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ABSTRACT

Even though folk songs have been passed down mainly by

oral tradition, most musicologists study the relation be-

tween folk songs on the basis of score-based transcrip-

tions. Due to the complexity of audio recordings, once

having the transcriptions, the original recorded tunes are

often no longer studied in the actual folk song research

though they still may contain valuable information. In this

paper, we introduce an automated approach for segment-

ing folk song recordings into its constituent stanzas, which

can then be made accessible to folk song researchers by

means of suitable visualization, searching, and navigation

interfaces. Performed by elderly non-professional singers,

the main challenge with the recordings is that most singers

have serious problems with the intonation, fluctuating with

their voices even over several semitones throughout a song.

Using a combination of robust audio features along with

various cleaning and audio matching strategies, our ap-

proach yields accurate segmentations even in the presence

of strong deviations.

1. INTRODUCTION

Generally, a folk song is referred to as a song that is sung

by the common people of a region or culture during work

or social activities. Since many decades, significant ef-

forts have been carried out to assemble and study large

collections of folk songs [7, 12]. Even though folk songs

were typically transmitted only by oral tradition without

any fixed symbolic notation, most of the folk song research

is conducted on the basis of notated music material, which

is obtained by transcribing recorded tunes into symbolic,

score-based music representations. After the transcription,

the audio recordings are often no longer studied in the ac-

tual research. Since folk songs are part of oral culture, one

may conjecture that performance aspects enclosed in the

recorded audio material are likely to bear valuable infor-

mation, which is no longer contained in the transcriptions.
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Furthermore, even though the notated music material may

be more suitable for classifying and identifying folk songs

using automated methods, the user may want to listen to

the original recordings rather than to synthesized versions

of the transcribed tunes.

It is the object of this paper to indicate how the orig-

inal recordings can be made more easily accessible for

folk song researches and listeners by bridging the gap be-

tween the symbolic and the audio domain. In particular, we

present a procedure for automatically segmenting a given

folk song recording that consists of several repetitions of

the same tune into its individual stanzas. Using folk song

recordings of the Onder de groene linde (OGL), main chal-

lenges arise from the fact that the songs are performed by

elderly non-professional singers under poor recording con-

ditions. The singers often deviate significantly from the

expected pitches and have serious problems with the into-

nation. Even worse, their voices often fluctuate by several

semitones downwards or upwards across the various stan-

zas of the same recording. As our main contribution, we in-

troduce a combination of robust audio features along with

various cleaning and audio matching strategies to account

for such deviations and inaccuracies in the audio record-

ings. Our evaluation on folk song recordings shows that

we obtain reliable segmentations even in the presence of

strong deviations.

The remainder of this paper is organized as follows. In

Sect. 2, we describe the relationship of these investigations

to folk song research and describe the folk song collec-

tion we employ. In Sect. 3, we show how the recorded

songs can be segmented and annotated by locally com-

paring and aligning the recordings’ feature representations

with available transcriptions of the tunes. In particular,

we introduce various methods for achieving robustness to

the aforementioned pitch fluctuations and recording arti-

facts. Then, in Sect. 4, we report on our systematic ex-

periments conducted on a representative selection of folk

song recordings. Finally, in Sect. 5, we indicate how our

segmentation results can be used as basis for novel user

interfaces, sketch possible applications towards automated

performance analysis, and give prospects on future work.

Further related work is discussed in the respective sections.



2. FOLK SONG RESEARCH

Folk song reseach has been carried out from many different

perspectives. An important problem is to reconstruct and

understand the genetic relation between variants of folk

songs [12]. Furthermore, by systematically studying en-

tire collections of folk songs, researchers try to discover

musical connections and distinctions between different na-

tional or regional cultures [7]. To support such research,

several databases of encoded folk song melodies have been

assembled, the best known of which is the Essen folk song

database, 1 which currently contains roughly 20000 folk

songs from a variety of sources and cultures. This collec-

tion has also been widely used in MIR research.

Even though folk songs have been passed down mainly

by oral tradition, most of the folk song research is con-

ducted on the basis of notated music material. How-

ever, various folk song collections contain a considerable

amount of audio data, which has not yet been explored at

a larger scale. One of these collections is Onder de groene

linde (OGL), which is part of the Nederlandse Liederen-

bank (NLB). The OGL collection comprises several 7277

Dutch folk song recordings along with song transcriptions

as well as a rich set of metadata. 2 This metadata in-

cludes date and location of recording, information about

the singer, and classification by (textual) topic. OGL con-

tains 7277 recordings, which have been digitized as MP3

files. Nearly all of recordings are monophonic, and the

vast majority is sung by elderly solo female singers. When

the collection was assembled, melodies were transcribed

on paper by experts. Usually only one strophe is given in

music notation, but variants from other strophes are reg-

ularly included. The transcriptions are somewhat ideal-

ized: they tend to represent the presumed intention of the

singer rather than the actual performance. For about 2500

melodies, transcribed stanzas are available in various sym-

bolic formats including LilyPond, 3 from which MIDI rep-

resentations have been generated (with a tempo set at 120
BPM for the quarter note).

An important step in unlocking such collections of

orally transmitted folk songs is the creation of content-

based search engines. The creation of such a search engine

is an important goal of the WITCHCRAFT project [8].

The engines should enable a user to search for encoded

data using advanced melodic similarity methods. Further-

more, it should also be possible to not only visually present

the retrieved items, but also to supply the corresponding

audio recordings for acoustic playback. One way of solv-

ing this problem is to create robust alignments between re-

trieved encodings (for example in MIDI format) and the

audio recordings. The segmentation and annotation pro-

cedure described in the following section exactly accom-

plishes this task.

1 http://www.esac-data.org/
2 The OGL collection is currently hosted at the Meertens Institute

in Amsterdam. The metadata of the songs are available through www.

liederenbank.nl
3 www.lilypond.org
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Figure 1. Representations of the beginning of the first stanza of
NLB73626 (a) Score representation. (b) Chromagram of MIDI
representation. (c) Smoothed MIDI chromagram (CENS). (d)
Chromagram of audio recording (CENS). (e) F0-enhanced chro-
magram (see Sect. 3.4).

3. FOLK SONG SEGMENTATION

In this section, we present a procedure for automatically

segmenting a folk song recording that consists of sev-

eral repetitions of the same tune into its individual stan-

zas. Here, we assume that we are given a transcription

of a reference tune in form of a MIDI file. Recall from

Sect. 2 that this is exactly the situation we have with the

songs of the OGL collection. In the first step, we trans-

form the MIDI reference as well as the audio recording

into a common mid-level representation. Here, we use

the well-known chroma representation, which is summa-

rized in Sect. 3.1. On the basis of this feature representa-

tion, the idea is to locally compare the reference with the

audio recording by means of a suitable distance function

(Sect. 3.2). Using a simple iterative greedy strategy, we

derive the segmentation from local minima of the distance

function (Sect. 3.3). This approach works well as long as

the singer roughly follows the reference tune and stays in

tune. However, this is an unrealistic assumption. In par-

ticular, most singers have significant problems with the in-

tonation. Their voices often fluctuate by several semitones

downwards or upwards across the various stanzas of the

same recording. In Sect. 3.4, we show how the segmenta-

tion procedure can be improved to account for poor record-

ing conditions, intonation problems, and pitch fluctuations.

3.1 Chroma Features

In order to compare the MIDI reference with the au-

dio recordings, we revert to chroma-based music features,

which have turned out to be a powerful mid-level represen-

tation for relating harmony-based music, see [1, 6, 9, 11].
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Figure 2. Magnitude responses in dB for some of the pitch fil-
ters of the multirate pitch filter bank used for the chroma compu-
tation. Top: Filters corresponding to MIDI pitches p ∈ [69 : 93]
(with respect to the sampling rate 4410 Hz). Bottom: Filters
shifted half a semitone upwards.

Here, the chroma refer to the 12 traditional pitch classes

of the equal-tempered scale encoded by the attributes

C, C♯, D, . . ., B. Representing the short-time energy con-

tent of the signal in each of the 12 pitch classes, chroma

features do not only account for the close octave relation-

ship in both melody and harmony as it is prominent in

Western music, but also introduce a high degree of robust-

ness to variations in timbre and articulation [1]. Further-

more, normalizing the features makes them invariant to dy-

namic variations.

It is straightforward to transform a MIDI representation

into a chroma representation or chromagram. Using the

explicit MIDI pitch and timing information one basically

identifies pitches that belong to the same chroma class

within a sliding window of a fixed size, see [6]. Fig. 1

shows a score and the resulting MIDI reference chroma-

gram. For transforming an audio recording into a chroma-

gram, one has to revert to signal processing techniques.

Most chroma implementations are based on short-time

Fourier transforms in combination with binning strate-

gies [1]. In this paper, we revert to chroma features ob-

tained from a pitch decomposition using a multirate pitch

filter bank as described in [9]. The employed pitch fil-

ters possess a relatively wide passband, while still prop-

erly separating adjacent notes thanks to sharp cutoffs in

the transition bands, see Fig. 2. Actually, the pitch filters

are robust to deviations of up to ±25 cents 4 from the re-

spective note’s center frequency. The pitch filters will play

an important role in Sect. 3.4. Finally, in our implementa-

tion, we use a quantized and smoothed version of chroma

features referred to as CENS features [9] with a feature res-

olution of 10 Hz (10 features per second), see (c) and (d) of

Fig. 1. For technical details, we refer to the cited literature.

3.2 Distance Function

We now introduce a distance function that expresses the

distance of the MIDI reference chromagram with suitable

subsegments of the audio chromagram. More precisely,

let X = (X(1),X(2), . . . ,X(K)) be the sequence of

chroma features obtained from the MIDI reference and

4 The cent is a logarithmic unit to measure musical intervals. The
semitone interval of the equally-tempered scale equals 100 cents.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80 90 100

Figure 3. Top: Distance function ∆ for NLB73626 using orig-
inal chroma features (gray) and F0-enhanced chroma features
(black). Bottom: Resulting segmentation.

let Y = (Y (1), Y (2), . . . , Y (L)) be the one obtained

from the audio recording. In our case, the features X(k),
k ∈ [1 : K], and Y (ℓ), ℓ ∈ [1 : L], are normalized

12-dimensional vectors. We define the distance function

∆ := ∆X,Y : [1 : L] → R ∪ {∞} with respect to X and

Y using a variant of dynamic time warping (DTW):

∆(ℓ) :=
1

K
min

a∈[1:ℓ]

(

DTW
(

X , Y (a : ℓ)
)

)

, (1)

where Y (a : ℓ) denotes the subsequence of Y starting at

index a and ending at index ℓ ∈ [1 : L]. Furthermore,

DTW(X,Y (a : ℓ)) denotes the DTW distance between X
and Y (a : ℓ) with respect to a suitable local cost measure

(in our case, the cosine distance). The distance function ∆
can be computed efficiently using dynamic programming.

For details on DTW and the distance function, we refer

to [9]. The interpretation of ∆ is as follows: a small value

∆(ℓ) for some ℓ ∈ [1 : L] indicates that the subsequence

of Y starting at index aℓ (with aℓ ∈ [1 : ℓ] denoting the

minimizing index in (1)) and ending at index ℓ is similar

to X . Here, the index aℓ can be recovered by a simple

backtracking algorithm within the DTW computation pro-

cedure. The distance function ∆ for NLB73626 is shown

in Fig. 3 as gray curve. The five pronounced minima of ∆
indicate the endings of the five stanzas of the audio record-

ing.

3.3 Audio Segmentation

Recall that we assume that a folk song audio recording ba-

sically consists of a number of repeating stanzas. Exploit-

ing the existence of a MIDI reference and assuming the

repetitive structure of the recording, we apply the follow-

ing simple greedy segmentation strategy. Using the dis-

tance function ∆, we look for the index ℓ ∈ [1 : L] min-

imizing ∆ and compute the starting index aℓ. Then, the

interval S1 := [aℓ : ℓ] constitutes the first segment. The

value ∆(ℓ) is referred to as the cost of the segment. To

avoid large overlaps between the various segments to be

computed, we exclude a neighborhood [Lℓ : Rℓ] ⊂ [1 : L]
around the index ℓ from further consideration. In our strat-

egy, we set Lℓ := max(1, ℓ − 2
3K) and Rℓ := min(L, ℓ +

2
3K), thus excluding a range of two thirds of the reference

length to the left as well as to the right of ℓ. To achieve the

exclusion, we modify ∆ simply by setting ∆(m) := ∞
for m ∈ [Lℓ : Rℓ]. To determine the next segment S2,



the same procedure is repeated using the modified dis-

tance function, and so on. This results in a sequence of

segments S1, S2, S3, . . .. The procedure is repeated until

all values of the modified ∆ lie above a suitably chosen

quality threshold τ > 0. Let N denote the number of re-

sulting segments, then S1, S2, . . . , SN constitutes the final

segmentation result, see Fig. 3 for an illustration.

3.4 Enhancement Strategies

Recall that the comparison of the MIDI reference and the

audio recording is performed on the basis of chroma rep-

resentations. Therefore, the segmentation algorithm de-

scribed so far only works well in the case that the MIDI

reference and the audio recording are in the same musical

key. Furthermore, the singer has to stick roughly to the

pitches of the well-tempered scale. Both assumptions are

violated for most of the songs. Even worse, the singers of-

ten fluctuate with their voice by several semitones within

a single recording. This often leads to poor local minima

or even completely useless distance functions as illustrated

Fig. 4. To deal with local and global pitch deviations as

well as with poor recording conditions, we use a combina-

tion of various enhancement strategies.

In our first strategy, we enhance the quality of the

chroma features similar to [4] by picking only dominant

spectral coefficients, which results in a significant atten-

uation of noise components. Dealing with monophonic

music, we can go even one step further by only picking

spectral components that correspond to the fundamental

frequency (F0). More precisely, we use a modified au-

tocorrelation method as suggested in [3] to the estimate

the fundamental frequency for each audio frame. For each

frame, we then determine the MIDI pitch having a cen-

ter frequency that is closest to the estimated fundamen-

tal frequency. Next, in the pitch decomposition used for

the chroma computation, we assign energy only to the

pitch subband that corresponds to the determined MIDI

pitch—all other pitch subbands are set to zero within this

frame. Finally, the resulting sparse pitch representation is

projected onto a chroma representation and smoothed as

before, see Sect. 3.1. The cleaning effect on the result-

ing chromagram, which is also referred to as F0-enhanced

chromagram, is illustrated by (d) and (e) of Fig. 1.

Even though the folk song recordings are monophonic,

the F0 estimation is often not accurate enough in view of

applications such as automated transcription. However,

using chroma representations, octave errors as typical in

F0 estimations become irrelevant. Furthermore, the F0-

based pitch assignment is capable of suppressing most of

the noise resulting from poor recording conditions. Fi-

nally, local pitch deviations caused by the singers’ into-

nation problems as well as vibrato are compensated to a

substantial degree. As a result, the desired local minima of

the distance function ∆, which are crucial in our segmen-

tation procedure, become more pronounced. This effect is

also illustrated by Fig. 3.

Next, we show how to deal with global pitch deviations

and continuous fluctuation across several semitones. To
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Figure 4. Distance functions ∆ (light gray), ∆trans (dark gray),

and ∆fluc (black) for the song NLB73286 as well as the resulting
segmentations.

Stanza 1 2 3 4 5 6 7 8 9 10

12 shift 5 5 5 4 4 4 4 3 3 3
24 shift 5.0 5.0 4.5 4.5 4.0 4.0 3.5 3.5 3.0 3.0

Table 1. Shift indices (cyclically shifting the audio chroma-
grams upwards) used for transposing the various stanzas of the
audio recording of NLB73286 to optimally match the MIDI ref-
erence, see also Fig. 4. The shift indices are given in semitones
(obtained by ∆trans) and in half semitones (obtained by ∆fluc).

account for a global difference in key between the MIDI

reference and the audio recording, we revert to the ob-

servation by Goto [5] that the twelve cyclic shifts of a

12-dimensional chroma vector naturally correspond to the

twelve possible transpositions. Therefore, it suffices to

determine the shift index that minimizes the chroma dis-

tance of the audio recording and MIDI reference and then

to cyclically shift the audio chromagram according to this

index. Note that instead of shifting the audio chromagram,

one can also shift the MIDI chromagram in the inverse di-

rection. The minimizing shift index can be determined ei-

ther by using averaged chroma vectors as suggested in [11]

or by computing twelve different distance functions for the

twelve shifts, which are then minimized to obtain a sin-

gle transposition invariant distance functions. We detail on

the latter strategy, since it also solves part of the problem

having a fluctuating voice within the audio recording. A

similar strategy was used in [10] to achieve transposition

invariance for music structure analysis tasks.

We simulate the various pitch shifts by considering all

twelve possible cyclic shifts of the MIDI reference chro-

magram. We then compute a separate distance function

for each of the shifted reference chromagrams and the orig-

inal audio chromagram. Finally, we minimize the twelve

resulting distance functions, say ∆0, . . . ,∆11, to obtain a

single transposition invariant distance function ∆trans :
[1 : L] → R ∪ {∞}:

∆trans(ℓ) := mini∈[0:11]

(

∆i(ℓ)
)

. (2)

Fig. 4 shows the resulting function ∆trans for a folk song

recording with strong fluctuations. In contrast to the orig-

inal distance function ∆, the function ∆trans exhibits a

number of significant local minima that correctly indicate



the segmentation boundaries of the stanzas.

So far, we have accounted for transpositions that refer to

the pitch scale of the equal-tempered scale. However, the

above mentioned voice fluctuation are fluent in frequency

and do not stick to a strict pitch grid. Recall from Sect. 3.1

that our pitch filters can cope with fluctuations of up to

±25 cents. To cope with pitch deviations between 25 and

50 cents, we employ a second filter bank, in the following

referred to as half-shifted filter bank, where all pitch fil-

ters are shifted by half a semitone (50 cents) upwards, see

Fig. 2. Using the half-shifted filter bank, one can compute

a second chromagram, referred to as half-shifted chroma-

gram. A similar strategy is suggested in [4, 11] where gen-

eralized chroma representations with 24 or 36 bins (instead

of the usual 12 bins) are derived from a short-time Fourier

transform. Now, using the original chromagram as well as

the half-shifted chromagram in combination with the re-

spective 12 cyclic shifts, one obtains 24 different distance

functions in the same way as described above. Minimiza-

tion over the 24 functions yields a single function ∆fluc

referred to as fluctuation invariant distance function. The

improvements achieved by this novel distance function are

illustrated by Fig. 4. Table 1 shows the optimal shift in-

dices derived from the transposition and fluctuation invari-

ant segmentation strategies, where the decreasing indices

indicate to which extend the singer’s voice rises across the

various stanzas of the song.

4. EXPERIMENTS

Our evaluation is based on a dataset consisting of 47 repre-

sentative folk song recordings selected from the OGL col-

lection, see Sect. 2. The evaluation audio dataset has a to-

tal length of 156 minutes, where each of the recorded song

consists of 4 to 34 stanzas amounting to a total number of

465 stanzas. The recordings reveal significant deteriora-

tions concerning the audio quality as well as the singer’s

performance. Furthermore, in various recordings the tunes

are overlayed with sounds such as ringing bells, singing

birds, or barking dogs, and sometimes the songs are inter-

rupted by remarks of the singers. We manually annotated

all audio recordings by specifying the segment boundaries

of the stanzas’ occurrences in the recordings. Since for

most cases the end of a stanza more or less coincides with

the beginning of the next stanza and since the beginnings

are more important in view of retrieval and navigation ap-

plications, we only consider the starting boundaries of the

segments in our evaluation. In the following, these bound-

aries are referred to as ground truth boundaries.

To assess the quality of the final segmentation result,

we use precision and recall values. To this end, we check

to what extent the 465 manually annotated stanzas within

the evaluation dataset have been identified correctly by the

segmentation procedure. More precisely, we say that a

computed starting boundary is a true positive, if it coin-

cidences with a ground truth boundary up to a small toler-

ance given by a parameter δ measured in seconds. Other-

wise, the computed boundary is referred to as a false pos-

itive. Furthermore, a ground truth boundary that is not in

Strategy F0 P R F α β γ

∆ − 0.898 0.628 0.739 0.338 0.467 0.713
∆ + 0.884 0.688 0.774 0.288 0.447 0.624

∆trans − 0.866 0.817 0.841 0.294 0.430 0.677

∆trans + 0.890 0.890 0.890 0.229 0.402 0.559

∆fluc − 0.899 0.901 0.900 0.266 0.409 0.641

∆fluc + 0.912 0.940 0.926 0.189 0.374 0.494

Table 2. Performance measures for various segmentation strate-
gies using the tolerance parameter δ = 2 and the quality threshold
τ = 0.4. The second column indicates whether original (−) or
F0-enhanced (+) chromagrams are used.

δ P R F

1 0.637 0.639 0.638
2 0.912 0.940 0.926
3 0.939 0.968 0.953
4 0.950 0.978 0.964
5 0.958 0.987 0.972

τ P R F

0.1 0.987 0.168 0.287
0.2 0.967 0.628 0.761
0.3 0.950 0.860 0.903
0.4 0.912 0.940 0.926
0.5 0.894 0.944 0.918

Table 3. Dependency of the PR-based performance measures on
the tolerance parameter δ and the quality threshold τ . All values
refer to ∆fluc using F0-enhanced chromagrams. Left: PR-based
performance measures for various δ and fixed τ = 0.4. Right:
PR-based performance measures for various τ and fixed δ = 2.

a δ-neighborhood of a computed boundary is referred to as

a false negative. We then compute the precision P and the

recall R boundary identification task. From these values

one obtains the F-measure F := 2 · P · R/(P + R).

Table 2 shows the PR-based performance measures of

our segmentation procedure using different distance func-

tions with original as well as F0-enhanced chromagrams.

In this first experiment, the tolerance parameter is set to

δ = 2 and the quality threshold to τ = 0.4. Here, a tol-

erance of up to δ = 2 seconds seems to us an acceptable

deviation in view of our intended applications. For exam-

ple, the most basic distance function ∆ with original chro-

magrams yields an F-measure of F = 0.739. Using F0-

enhanced chromagrams instead of the original ones results

in F = 0.774. The best result of F = 0.926 is obtained

when using ∆fluc with F0-enhanced chromagrams. Note

that all of our introduced enhancement strategies result in

an improvement in the F-measure. In particular, the recall

values improve significantly when using the transposition

and fluctuation-invariant distance functions.

A manual inspection of the segmentation results showed

that most of the false negatives as well as false positives

are due to deviations in particular at the stanzas’ begin-

nings. The entry into a new stanza seems to be a problem

for some of the singers, who need some seconds before

getting stable in intonation and pitch. A typical example

is NLB72355. Increasing the tolerance parameter δ, the

PR-based performance measures improve substantially, as

indicated by Table 3 (left). For example, using δ = 3 in-

stead of δ = 2, the F-measure increase from F = 0.926
to F = 0.953. Other sources of error are that the tran-

scriptions sometimes differ significantly from what is ac-

tually sung, as is the case for NLB72395. Here, as was

already mentioned in Sect. 2, the transcripts represent the

presumed intention of the singer rather than the actual per-

formance. Finally, structural differences between the var-



ious stanzas are a further reason for segmentation errors.

The handling of such structural differences constitutes an

interesting research problem, see Sect. 5. In a further ex-

periment, we investigated the role of the quality threshold

τ on the final segmentation results, see Table 3 (right). Not

surprisingly, a small τ yields a high precision and a low

recall. Increasing τ , the recall increases at the cost of a de-

crease in precision. The value τ = 0.4 was chosen, since it

constitutes a good trade-off between recall and precision.

Finally, to complement our PR-based evaluation, we in-

troduce a second type of more softer performance mea-

sures that indicate the significance of the desired minima.

To this end, we consider the distance functions for all songs

with respect to a fixed strategy and chroma type. Let α
be the average over the cost of all ground truth segments

(given by the value of the distance function at the corre-

sponding ending boundary). Furthermore, let β be the av-

erage over all values of all distance functions. Then the

quotient γ = α/β is a weak indicator on how well the de-

sired minima (the desired true positives) are separated from

possible irrelevant minima (the potential false positives).

A low value for γ indicates a good separability property of

the distance functions. As for the PR-based evaluation, the

soft performance measures shown in Table 2 support the

usefulness of our enhancement strategies.

5. APPLICATIONS AND FUTURE WORK

Based on the segmentation of the folk song recordings,

we now sketch some applications that allow folk song

researchers to include audio material in their investiga-

tions. Once having segmented the audio recording into

stanzas, each audio segment can be aligned with the MIDI

reference by a separate MIDI-audio synchronization pro-

cess with the objective to associate note events given by

the MIDI file with their physical occurrences in the au-

dio recording, see [9]. The synchronization result can be

regarded as an automated annotation of the entire audio

recording with available MIDI events. Such annotations

facilitate multimodal browsing and retrieval of MIDI and

audio data, thus opening new ways of experiencing and re-

searching music [2]. Furthermore, aligning each stanza of

the audio recording to the MIDI reference yields a multi-

alignment between all stanzas. Exploiting this alignment,

one can implement interfaces that allow a user to seam-

lessly switch between the various stanzas of the recording

thus facilitating a direct access and comparison of the au-

dio material [9]. Finally, the segmentation and synchro-

nization techniques can be used for automatically extract-

ing expressive aspects referring to tempo, dynamics, and

articulation from the audio recording. This makes the au-

dio material accessible for performance analysis, see [13].

For the future, we plan to extend the segmentation sce-

nario dealing with the following kind of questions. How

can the segmentation be done if no MIDI reference is

available? How can the segmentation be made robust to

structural differences in the stanzas? In which way do

the recorded stanzas of a song correlate? Where are the

consistencies, where are the inconsistencies? Can one ex-

tract from this information musical meaningfully conclu-

sions, for example, regarding the importance of certain

notes within the melodies? These questions show that the

automated processing of folk song recordings constitutes

a new challenging and interdisciplinary field of research

with many practical implications to folk song research.
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