
HANDLING REPEATS AND JUMPS IN SCORE-PERFORMANCE
SYNCHRONIZATION

Christian Fremerey
Bonn University

Computer Science
Bonn, Germany

fremerey@iai.uni-bonn.de

Meinard M üller
Saarland University and

MPI Informatik
Saarbr̈ucken, Germany

meinard@mpi-inf.mpg.de

Michael Clausen
Bonn University

Computer Science
Bonn, Germany

clausen@iai.uni-bonn.de

ABSTRACT

Given a score representation and a recorded performance
of the same piece of music, the task of score-performance
synchronization is to temporally align musical sections
such as bars specified by the score to temporal sections
in the performance. Most of the previous approaches as-
sume that the score and the performance to be synchro-
nized globally agree with regard to the overall musical
structure. In practice, however, this assumption is often
violated. For example, a performer may deviate from the
score by ignoring a repeat or introducing an additional re-
peat that is not written in the score. In this paper, we
introduce a synchronization approach that can cope with
such structural differences. As main technical contribu-
tion, we describe a novel variant of dynamic time warping
(DTW), referred to asJumpDTW, which allows for han-
dling jumps and repeats in the alignment. Our approach is
evaluated for the practically relevant case of synchronizing
score data obtained from scanned sheet music via optical
music recognition to corresponding audio recordings. Our
experiments based on Beethoven piano sonatas show that
JumpDTW can robustly identify and handle most of the oc-
curring jumps and repeats leading to an overall alignment
accuracy of over99% on the bar-level.

1. INTRODUCTION

Given a score and a performance of the same piece of mu-
sic, a common task of music information retrieval consists
of synchronizing note events or musical sections given by
the score representation with time positions or temporal
sections of the performance. A useful example applica-
tion of such a synchronization is to allow users to navigate
in a recorded performance of a piece of music by select-
ing locations of interest from the visual sheet music rep-
resentation of the synchronized score and simultaneously
playback the performance while highlighting the current
playback position in the sheet music [1].

Scores and performances can be given in many differ-
ent forms and formats. For example, scores can be given
as scans of printed sheet music, vector graphics generated
by a computer typesetting software, optical music recog-
nition results, symbolic score formats such as MusicXML,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

Humdrum, or Lilypond, or as MIDI files. Performances
are usually given as audio recordings or in form of MIDI
files generated by electronic instruments. When aligning
score and performance representations, challenging prob-
lems arise when the two representations reveal differences
in their global overall structures. For example, a performer
may ignore a repeat that is written in the score or may
introduce an extra repeat that is not written in the score
(e.g. an additional verse). Furthermore, a performance may
include parts that are not written in score at all (e.g., a
cadenza or solo part) or may skip certain parts of an un-
derlying score. Structural differences between scores and
performances have been encountered in previous work on
on-line score following such as [2–4]. In this scenario, the
scores and performances that are synchronized are usually
monophonic. The most popular approach for this scenario
is to use hidden Markov models (HMM) in combination
with a training process to determine model parameter that
suit the given type of data. For the case of off-line syn-
chronization of polyphonic scores and performances, dy-
namic time warping (DTW) in combination with chroma
features has become a popular approach [5, 6] because it
can deliver similar accuracy than HMMs but without the
need for creating and training models. Furthermore, ef-
ficient multi-scale implementations can easily be realized
for this approach [7]. An overview on on-line and off-line
score-performance synchronization approaches is found in
[8]. In previous work on off-line score-performance syn-
chronization, a basic assumption usually is that there are
no structural differences between the two versions to be
aligned. In [6], the authors point out that classical DTW
can bypass additional segments such as repeated verses, at
least to some extent. Raphael [9] remarks in his work that
structural differences such as repeats are a common prob-
lem in score-performance synchronization. Content-based
comparison of scores and performances also plays an im-
portant role in retrieval scenarios [10–12]. As pointed
out in [12], retrieval methods may also be used to de-
termine the structural differences between a score and a
performance. Further related work has focused on perfor-
mances only, either in the scenario of general partial mu-
sic synchronization [13] or structural analysis of perfor-
mances [14,15].

In this paper, we describe a novel approach that allows
for synchronizing score and performance data in the pres-
ence of structural differences. The main motivation for our
work originates from a problem of high practical relevance
arising in the data acquisition and processing pipeline of a
digital music library [1]. Here, the score data is typically
obtained by first scanning the given printed sheet music

(a) (b) (c)

(d) (e) (f) (g) (h)

Figure 1. Examples for several types of block boundary indicators: (a) beginning and end of movement/song, (b) double bar lines with
and without repeat signs, (c) brackets for alternative endings, (d) segno marker, (e) textual jump directive, (f) coda, (g) fine, (h) title
heading of new musical section

material and then by converting the digitized images into
a symbolic score representation using optical music recog-
nition (OMR). In this process, repeat and jump directives
that are written in the printed sheet music (as shown in
Fig. 1) are often not recognized reliably by the OMR soft-
ware. Besides the reasons given above, such missing di-
rectives are a major source for structural differences be-
tween the resulting score representation and a given audio
recording. As the main technical contribution of this pa-
per, we introduce a novel variant of dynamic time warping
(DTW), which we refer to asJumpDTW. The main idea
of our approach is to estimate the repeats and jumps that
make the score match the performance and to calculate
the actual score-performance alignment within a joint op-
timization procedure based on a content-based comparison
of the score and audio data. The task tackled in this paper
is related to the task of computing a possibly large partial
alignment of two data streams [13, 16]. However, in con-
trast to these approaches, our goal is to somehow unfold
the score representation to best explain the performance.
Furthermore, we assume that the jumps and repeats only
occur on musically meaningful positions by exploiting ad-
ditional structural information given by the score. To this
end, the score is searched for structural elements such as
double bar lines to divide the score into blocks, see Fig. 1.
Then repeats and jumps are allowed only at block bound-
aries but never inside blocks.

The remainder of this paper is organized as follows.
In Sect. 2, we formalize the task of handling repeats and
jumps in score-performance synchronization. In Sect. 3,
we describe our novelJumpDTWalgorithm in detail and
indicate several extensions. Finally, in Sect. 4, we present
experiments performed on a test dataset consisting of pi-
ano sonatas by Beethoven and conclude in Sect. 5 with a
discussion of future work.

2. PROBLEM MODELING

We now assume that we are given one sheet music repre-
sentation and one performance in form of an audio record-
ing of the same piece of music. After processing the sheet
music via OMR, one obtains a symbolic representation re-
ferred to asscore representation. The score is naturally
divided into sections that are delimited by either bar lines
or the left or right boundary of a grand staff. Even though
these sections may differ from the musical bars as they are

usually counted in Western sheet music notation, in this
paper, we simply refer to each such section asbar.

Let B denote the set of bars appearing in the score and
letK = |B| be the number of bars. Ordering the set of bars
by their visual occurrence in the sheet music (canonically
ordered by the page number, line number, and left to right
within a line), one obtains a sequenceσ = (σ1, . . . , σK),
σk ∈ B, k ∈ [1 : K], which we refer to asscore bar se-
quence. Note that the score bar sequence does not account
for jump and repeat directives, see Fig. 2. Depending on
the context, we use the termbar to denote either an ele-
ment ofB, the region in the sheet music image that rep-
resents the bar, the musical content of the bar, or one of
possibly many occurrences of the bar in the performance.

As discussed before, sheet music may contain jump and
repeat directives such as repeat signs, alternative endings,
dacapos or segnos, see Fig. 1. Because of these direc-
tives, the given performance often deviates from the score
bar sequenceσ. The musician may even choose to ig-
nore or add some of the displayed repeats or may intro-
duce shortcuts. This leads to a possibly different sequence
π = (π1, . . . , πJ), πj ∈ B, j ∈ [1 : J], which we call
performance bar sequence, see Fig. 2. Note that in the
scenario discussed in this paper, the performance bar se-
quenceπ is unknown. One application of the approach
introduced in the remainder of this paper is to determine
this sequenceπ.

To relate the score bar sequenceσ and the performance
bar sequenceπ, intuitively, the score bar sequence, which
represents the source material, has to be suitablyunfolded
to best explain the performance. Here, theunfoldingtypi-
cally appears at the jump and repeat directives indicated by
the sheet music. Making use of this fact, the problem of un-
folding sequences of bars can be reduced to the easier task
of unfolding much shorter sequences of so-calledblocks
which are obtained by concatenating suitable subsquences
of bars during which no repeats or jumps are expected to
occur. To this end, the score is searched forblock boundary
indicatorsthat indicate bars in the score that might serve as
source or target for jumps and repeats. Examples of these
indicators are depicted in Fig. 1.

Let k0 = 0 < k1 < . . . < kI−1 < kI = K be
boundary indices corresponding to the jump and repeat di-
rectives. Then, we define the block

βi = (σki−1+1, . . . , σki
) (1)

1.

2.

σ1

π1

β1

σ2

π2 π6

σ3

π3 π7

β2

σ4

π4

σ5

π5

β3

σ6

π8

σ7

π9

β4

σ8

π10

σ9

π11

σ10

π12

σ11

π13

β5

Figure 2. Illustration of the score bar sequenceσ, the perfor-
mance bar sequenceπ and the score block sequenceβ.

of length |βi| = ki − ki−1 for i ∈ [1 : I]. The resulting
score block sequenceβ := (β1, . . . , βI) is a partition ofσ,
see Fig. 2. Now, the task of finding the performance bar
sequenceπ is reduced to finding a sequence of block in-
dicesb = (b1, . . . , bG), bg ∈ [1 : I], g ∈ [1 : G], such that
(βb1 , . . . , βbG) is as close as possible to the performance
bar sequenceπ. The task of finding such a sequenceb is
discussed in the next section. For an example, we refer to
Fig. 3. Note that, depending on the context, we will later
use the termblocknot only to denote elements of the score
block sequenceβ, but also to refer to elements of the block
index sequenceb.

3. PARTIAL SYNCHRONIZATION WITH JUMPS

Most procedures for score-performance synchronization
first convert the two data streams to be aligned into suitable
feature representations. Then, based on a local cost mea-
sure that allows for comparing features, a global alignment
path between the feature sequences is computed using dy-
namic time warping (DTW). This procedure only works
well if the score and the performance are in global corre-
spondence and do not differ in their overall structure.

To account for structural differences as occurring in our
scenario, we extend the classical DTW approach to enable
jumps in the alignment path. Our idea of allowing jumps is
inspired by the way a piece of music is often modeled using
a Hidden Markov Model (HMM). Here, the note events of
a score are modeled by states which are left-to-right con-
nected to enforce that the music can only move forward but
not backward. To account for possible repeats and jumps
at certain block boundaries, one then simply adds further
connections that connect states representing possible jump
sources to states representing possible jump targets. After
a short review of classical DTW (Sect. 3.1), we show how
the jump directives can be incorporated (Sect. 3.2) and then
indicate further DTW variants (Sect. 3.3).

3.1 Classical DTW

Introducing some notation, we now summarize the clas-
sical DTW approach using a slight reformulation. Let
x = (x1, . . . , xN) andy = (y1, . . . , yM) be the feature
sequences obtained from the score and performance repre-
sentation, respectively. Furthermore, letc denote the local
cost measure used to compare two features. Then thelocal
cost matrixC of dimensionN ×M is defined by

C(n,m) := c(xn, ym) (2)

β1

β2

β3

β4

β5

S
co

re

Performance

Figure 3. Visualization of a score-audio synchronization result
with score block sequenceb = (1, 2, 3, 2, 4, 5) for the score and
performance bar sequences shown in Fig. 2. The red line indi-
cates an alignment path with jumps.

for (n,m) ∈ Z, whereZ := [1 : N]×[1 : M] is referred to
as the set ofcells. A (global)alignment pathbetweenx and
y is a sequencep = (p1, . . . , pL) with pℓ = (nℓ,mℓ) ∈ Z
for ℓ ∈ [1 : L] satisfying the boundary conditionp1 =
(1, 1) andpL = (N,M) and the step conditionpℓ−pℓ−1 ∈
Σ for ℓ ∈ [2 : L] Here,Σ := {(1, 0), (0, 1), (1, 1)} denotes
the set of possible steps. The cost of the pathp is defined
by

∑L

ℓ=1
C(pℓ). An optimal alignment pathis defined to

be an alignment path having minimal cost over all possible
alignment paths.

An optimal alignment path can be computed using
dynamic time warping (DTW). First, for a given cell
(n,m) ∈ Z, one defines the setZn,m of possibleprede-
cessorsby

Zn,m := {(n,m)− z | z ∈ Σ} ∩ Z. (3)

Then, one computes anaccumulated cost matrixD of di-
mensionN × M . First, one setsD(1, 1) := C(1, 1) and
then recursively defines

D(n,m) := C(n,m) + min
{

D(z) | z ∈ Zn,m

}

(4)

for (n,m) ∈ Z \ {(1, 1)}. The valueD(N,M) represents
the cost of an optimal alignment path. Such an optimal
path can be constructed based on a simple back tracking
algorithm usingD. For details, we refer to [17].

3.2 JumpDTW

To account for structural differences between the score and
the performance caused by repeats and jumps, we now ex-
tend the concept of an alignment path and the classical
DTW approach. Recall that we assume that the jumps oc-
cur from ends to beginnings of the blocksβi, i ∈ [1 : I].
With regard to the feature representationx = (x1, . . . , xN)
of the score, we assume that the beginning ofβi cor-
responds to indexsi ∈ [1 : N] and the end to index
ti ∈ [1 : N], wheresi < ti. Furthermore, we assume that
the beginning of blockβi+1 immediately follows the end
of blockβi, i.e.,si+1 = ti + 1. LetS := {si | i ∈ [1 : I]}
andT := {ti | i ∈ [1 : I]}.

Next, analignment path with jumpswith respect to the
setsS andT is defined to be a sequencep = (p1, . . . , pL)
with pℓ = (nℓ,mℓ) ∈ Z for ℓ ∈ [1 : L] satisfying the
boundary condition as before. However, this time we mod-
ify the step condition by requiring that eitherpℓ−pℓ−1 ∈ Σ
(as before) or

mℓ−1 = mℓ − 1 ∧ nℓ−1 ∈ T ∧ nℓ ∈ S. (5)

In other words, besides the regular steps, we also permit
jumps in the first coordinate (corresponding to the score)
from the end of any block (given byT) to the beginning of
any other block (given byS), see also Fig. 3.

We now introduce a modified DTW version, referred to
asJumpDTW, that allows for computing an optimal align-
ment path with jumps. Recall that, in classical DTW, the
setZn,m of possible predecessor cells encodes all cells
from which one can reach the cell(n,m) by applying a
single step fromΣ, see (3). The main idea of our modifi-
cation is to add further predecessor cells that model possi-
ble jumps between the block boundaries. To this end, we
extend all setsZn,m for n ∈ S by setting

Z̃n,m := Zn,m ∪
(

{(t,m− 1) | t ∈ T} ∩ Z
)

. (6)

Furthermore, we set̃Zn,m := Zn,m for all other n ∈
[1 : N] \ S. Intuitively, the additional predecessor cells
in Z̃n,m \Zn,m permit jumps from the end of any block to
the beginning of any other block. As in the classical case,
one then computes an accumulated cost matrix simply by
replacing the setsZn,m by the sets̃Zn,m obtaining a matrix
D̃. More precisely, we set̃D(1, 1) = C(1, 1) and

D̃(n,m) := C(n,m) + min
{

D̃(z) | z ∈ Z̃n,m

}

(7)

for (n,m) ∈ Z \ {(1, 1)}. Note that for a given(n,m) 6=

(1, 1), the setZ̃n,m only contains cells of the form(n −
1,m) or (k,m − 1) for somek ∈ [1 : N]. In other
words, Z̃n,m only contains cells that lie below or to the
left of the current cell(n,m) when the axes are chosen as
in Fig. 3. Therefore,̃D can still be computed recursively in
a column-wise fashion. The matrix entrỹD(N,M) yields
the cost of an optimal alignment path with jumps. As for
the classical case, such an optimal path can then be con-
structed based on a simple back tracking algorithm using
D̃.

From an optimal warping path with jumps one can
derive the underlying sequence of block indicesb =
(b1, . . . , bG), bg ∈ [1 : I], g ∈ [1 : G], in a canonical
way. Starting with the first block, one either enters the
subsequent block via a step fromΣ or enters a different
block via a jump. For example, in the case of a jump from
pℓ−1 = (tj ,m − 1) to pℓ = (si,m) for someℓ ∈ [2 : L],
one obtainsbg−1 = j andbg = i for someg ∈ [2 : G],
see also Fig. 3 for an illustration. Having determined the
sequence of block indicesb, one can easily derive the per-
formance sequenceπ by expanding blocks to bars.

3.3 Further DTW Variants

Because of the boundary condition, an alignment path
starts atp1 = (1, 1) and ends atpL = (N,M). There-
fore, the score block sequenceb is also restricted to start
with the first blockb1 = 1 and to end with the last block
bG = K. In practice, however, a performance may end
with a different block. For example, this happens in the
presence of a “dacapo”, where the piece ends at a block
marked with the keyword “fine.” To account for this pos-
sibility, one can easily modify the JumpDTW algorithm.
Instead of looking at the entrỹD(N,M), one simply has
to determine the index

n∗ := argmin
{

D̃(n,M) |n ∈ T
}

. (8)

Then, the alignment path with jumps is computed via back-
tracking starting with the cell(n∗,M) instead of(N,M).
Similarly, one can relax the condition that one has to start
with the first block, see [17] for details. Note that further
constraints on the jumps can easily be handled by suitably
modifying the sets̃Zn,m of predecessor cells. For example,
to restrict the jump possibilities for a given blockβi, one
simply restricts the setT to a suitable subsetT ′ ⊂ T and
then uses̃Zsi,m := Zsi,m ∪

(

{(t,m− 1) | t ∈ T ′} ∩ Z
)

.

4. EXPERIMENTS

To evaluate the usefulness of JumpDTW in a practically
relevant application, experiments are conducted on the first
15 piano sonatas by Beethoven including a total of54
individual movements. The score data is obtained from
OMR results of a printed sheet music edition, and the per-
formances are given as audio CD recordings. Since the
score data does not include any tempo information, a mean
tempo is estimated for each movement using the number
of bars and the duration of the corresponding performance.
For each movement, the score bar sequenceσ is known and
the score block sequenceβ is obtained using block bound-
ary indicators extracted from the score. Note that this may
include block boundary indicators where actually no jump
or repeat occur in the performance. The performance bar
sequenceπ is given as ground truth and is used to derive a
ground truth block index sequenceb with respect toβ. For
our test data set, the total number of score blocks appearing
in the sequencesβ of the54 movements is242. The total
number of score bars is8832. Note that, because of re-
peats and jumps, a score block may occur more than once
in the performance. Therefore, the total number of blocks
appearing in the sequencesb is 305 which corresponds to
a total of11836 bars being played in the performance. The
total duration of the performance amounts to312 minutes.

JumpDTW is performed on the data usingβ as de-
scribed in Section 3.2. From the resulting warping
path with jumps, an output block index sequenceb′ =
(b′1, ...b

′

G′) is obtained. In the optimal case, this block in-
dex sequenceb′ would be equal to the ground truth block
index sequenceb. Table 1 shows the results of comparing
b′ to b using several different evaluation measures. Each
row shows the results for different sets ofb′ obtained us-
ing a different JumpDTW variant. Each entry in the table
summarizes the results for all54 movements. The first row,
taggednojumps, represents the results when using classi-
cal DTW as described in Sect. 3.1, which serves as bottom
line in our evaluation. The second row, taggeds1 plain,
represents the basic JumpDTW algorithm as described in
Section 3.2 including the relaxed boundary condition for
dacapo/fine cases as described in 3.3.

The numbers plotted in the first six columns are based
on a direct comparison of the sequencesb′ and b and
measure how many blocks (abbreviated asblk) or per-
formance bars (bar) match between the two sequences
(mch), have been erroneously inserted intob′ (ins), or
have been erroneously omitted inb′ (omt) with respect
to the ground truthb. To this end, we calculate an opti-
mum alignment between the two block index sequences
using a variant of the edit distance that only allows in-
sertions and deletions (but not replacements). To find an
alignment between the two block index sequences that is
optimal with respect to the amount of inserted and omit-

mch blk % (#) ins blk % (#) omt blk % (#) mch bar % (#) ins bar % (#) omt bar % (#) prf % (#)
nojumps 70.2 (214) 0.3 (1) 29.8 (91) 74.6 (8831) 0.0 (1) 25.4 (3005) 69.8 (8258)
s1 plain 93.4 (285) 9.2 (28) 6.6 (20) 99.2 (11740) 0.9 (105) 0.8 (96) 98.5 (11661)

s2 addspecialstates 93.4 (285) 5.6 (17) 6.6 (20) 99.3 (11759) 0.7 (82) 0.7 (77) 98.8 (11692)
s3 penalize0.5 100 94.4 (288) 9.5 (29) 5.6 (17) 99.4 (11767) 0.4 (51) 0.6 (69) 99.1 (11725)

Table 1. Evaluation results for classical DTW and different variants of JumpDTW.

ted bars (instead of blocks), each block index entry in the
sequences is weighted by the length of the corresponding
score block. Each entry in Table 1 is given as a percent-
age with respect to the total number of blocks/bars in the
performance followed by the absolute number in parenthe-
ses. For example, the entry70.2(214) in the first row and
column means that214 blocks ofb′ have a matching coun-
terpart inb, which is214/305 = 70.2% of the total number
of blocks inb. Similarly, the entry74.6(8831) for match-
ing bars means that the214 matching blocks have a total
length of8831 bars, which is8831/11836 = 74.6% of the
total length ofb in bars.

A further evaluation measure (prf), which is plotted
in the last column of Table 1, expresses the alignment ac-
curacy on the bar-level. This measure is motivated by
the application of visually presenting sheet music that is
linked on a bar-wise level to a given recorded audio perfor-
mance. For this application, we want to measure for how
many of the performance bars the alignment computed via
JumpDTW is suitably accurate. To this end, the ground
truth block index sequenceb is used to create a feature
sequencex from the score data that matches the repeats
and jumps of the performance. Then, this feature sequence
is synchronized to a feature sequencey obtained from the
performance using classical DTW. From the output warp-
ing path, we derive a bar-wise score-performance synchro-
nization that maps each performance barπj ∈ π to a tem-
poral region with center timedj in the performance, see
Fig. 4. Furthermore, this synchronization delivers a map-
ping φ : [0, D] → [1 : K], with D being the duration of
the performance, that for each time positionsd ∈ [0, D] in
the performance returns an indexk ∈ [1 : K] indicating
that barσk is played at timed, see also Fig. 4. Since,
from manual inspection, the synchronization results ob-
tained when using the ground truth block index sequence
b are known to be suitably accurate on a bar-wise level,
they are used as a reference for finding deviations in the
synchronization results obtained usingb′. For each perfor-
mance barπj , we take the bar center timedj and input it
into the mappingφ′ obtained from the synchronization re-
sults usingb′. The performance bar is counted as correctly
matched ifφ′(dj) = φ(dj), which means that in the syn-
chronization obtained usingb′, the time positiondj points
to the same barσk as in the reference synchronization. Un-
like the mere number of matched bars listed in the column
mch bar, this measure takes into account the extra con-
fusion that is caused in the synchronization by erroneously
inserted or omitted bars.

From the results using classical DTW (nojumps) one
can see that about70–75% of the blocks and bars of the
performance are covered by the plain score bar sequence.
The remaining25–30% are repeats that are omitted in this
sequence. The synchronization-based measure indicates
a similar result: 69.8% of the center time positions of
the bars in the performance were aligned to the correct
bar in the score. These results are improved significantly,

Figure 4. Illustration of a bar-wise score-performance synchro-
nization. Each performance barπj is synchronized to a temporal
region of a performance with bar center timedj . Furthermore, a
mappingφ can be derived that for a given time positiond in the
performance outputs the indexk of the corresponding score bar
σk.

when using JumpDTW (s1 plain). Here,93.4% of the
blocks and99.2% of the bars are matched correctly. In the
synchronization-based measure,98.5% of the performed
bars match the reference synchronization. Even though28
blocks have been erroneously inserted and20 blocks have
been omitted, this amounts to only105 inserted bars and
96 omitted bars, revealing that the mean length of inserted
and omitted blocks is only about4.2 bars.

Manual inspection of the results for the individual
movements reveals that in many cases an extra block is
inserted at the beginning or the end of the sequence to
cover for silence at the beginning or end of the perfor-
mance. In one case, this even leads to the last block of
the sequence being confused with an incorrect one. To
encounter this issue, we extend the JumpDTW algorithm
by adding special states to the score representation that
model silence at the beginning or end of the performance.
The results for this modification are listed in the line la-
beleds2 add special states and show slightly im-
proved numbers. An in-depth analysis of the results shows
that this modification solved all of the previously men-
tioned problems caused by initial or trailing silence in the
performance. Furthermore, it turned out that130 of the
82 + 77 = 159 inserted and omitted bars occur in just3 of
the54 movements. The performance of the first movement
of “Sonata 8, Op. 13,Pathetique” contains extreme tempo
changes with slow sections of roughly20 BPM (beats per
minute) alternating with fast sections of about300 BPM.
This results in a large difference between the estimated
mean tempo of the score and the tempo of the slow sec-
tions in the performance. The JumpDTW algorithm reacts
by erroneously inserting more or less random blocks to
cover the unexpectedly slow sections of the performance.
A different kind of problem occurs in “Sonata 12, Op. 26,
Andante con variazioni”. Here, the second block is a vari-
ation of the first block that has virtually the same harmonic
progression. The JumpDTW erroneously treats this second
block in the performance as a repeat of the first block in the
score. This behavior is not very surprising considering that

the content-based comparison of score and performance is
somewhat noisy and for the chroma-based features used,
sections with the same harmonic progression are almost
indistinguishable. In “Sonata 13, Op. 27 No. 1, Andante–
Allegro” it is again a significant change in the tempo that
causes a problem. Here, a repeat of a block (length =9
bars) of the faster Allegro section is omitted by JumpDTW,
which is provoked by the estimated tempo of the score be-
ing significantly slower than the tempo of the correspond-
ing section of the performance. For all of the remaining
movements, only blocks of length2 or lower are inserted
or omitted.

To encounter the problems discussed above, we further
extend the JumpDTW approach by introducing a penalty
cost for performing jumps in the warping path that is added
to the accumulated cost. The cost value is set to0.5 · N

100
,

with N being the length of the score feature sequence. The
particular formula is motivated by the idea of choosing a
cost value that is close to the cost of matching1/100-th
of the score to a section of the performance that is not
considered similar. Since in our implementation, we use
normalized chroma features with a cosine measure for the
local cost, a local cost value of0.5 is already considered
not similar. The results for this modification are listed
in the rows3 penalize 0.5 100. A closer analysis
shows that adding the penalty solves the confusion for the
“Andante con Variazioni” and lowers the amount of in-
serted bars for the slow sections of the “Pathetique”, which
leads to a better overall result. However, the penalty also
causes degradation for many of the other movements be-
cause short blocks for alternative endings are no longer
skipped. Tuning the penalty cost to higher or lower values
did not improve the situation. An increased penalty led to
an increased amount of erroneously skipped short blocks
while a decreased penalty no longer solved the confusion
for the two movements discussed above.

5. CONCLUSIONS

In this paper, we have formally modeled the task of score-
performance synchronization in the presence of structural
differences induced by jumps and repeats. To handle such
differences, we introduced a novel DTW variant referred
to as JumpDTW. The results of the experiments presented
in Section 4 show that the JumpDTW approach can suc-
cessfully align about99% of the bars played in the perfor-
mance on the given test dataset with less than1% of bars
being omitted and less than1% of extra bars being inserted.
This positive result suggests that the approach may be use-
ful for the large-scale automatic alignment of OMR data
and audio recordings in a digital music library scenario.

Introducing penalty cost for performing jumps did fix
some problems occuring on the test dataset but also caused
additional errors. Further improvements of our approach
are needed in situations where one has large differences
(more than a factor of two) in the estimated tempo of the
score and the tempo of the actual performance. Also, when
using chroma features, blocks that reveal a similar har-
monic progression are prone to confusion. Here, combina-
tions with other feature types may help to resolve this prob-
lem. Note that, besides the segmentation of the score data
into blocks, the JumpDTW approach completely relies on
content-based comparison of notes and acoustic data. If
further structural information from the score can be incor-

porated, as for example tempo directives or jumps and re-
peats as suggested by the notation, many of the remaining
issues and inaccuracies might be solved. Besides this, an-
other direction of future work may be to incorporate the
case of cadenzas, where the performance contains sections
that are not written in the score.

Acknowledgement.This work was supported by the Ger-
man Research Foundation (DFG, CL 64/6-1) and by the
Cluster of Excellence on Multimodal Computing and In-
teraction at Saarland University. We would like to thank
the anonymous reviewers for their very helpful comments
and suggestions.

6. REFERENCES

[1] D. Damm, C. Fremerey, F. Kurth, M. M̈uller, and M. Clausen. Multi-
modal presentation and browsing of music. InProc. ICMI, pp. 205–
208, Chania, Crete, Greece, 2008.

[2] M.E. Tekin, C. Anagnostopoulou, and Y. Tomita. Towards anintel-
ligent score following system: Handling of mistakes and jumps en-
countered during piano practicing. InComputer Music Modeling and
Retrieval, pp. 211–219, 2005.

[3] B. Pardo and W. Birmingham. Modeling form for on-line following
of musical performances. InProc. National Conference on Artificial
Intelligence, Pittsburgh, Pennsylvania, 2005.

[4] A. Arzt, G. Widmer, and S. Dixon. Automatic page turning formusi-
cians via real-time machine listening. InProc. ECAI, Patras, Greece,
2008.

[5] R. Dannenberg and N. Hu. Polyphonic audio matching for score fol-
lowing and intelligent audio editors. InProc. ICMI, pp. 27–34, San
Francisco, USA, 2003.

[6] R. Turetsky and D. Ellis. Ground-truth transcriptions of real music
from force-aligned MIDI syntheses. InProc. ISMIR, pages 135–141,
Baltimore, Maryland, USA, 2003.

[7] S. Salvador and P. Chan. Toward accurate dynamic time warping in
linear time and space. InIntelligent Data Analysis, 11(5):561–580,
2007.

[8] R. Dannenberg and C. Raphael. Music score alignment and computer
accompaniment.Comm. ACM, Special Issue: Music Information Re-
trieval, 49(8):38–43, 2006.

[9] C. Raphael. A hybrid graphical model for aligning polyphonic audio
with musical scores. InProc. ISMIR, Barcelona, Spain, 2004.

[10] J. Pickens, J. P. Bello, G. Monti, T. Crawford, M. Dovey,M. Sandler,
and D. Byrd. Polyphonic score retrieval using polyphonic audio. In
Proc. ISMIR, Paris, France, 2002.

[11] I. Suyoto, A. Uitdenbogerd, and F. Scholer. Searching musical audio
using symbolic queries.IEEE TASLP, 16(2):372–381, 2008.

[12] C. Fremerey, M. Clausen, M. M̈uller, and S. Ewert. Sheet music-
audio identification. InProc. ISMIR, pp. 645–650, Kobe, Japan, 2009.

[13] M. Müller and D. Appelt. Path-constrained partial music synchro-
nization. In Proc. ICASSP, pp. 65–68, Las Vegas, Nevada, USA,
2008.

[14] M. Goto. A chorus section detection method for musical audio sig-
nals and its application to a music listening station.IEEE TASLP,
14(5):1783–1794, 2006.

[15] M. Levy and M. Sandler. Structural segmentation of musical audio
by constrained clustering.IEEE TASLP, 16(2):318–326, 2008.

[16] J. Serr̀a, E. Ǵomez, P. Herrera, and X. Serra. Chroma binary simi-
larity and local alignment applied to cover song identification. IEEE
TASLP, 16:1138–1151, 2008.

[17] M. Müller. Information Retrieval for Music and Motion. Springer,
2007.

