to five different Mazurkas. For each recording, the

tracking results were compared with manually annotated

ground-truth beat positions. Our local evaluation frame-

work and detailed analysis explicitly indicates various lim-

itations of current state-of-the-art beat trackers, thus laying

the basis for future improvements and research directions.

This paper is organized as follows: In Sect. 2, we for-

malize and discuss the beat tracking problem. In Sect. 3,

we describe the underlying music material and specify var-

ious beat classes. After summarizing the three beat track-

ing strategies (Sect. 4) and introducing the evaluation mea-

sure (Sect. 5) used in our case study, we report on the

experimental results in Sect. 6. Finally, we conclude in



ID Composer Piece #(Meas.) #(Beats) #(Perf.)

M17-4 Chopin Op. 17, No. 4 132 396 62
M24-2 Chopin Op. 24, No. 2 120 360 64
M30-2 Chopin Op. 30, No. 2 65 193 34
M63-3 Chopin Op. 63, No. 3 77 229 88
M68-3 Chopin Op. 68, No. 3 61 181 50

Table 1: The five Chopin Mazurkas and their identifiers used in
our study. The last three columns indicate the number of mea-
sures, beats, and performances available for the respective piece.

Sect. 7 with a discussion of future research directions. Fur-

ther related work is discussed in the respective sections.

2. PROBLEM SPECIFICATION

For a given piece of music, let N denote the number of mu-

sical beats. Enumerating all beats, we identify the set of

musical beats with the set B = [1 : N ] := {1, 2, . . . , N}.

Given a performance of the piece in the form of an audio

recording, the musical beats correspond to specific physi-

cal time positions within the audio file. Let π : B → R be

the mapping that assigns each musical beat b ∈ B to the

time position π(b) of its occurrence in the performance. In

the following, a time position π(b) is referred to as phys-

ical beat or simply as beat of the performance. Then, the

task of beat tracking is to recover the set {π(b) | b ∈ B} of

all beats from a given audio recording.

Note that this specification of the beat tracking problem

is somewhat simplistic, as we only consider physical beats

that are defined by onset events. More generally, a beat is

a perceptual phenomenon and perceptual beat times do not

necessarily coincide with physical beat times [7]. Further-

more, the perception of beats varies between listeners.

For determining physical beat times, we now discuss

some of the problems, one has to deal with in practice.

Typically, a beat goes along with a note onset revealed by

an increase of the signal’s energy or a change in the spec-

tral content. However, in particular for non-percussive mu-

sic, one often has soft note onsets, which lead to blurred

note transitions rather than sharp note onset positions. In

such cases, there are no precise timings of note events

within the audio recording, and the assignment of exact

physical beat positions becomes problematic. This issue is

aggravated in the presence of tempo changes and expres-

sive tempo nuances (e.g., ritardando and accelerando).

Besides such physical reasons, there may also be a num-

ber of musical reasons for beat tracking becoming a chal-

lenging task. For example, there may be beats with no

note event going along with them. Here, a human may still

perceive a steady beat, but the automatic specification of

physical beat positions is quite problematic, in particular

in passages of varying tempo where interpolation is not

straightforward. Furthermore, auxiliary note onsets can

cause difficulty or ambiguity in defining a specific physical

beat time. In music such as the Chopin Mazurkas, the main

melody is often embellished by ornamented notes such as

trills, grace notes, or arpeggios. Also, for the sake of ex-

pressiveness, the notes of a chord need not be played at the

same time, but slightly displaced in time. This renders a

precise definition of a physical beat position impossible.

(a)
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(c)

(d)
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Figure 1: Scores of example passages for the different beat
classes introduced in Sect. 3. (a) Non-event beats (B1) in M24-2,
(b) Ornamented beats (B3) in M30-2, (c) Constant harmony beats
(B5) in M24-2, (d) Constant harmony beats (B5) in M68-3, and
(e) Weak bass beats (B4) in M63-3.

3. DATA AND ANNOTATIONS

The Mazurka Project [1] has collected over 2700 recorded

performances for 49 Mazurkas by Frédéric Chopin, rang-

ing from the early stages of music recording (Grünfeld

1902) until today [15]. In our case study, we use 298
recordings corresponding to five of the 49 Mazurkas, see

Table 1. For each of theses recordings the beat positions

were annotated manually [15]. These annotations are used

as ground truth in our experiments. Furthermore, Hum-

drum and MIDI files of the underlying musical scores for

each performance are provided, representing the pieces in

an uninterpreted symbolic format.

In addition to the physical beat annotations of the per-

formances, we created musical annotations by grouping

the musical beats B in five different beat classes B1 to B5.

Each of these classes represents a musical property that

typically constitutes a problem for determining the beat po-

sitions. The colors refer to Fig. 4 and Fig. 5.

• Non-event beats B1 (black): Beats that do not co-

incide with any note events, see Fig. 1(a).

• Boundary beats B2 (blue): Beats of the first mea-

sure and last measure of the piece.

• Ornamented beats B3 (red): Beats that coincide

with ornaments such as trills, grace notes, or arpeg-

gios, see Fig. 1(b).

• Weak bass beats B4 (cyan): Beats where only the

left hand is played, see Fig. 1(e).

• Constant harmony beats B5 (green): Beats that

correspond to consecutive repetitions of the same

chord, see Fig. 1(c-d).

Furthermore, let B∗ := ∪5
k=1Bk denote the union of the

five beat classes. Table 2 details for each Mazurka the

number of beats assigned to the respective beat classes.



ID |B| |B1| |B2| |B3| |B4| |B5| |B∗|
M17-4 396 9 8 51 88 0 154
M24-2 360 10 8 22 4 12 55
M30-2 193 2 8 13 65 0 82
M63-3 229 1 7 9 36 0 47
M68-3 181 17 7 0 14 12 37

Table 2: The number of musical beats in each of the different
beat classes defined in Sect. 3. Each beat may be a member of
more than one class.

Note that the beat classes need not be disjoint, i.e., each

beat may be assigned to more than one class. In Sect. 6,

we discuss the beat classes and their implications on the

beat tracking results in more detail.

4. BEAT TRACKING STRATEGIES

Beat tracking algorithms working on audio recordings typ-

ically proceed in three steps: In the first step, note onset

candidates are extracted from the signal. More precisely,

a novelty curve is computed that captures changes of the

signal’s energy, pitch or spectral content [3, 5, 8, 12]. The

peaks of this curve indicate likely note onset candidates.

Fig. 2(c) shows a novelty curve for an excerpt of M17-

4 (identifier explained in Table 1). Using a peak picking

strategy [3] note onsets can be extracted from this curve. In

the second step, the local tempo of the piece is estimated.

Therefore, the onset candidates are analyzed with respect

to locally periodic or reoccurring patterns [5, 12, 14]. The

underlying assumption is that the tempo of the piece does

not change within the analysis window. The choice of the

window size constitutes a trade-off between the robustness

of the tempo estimates and the capability to capture tempo

changes. In the third step, the sequence of beat positions

is determined that best explains the locally periodic struc-

ture of the piece, in terms of frequency (tempo) and phase

(timing) [5, 12], see Fig. 2(d).

In our experiments we use three different beat track-

ers. First, we directly use the onset candidates extracted

from a novelty curve capturing spectral differences [11]

as indicated by Fig. 2(c). In this method, referred to as

ONSET in the following sections, each detected note on-

set is considered as a beat position. Second, as a repre-

sentative of the beat tracking algorithms that transform the

novelty curve into the frequency (tempo) or periodicity do-

main [5, 12, 14], we employ the predominant local period-

icity estimation [11], referred to as PLP in the following.

We use a window size of three seconds and initialize the

tempo estimation with the mean of the annotated tempo.

More precisely, we define the global tempo range for each

performance covering one octave around the mean tempo,

e.g., for a mean tempo of 120 BPM, tempo estimates in

the range [90 : 180] are valid. This prevents tempo dou-

bling or halving errors and robustly allows for investigating

beat tracking errors, rather than tempo estimation errors.

The third beat tracking method (SYNC) we use in our ex-

periments employs the MIDI file available for each piece.

This MIDI file can be regarded as additional knowledge,

including the pitch, onset time and duration of each note.

Using suitable synchronization techniques [9] on the ba-

sis of coarse harmonic and very precise onset information,
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Figure 2: Representations for an excerpt of M17-4. (a) Score
representation of beats 60 to 74. (b) Annotated ground truth beats
for the performance pid50534-05 by Horowitz (1985), see [1]. (c)
Novelty curve (note onset candidates indicated by circles). (d)
PLP curve (beat candidates indicated by circles).

we identify for each musical event of the piece (given by

the MIDI file) the corresponding physical position within

a performance. This coordination of MIDI events to the

audio is then used to determine the beat positions in a per-

formance and simplifies the beat tracking task to an align-

ment problem, where the number of beats and the sequence

of note events is given as prior knowledge.

5. EVALUATION MEASURES

Many evaluation measures have been proposed to quantify

the performance of beat tracking systems [4] by comparing

the beat positions determined by a beat tracking algorithm

and annotated ground truth beats. These measures can be

divided into two groups. Firstly, measures that analyze

each beat position separately and secondly, measures that

take the tempo and metrical levels into account [5, 12, 13].

While the latter gives a better estimate of how well a se-

quence of retrieved beats correlates with the manual anno-

tation, it does not give any insight into the beat tracking

performance at a specific beat of the piece.

In this paper, we evaluate the beat tracking quality on

the beat-level of a piece and combine the results of all per-

formances available for this piece. This allows for detect-

ing beats that are prone to errors in many performances.

For a given performance, let Π := {π(b) | b ∈ B} be

the set of manually determined physical beats, which are

used as ground truth. Furthermore, let Φ ⊂ R be the

set of beat candidates obtained from a beat tracking pro-

cedure. Given a tolerance parameter τ > 0, we define

the τ -neighborhood Iτ (p) ⊂ R of a beat p ∈ Π to be

the interval of length 2τ centered at p, see Fig. 3. We say

that a beat p has been identified if there is a beat candidate

q ∈ Φ in the τ -neighborhood of p, i.e., q ∈ Φ ∩ Iτ (p). Let

Πid ⊂ Π be the set of all identified beats. Furthermore, we

say that a beat candidate q ∈ Φ is correct if q lies in the

τ -neighborhood Iτ (p) of some beat p ∈ Π and there is no

other beat candidate lying in Iτ (p) that is closer to p than

q. Let Φco ⊂ Φ be the set of all correct beat candidates.

We then define the precision P = Pτ , the recall R = Rτ ,

and F-measure F = Fτ as [4]

P =
|Φco|

|Φ|
, R =

|Πid|

|Π|
, F =

2 · P · R

P + R
. (1)



Iτ (p)

π(b − 1) p = π(b) π(b + 1) Time

H(p)

Figure 3: Illustration of the τ -neighborhood Iτ (p) and the half-
beat neighborhood H(p) of a beat p = π(b), b ∈ B.

Table 3 shows the results of various beat tracking proce-

dures on the Mazurka data. As it turns out, the F-measure

is a relatively soft evaluation measure that only moderately

punishes additional, non-correct beat candidates. As a con-

sequence, the simple onset-based beat tracker seems to out-

perform most other beat trackers. As for the Mazurka data,

many note onsets coincide with beats, the onset detection

leads to a high recall, while having only a moderate deduc-

tion in the precision.

We now introduce a novel evaluation measure that pun-

ishes non-correct beat candidates, which are often musi-

cally meaningless, more heavily. To this end, we define

a half-beat neighborhood H(p) of a beat p = π(b) ∈ Π

to be the interval ranging from
π(b−1)−π(b)

2 (or π(b) for

b = 1) to
π(b+1)−π(b)

2 (or π(b) for b = N ), see Fig. 3.

Then, we say that a beat b ∈ B has been strongly identified

if there is a beat candidate q ∈ Φ with q ∈ Φ ∩ Iτ (p) and

if H(p) ∩ Φ = {q} for p = π(b). In other words, q is the

only beat candidate in the half-beat neighborhood of p. Let

Πstid ⊂ Π be the set of all strongly identified beats, then

we define the beat accuracy A = Aτ to be

A =
|Πstid|

|Π|
. (2)

6. EXPERIMENTS

We now discuss the experimental results obtained using

our evaluation framework and explain the relations be-

tween the beat tracking results and the beat classes intro-

duced in Sect. 3.

We start with discussing Table 3. Here, the results of

the different beat tracking approaches for all performances

of the five Mazurkas are summarized, together with some

results from the MIREX 2009 beat tracking task [2]. All

beat trackers used in our evaluation yield better results

for the Mazurkas than all trackers used in the MIREX

evaluation. As noted before, the F-measure only moder-

ately punishes additional beats. In consequence, ONSET

(F = 0.754) seems to outperform all other methods, except

SYNC (F = 0.890). In contrast, the introduced beat ac-

curacy A punishes false positives more heavily, leading to

A = 0.535 for ONSET, which is significantly lower than for

PLP (A = 0.729) and SYNC (A = 0.890). For SYNC, the

evaluation metrics P, R, F, and A are equivalent because

the number of detected beats is always correct. Further-

more, SYNC is able to considerably outperform the other

strategies. This is not surprising, as it is equipped with

additional knowledge in the form of the MIDI file.

There are some obvious differences in the beat tracking

results of the individual Mazurkas caused by the musical

reasons explained in [6]. First of all, all methods deliver

SYNC ONSET PLP

ID P/R/F/A P R F A P R F A

M17-4 0.837 0.552 0.958 0.697 0.479 0.615 0.743 0.672 0.639
M24-2 0.931 0.758 0.956 0.845 0.703 0.798 0.940 0.862 0.854
M30-2 0.900 0.692 0.975 0.809 0.623 0.726 0.900 0.803 0.788
M63-3 0.890 0.560 0.975 0.706 0.414 0.597 0.744 0.661 0.631
M68-3 0.875 0.671 0.885 0.758 0.507 0.634 0.755 0.689 0.674

Mean: 0.890 0.634 0.952 0.754 0.535 0.665 0.806 0.728 0.729

MIREX Our Methods

Method DRP3 GP2 OGM2 TL SYNC ONSET PLP

F 0.678 0.547 0.321 0.449 0.890 0.754 0.728

Table 3: Comparison of the beat tracking performance of the
three strategies used in this paper and the MIREX 2009 results
(see [2] for an explanation) based on the evaluation metrics Pre-
cision P, Recall R, F-measure F and the beat accuracy A.

the best result for M24-2. This piece is rather simple, with

many quarter notes in the dominant melody line. M17-

4 is the most challenging for all three trackers because

of a frequent use of ornaments and trills and many beat

positions that are not reflected in the dominating melody

line. For the ONSET tracker, M63-3 constitutes a challenge

(A = 0.414), although this piece can be handled well by

the SYNC tracker. Here, a large number of notes that do not

fall on beat positions provoke many false positives. This

also leads to a low accuracy of PLP (A = 0.631).

Going beyond this evaluation on a piece-level, Fig. 4

and Fig. 5 illustrate the beat-level beat tracking results of

our evaluation framework for the SYNC and PLP strategy,

respectively. Here, for each beat b ∈ B of a piece, the bar

encodes for how many of the performances of this piece

the beat was not strongly identified (see Sect. 5). High bars

indicate beats that are incorrectly identified in many perfor-

mances, low bars indicate beats that are identified in most

performances without problems. As a consequence, this

representation allows for investigating the musical proper-

ties leading to beat errors. More precisely, beats that are

consistently wrong over a large number of performances

of the same piece are likely to be caused by musical prop-

erties of the piece, rather than physical properties of a spe-

cific performance. For example, for both tracking strate-

gies (SYNC and PLP) and all five pieces, the first and last

beats are incorrectly identified in almost all performances,

as shown by the blue bars (B2). This is caused by boundary

problems and adaption times of the algorithms.

Furthermore, there is a number of significant high bars

within all pieces. The SYNC strategy for M68-3 (see Fig. 4)

exhibits a number of isolated black bars. These non-event

beats do not fall on any note-event (B1). As stated in

Sect. 2, especially when dealing with expressive music,

simple interpolation techniques do not work to infer these

beat positions automatically. The same beat positions are

problematic in the PLP strategy, see Fig. 5. For M30-2

(Fig. 4) most of the high bars within the piece are assigned

to B3 (red). These beats, which coincide with ornaments

such as trills, grace notes, or arpeggios are physically not

well defined and hard to determine. For the Mazurkas,

chords are often played on-beat by the left hand. However,

for notes of lower pitch, onset detection is problematic, es-

pecially when played softly. As a consequence, beats that

only coincide with a bass note or chord, but without any

note being played in the main melody, are a frequent source
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Figure 4: The beat error histogram for the synchronization based beat tracking (SYNC) shows for how many performances of each of
the five Mazurkas a beat b is not identified. The different colors of the bars encode the beat class B a beat is assigned to, see Sect. 3.
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Figure 5: The beat error histogram for the PLP tracker shows for how many performances of M24-2 and M68-3 a beat b is not identified.
The different colors of the bars encode the beat class B a beat is assigned to, see Sect. 3.

for errors. This is reflected by the cyan bars (B3) frequently

occurring in M17-4 (Fig. 4). Finally, B5 (green) contains

beats falling on consecutive repetitions of the same chord.

This constitutes a challenge for the onset detection, espe-

cially when played softly. Both M24-2 and M68-3 exhibit

a region of green bars that are incorrectly tracked by the

SYNC (Fig. 4) and PLP (Fig. 5) trackers.

As mentioned in Sect. 4, PLP can not handle tempo

changes well. As a consequence, many of the beat errors

for PLP that are not assigned to any beat class (e.g., M24-2

in Fig. 5, b = [260 : 264] ) are caused by sudden tempo

changes appearing in many of the performances. How-

ever, these are considered a performance-dependent prop-

erty, rather than a piece-dependent musical property and

are not classified in a beat class.

Table 4 summarizes the effect of each beat class on

the piece-level results. Here, the mean beat accuracy is

reported for each of the five Mazurkas, when excluding

the beats of a certain class. For example, M30-2 contains

many beats of B3. Excluding these ornamented beats from

the evaluation, the overall beat accuracy increases from

A = 0.900 to A = 0.931 for SYNC (Table 4 (left)) and

from 0.788 to 0.814 for PLP (Table 4 (right)). The chal-

lenge of M68-3 however, are non-event beats (B1). Leav-

ing out these beats, the accuracy increases from 0.875 to

0.910 for SYNC and from 0.674 to 0.705 for PLP.

Aside from musical properties of a piece causing beat

errors, physical properties of certain performances make

beat tracking difficult. In the following, we exemplarily

compare the beat tracking results of the performances of

M63-3. Fig. 6 shows the beat accuracy A for all 88 per-

formances available for this piece. In case of the SYNC

tracker, the beat accuracy for most of the performances is

in the range of 0.8− 0.9, with only few exceptions that de-

viate significantly (Fig. 6(a)). In particular, Michalowski’s

1933 performance with index 39 (pid9083-16, see [1])

shows a low accuracy of only A = 0.589 due to a poor

condition of the original recording which contains a low

signal-to-noise ratio and many clicks. The low accuracy

(A = 0.716) of performance 1 (Csalog 1996, pid1263b-

12) is caused by a high amount of reverberation, which

makes a precise determination of the beat positions hard.

The poor result of performance 81 (Zak 1951, pid918713-

20) is caused by a detuning of the piano. Compensating



ID B B\B1 B\B2 B\B3 B\B4 B\B5 B\B∗

M17-4 0.837 0.852 0.842 0.843 0.854 0.837 0.898
M24-2 0.931 0.940 0.936 0.941 0.933 0.939 0.968
M30-2 0.900 0.900 0.903 0.931 0.905 0.900 0.959
M63-3 0.890 0.890 0.898 0.895 0.895 0.890 0.911
M68-3 0.875 0.910 0.889 0.875 0.875 0.887 0.948

Mean: 0.890 0.898 0.894 0.897 0.894 0.892 0.925

ID B B\B1 B\B2 B\B3 B\B4 B\B5 B\B∗

M17-4 0.639 0.650 0.641 0.671 0.593 0.639 0.649
M24-2 0.854 0.857 0.862 0.857 0.856 0.854 0.873
M30-2 0.788 0.788 0.794 0.814 0.772 0.788 0.822
M63-3 0.631 0.631 0.638 0.639 0.647 0.631 0.668
M68-3 0.674 0.705 0.689 0.674 0.678 0.674 0.733

Mean: 0.729 0.735 0.734 0.739 0.723 0.729 0.751

Table 4: Beat accuracy A results comparing the different beat classes for SYNC (left) and PLP (right): For all beats B, excluding
non-event beats B1, boundary beats B2, ornamented beats B3, weak bass beats B4, constant harmony beats B5, and the union B∗.
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Figure 6: Beat accuracy A for the beat tracker SYNC (a), ONSET

(b), and PLP (c) of all 88 performances of M63-3.

for this tuning effect, the synchronization results and thus,

the beat accuracy improves from A = 0.767 to A = 0.906.

As it turns out, ONSET tends to be even more sensitive to

bad recording conditions. Again, performance 39 shows

an extremely low accuracy (A = 0.087), however, there

are more recordings with a very low accuracy (70, 71, 79,

80, 57, and 58). Further inspection shows that all of these

recordings contain noise, especially clicks and crackling,

which proves devastating for onset detectors and leads to

a high number of false positives. Although onset detec-

tion is problematic for low quality recordings, the PLP ap-

proach shows a different behavior. Here, the periodicity

enhancement of the novelty curve [11] provides a cleaning

effect and is able to eliminate many spurious peaks caused

by recording artifacts and leads to a higher beat accuracy.

However, other performances suffer from a low accuracy

(performances 29, 30, and 77). As it turns out, these ex-

amples exhibit extreme local tempo changes that can not

be captured well by the PLP approach, which relies on a

constant tempo within the analysis window. On the other

hand, some performances show a noticeably higher accu-

racy (2, 5, 11, 31, 74, and 87). All oft these recordings are

played in a rather constant tempo.

7. FUTURE DIRECTIONS

Our experiments indicate that our approach of considering

multiple performances simultaneously for a given piece of

music for the beat tracking task yields a better understand-

ing not only of the algorithms’ behavior but also of the un-

derlying music material. The understanding and consider-

ation of the physical and musical properties that make beat

tracking difficult is of essential importance for improving

the performance of beat tracking approaches. Exploiting

the knowledge of the musical properties leading to beat er-

rors one can design suited audio features. For example, in

the case of the Mazurkas, a separation of bass and melody

line can enhance the quality of the novelty curve and alle-

viate the negative effect of the ornamented beats or weak

bass beats.
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