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ABSTRACT

Automated beat tracking and tempo estimation from music

recordings become challenging tasks in the case of non-

percussive music with soft note onsets and time-varying

tempo. In this paper, we introduce a novel mid-level rep-

resentation which captures predominant local pulse infor-

mation. To this end, we first derive a tempogram by per-

forming a local spectral analysis on a previously extracted,

possibly very noisy onset representation. From this, we de-

rive for each time position the predominant tempo as well

as a sinusoidal kernel that best explains the local periodic

nature of the onset representation. Then, our main idea is

to accumulate the local kernels over time yielding a single

function that reveals the predominant local pulse (PLP).

We show that this function constitutes a robust mid-level

representation from which one can derive musically mean-

ingful tempo and beat information for non-percussive mu-

sic even in the presence of significant tempo fluctuations.

Furthermore, our representation allows for incorporating

prior knowledge on the expected tempo range to exhibit

information on different pulse levels.

1. INTRODUCTION

The automated extraction of tempo and beat information

from audio recordings has been a central task in music

information retrieval. To accomplish this task, most ap-

proaches proceed in two steps. In the first step, positions

of note onsets in the music signal are estimated. Here, one

typically relies on the fact that note onsets often go along

with a sudden change of the signal’s energy and spectrum,

which particularly holds for instruments such as the piano,

guitar, or percussive instruments. This property allows for

deriving so-called novelty curves, the peaks of which yield

good indicators for note onset candidates [1, 15]. In the

second step, the novelty curves are analyzed with respect

to reoccurring or quasiperiodic patterns. Here, generally

spoken, one can roughly distinguish between three differ-

ent methods. The autocorrelation method allows for de-

tecting periodic self-similarities by comparing a novelty
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curve with time-shifted copies [5, 12]. Another widely

used method is based on a bank of comb filter resonators,

where a novelty curve is compared with templates consist-

ing of equally spaced spikes or pulses representing various

frequencies and phases [10, 14]. Similarly, one can use

a short-time Fourier transform to derive a time-frequency

representation of the novelty curve [12]. Here, the novelty

curve is compared with templates consisting of sinusoidal

kernels each representing a specific frequency. Each of the

methods reveals periodicity properties of the underlying

novelty curve, from which one can estimate the tempo or

beat structure. The intensities of the estimated periodicity,

tempo, or beat properties typically change over time and

are often visualized by means of spectrogram-like repre-

sentations referred to as tempogram [3], rhythmogram [9],

or beat spectrogram [6].

Relying on previously extracted note onset indicators,

tempo and beat tracking tasks become much harder for

non-percussive music, where one often has to deal with

soft onsets or blurred note transitions. This results in rather

noisy novelty curves, exhibiting many spurious peaks. As

a consequence, more refined methods have to be used for

computing the novelty curves, e. g., by analyzing the sig-

nal’s spectral content, pitch, or phase [1, 8, 15]. Even more

challenging becomes the detection of locally periodic pat-

terns in the case that the music recording reveals signif-

icant tempo changes, which typically occur in expressive

performances of classical music as a result of ritardandi,

accelerandi, fermatas, and so on [4]. Finally, the extrac-

tion problem is complicated by the fact that the notions of

tempo and beat are ill-defined and highly subjective due

to the complex hierarchical structure of rhythm [2]. For

example, there are various levels that are presumed to con-

tribute to the human perception of tempo and beat. Most of

the previous work focuses on determining musical pulses

on the tactus (the foot tapping rate or beat [10]) or mea-

sure level, but only few approaches exist for analyzing the

signal on the finer tatum level [13]. Here, a tatum or tem-

poral atom refers to the fastest repetition rate of musically

meaningful accents occurring in the signal.

In this paper, we introduce a novel mid-level represen-

tation that unfolds predominant local pulse (PLP) infor-

mation from music signals even for non-percussive mu-

sic with soft note onsets and changing tempo. Avoiding

the explicit determination of note onsets, we derive a tem-

pogram by performing a local spectral analysis on a pos-

sibly very noisy novelty curve. From this, we estimate for



each time position a sinusoidal kernel that best explains the

local periodic nature of the novelty curve. Since there may

be a number of outliers among these kernels, one usually

obtains unstable information when looking at these ker-

nels in a one-by-one fashion. Our idea is to accumulate

all these kernels over time to obtain a mid-level represen-

tation, which we refer to as predominant local pulse (PLP)

curve. As it turns out, PLP curves are robust to outliers and

reveal musically meaningful periodicity information even

in the case of poor onset information. Note that it is not

the objective of our mid-level representation to directly re-

veal musically meaningful high-level information such as

tempo, beat level, or exact onset positions. Instead, our

representation constitutes a flexible tool for revealing lo-

cally predominant information, which may then be used

for tasks such as beat tracking, tempo and meter estima-

tion, or music synchronization [10, 11, 14]. In particular,

our representation allows for incorporating prior knowl-

edge, e. g., on the expected tempo range, to exhibit infor-

mation on different pulse levels. In the following sections,

we give various examples to illustrate our concept.

The remainder of this paper is organized as follows. In

Sect. 2, we review the concept of novelty curves while in-

troducing a variant used in the subsequent sections. Sect. 3

constitutes the main contribution of this paper, where we

introduce the tempogram and the PLP mid-level represen-

tation. Examples and experiments are described in Sect. 4

and prospects of future work are sketched in Sect. 5.

2. NOVELTY CURVE

Combining various ideas from [1, 10, 15], we now exem-

plarily describe an approach for computing novelty curves

that indicate note onset candidates. Note that the particular

design of the novelty curve is not in the focus of this pa-

per. Our mid-level representation as introduced in Sect. 3

is designed to work even for noisy novelty curves with

a poor pulse structure. Naturally, the overall result may

be improved by employing more refined novelty curves

as suggested in [15]. Given a music recording, a short-

time Fourier transform is used to obtain a spectrogram

X = (X(k, t))k,t with k ∈ [1 : K] := {1, 2, . . . ,K}
and t ∈ [1 : T ]. Here, K denotes the number of Fourier

coefficients, T denotes the number of frames, and X(k, t)
denotes the kth Fourier coefficient for time frame t. In

our implementation, each time parameter t corresponds to

23 milliseconds of the audio. Next, we apply a logarithm

to the magnitude spectrogram |X| of the signal yielding

Y := log(1 + C · |X|) for a suitable constant C > 1,

see [10]. Such a compression step not only accounts for

the logarithmic sensation of sound intensity but also allows

for adjusting the dynamic range of the signal to enhance

the clarity of weaker transients, especially in the high-

frequency regions. In our experiments, we use the value

C = 1000. To obtain a novelty curve, we basically com-

pute the discrete derivative of the compressed spectrum Y .

More precisely, we sum up only positive intensity changes

to emphasize onsets while discarding offsets to obtain the
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Figure 1: Excerpt of Shostakovich’s second Waltz from Jazz
Suite No. 2. The audio recording is a temporally warped or-
chestral version conducted by Yablonsky with a linear tempo in-
crease (216 − 265 BPM). (a) Piano-reduced score of measures
13− 24. (b) Ground truth onsets. (c) Novelty curve ∆ with local
mean. (d) Novelty curve ∆̄. (e) Magnitude tempogram |T | for
KS = 4 sec. (f) Estimated tempo τt. (g) PLP curve Γ.

novelty function ∆ : [1 : T − 1] → R:

∆(t) :=
∑K

k=1|Y (k, t + 1) − Y (k, t)|≥0 (1)

for t ∈ [1 : T − 1], where |x|≥0 := x for a non-negative

real number x and |x|≥0 := 0 for a negative real number

x. Fig. 1c shows the resulting curve for a music record-

ing of an excerpt of Shostakovich’s second Waltz from the

Jazz Suite No. 2. To obtain our final novelty function ∆̄,

we subtract the local average and only keep the positive

part (half-wave rectification), see Fig. 1d. In our imple-

mentation, we actually use a higher-order smoothed differ-

entiator. Furthermore, we process the spectrum in a band-

wise fashion [14] using 5 bands. The resulting 5 novelty

curves are weighted and summed up to yield the final nov-

elty function. For details, we refer to the quoted literature.

3. TEMPOGRAM AND PLP CURVE

We now analyze the novelty curve with respect to local

periodic patterns. Note that the novelty curve as intro-

duced above typically reveals the note onset candidates

in form of impulse-like spikes. Due to extraction errors

and local tempo variations, the spikes may be noisy and



irregularly spaced over time. Dealing with spiky novelty

curves, autocorrelation methods [5] as well as comb fil-

ter techniques [14] encounter difficulties in capturing the

quasiperiodic information. This is due to the fact that spiky

structures are hard to identify by means of spiky analysis

functions in the presence of irregularities. In such cases,

smoothly spread analysis functions such as sinusoids are

much better suited to detect locally distorted quasiperiodic

patterns. Therefore, similar to [12], we use a short-time

Fourier transform to analyze the novelty curves. More pre-

cisely, let ∆̄ be the novelty curve as described in Sect. 2.

To avoid boundary problems, we assume that ∆̄ is defined

on Z by setting ∆̄(t) := 0 for t ∈ Z \ [1 : T − 1]. Further-

more, we fix a window function W : Z → R centered at

t = 0 with support [−N : N ]. In our experiments, we use

a Hann window of size 2N + 1. Then, for a frequency pa-

rameter ω ∈ R≥0, the complex Fourier coefficient F(t, ω)
is defined by

F(t, ω) =
∑

n∈Z
∆̄(n) · W (n − t) · e−2πiωn . (2)

Note that the frequency ω corresponds to the period 1/ω.

In the context of beat tracking, we rather think of tempo

measured in beats per minutes (BPM) than of frequency

measured in Hertz (Hz). Therefore, we use a tempo pa-

rameter τ satisfying the equation τ = 60 · ω.

Similar to a spectrogram, we define a tempogram which

can be seen as a two-dimensional time-pulse representa-

tion indicating the strength of the local pulse over time.

Here, intuitively, a pulse can be thought of a periodic se-

quence of accents, spikes or impulses. We specify the peri-

odicity of a pulse in terms of a tempo value (in BPM). The

semantic level of a pulse is not specified and may refer to

the tatum, the tactus, or measure level. Now, let Θ ⊂ R>0

be a finite set of tempo parameters. In our experiments, we

mostly use the set Θ = [30 : 500], covering the (integer)

musical tempi between 30 and 500 BPM. Here, the bounds

are motivated by the assumption that only events showing

a temporal separation between 120 milliseconds and 2 sec-

onds contribute to the perception of rhythm [2]. Then, the

tempogram is a function T : [1 : T ] × Θ → C defined by

T (t, τ) = F(t, τ/60). (3)

For an example, we refer to Fig. 1e, which shows the mag-

nitude tempogram |T | for our Shostakovich example. Note

that the complex-valued tempogram contains magnitude as

well as phase information. We now make use of both,

the magnitudes and the phases given by T , to derive a

mid-level representation that captures the predominant lo-

cal pulse (PLP) of accents in the underlying music signal.

Here, the term predominant pulse refers to the pulse that is

most noticeable in the novelty curve in terms of intensity.

Furthermore, our representation is local in the sense that it

yields the predominant pulse for each time position, thus

making local tempo information explicit, see also Fig. 1f.

Also, the semantic level of the pulse may change over time,

see Fig. 4a. This will be discussed in detail in Sect. 4.

To compute our mid-level representation, we determine

for each time position t ∈ [1 : T ] the tempo parameter
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Figure 2: (a) Optimal sinusoidal kernel κt for various time pa-
rameters t using a kernel size of 4 seconds for the novelty curve
shown in Fig. 1d. (b) Accumulation of all kernels. From this, the
PLP curve Γ (see Fig. 1f) is obtained by half-wave rectification.

τt ∈ Θ that maximizes the magnitude of T (t, τ):

τt := argmaxτ∈Θ|T (t, τ)|. (4)

The corresponding phase ϕt is defined by [11]:

ϕt :=
1

2π
arccos

(

Re(T (t, τt))

|T (t, τt)|

)

. (5)

Using τt and ϕt, the optimal sinusoidal kernel κt : Z → R

for t ∈ [1 : T ] is defined as the windowed sinusoid

κt(n) := W (n − t) cos(2π(τt/60 · n − ϕt)) (6)

for n ∈ Z. Fig. 2a shows various optimal sinusoidal ker-

nels for our Shostakovich example. Intuitively, the sinu-

soid κt best explains the local periodic nature of the nov-

elty curve at time position t with respect to the set Θ. The

period 60/τt corresponds to the predominant periodicity of

the novelty curve and the phase information ϕt takes care

of accurately aligning the maxima of κt and the peaks of

the novelty curve. The properties of the kernels κt depend

not only on the quality of the novelty curve, but also on the

window size 2N +1 of W and the set of frequencies Θ. In-

creasing the parameter N yields more robust estimates for

τt at the cost of temporal flexibility. In our experiments,

we chose a window length of 4 to 12 seconds. In the fol-

lowing, this duration is referred to as kernel size (KS).

The estimation of optimal sinusoidal kernels for nov-

elty curves with a strongly corrupted pulse structure is still

problematic. This particularly holds in the case of small

kernel sizes. To make the periodicity estimation more ro-

bust, our idea is to accumulate these kernels over all time

positions to form a single function instead of looking at the

kernels in a one-by-one fashion. More precisely, we define

a function Γ : [1 : T ] → R≥0 as follows:

Γ(n) =
∑

t∈[1:T ]|κt(n)|≥0 (7)

for n ∈ [1 : T ], see Fig. 2b. The resulting function is our

mid-level representation referred to as PLP curve. Fig. 1g

shows the PLP curve for our Shostakovich example. As it

turns out, such PLP curves are robust to outliers and reveal

musically meaningful periodicity information even when

starting with relatively poor onset information.
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Figure 3: Excerpt of an orchestral version conducted by Ormandy of Brahms’s Hungarian Dance No. 5. The score shows measures 26
to 38 in a piano reduced version. (a) Novelty curve ∆̄, tempogram derived from ∆̄, and estimated tempo. (b) PLP curve Γ, tempogram
derived from Γ, and estimated tempo. (c) Ground-truth pulses, tempogram derived from these pulses, and estimated tempo. KS = 4 sec.

4. DISCUSSION AND EXPERIMENTS

In this section, we discuss various properties of our PLP

concept and sketch a number of application scenarios by

means of some representative real-world examples. We

then give a quantitative evaluation on strongly distorted

audio material to indicate the potential of PLP curves for

accurately capturing local tempo information.

First, we continue the discussion of our Shostakovich

example. Fig. 1a shows a piano-reduced score of the mea-

sures 13 − 24. The audio recording (an orchestral version

conducted by Yablonsky) has been temporally warped to

possess a linearly increasing tempo starting with 216 BPM

and ending at 265 BPM at the quarter note level. Firstly,

note that the quarter note level has been identified to be

the predominant pulse throughout the excerpt, see Fig. 1e.

Based on this pulse level, the tempo has been correctly

identified as indicated by Fig. 1f. Secondly, first beats

in the 3/4 Waltz are played by non-percussive instruments

leading to relatively soft and blurred onsets, whereas the

second and third beats are played by percussive instru-

ments. This results in some hardly visible peaks in the

novelty curve shown in Fig. 1d. However, the beats on

the quarter note level are perfectly disclosed by the PLP

curve Γ shown in Fig. 1d. In this sense, a PLP curve can

be regarded as a periodicity enhancement of the original

novelty curve, indicating musically meaningful pulse on-

set positions. Here, the musical motivation is that the peri-

odic structure of musical events plays a crucial role in the

sensation of note changes. In particular, weak note onsets

may only be perceptible within a rhythmic context.

As a second example, we consider Brahm’s Hungarian

Dance No. 5. Fig. 3 shows a piano reduced version of mea-

sures 26 − 38, whereas the audio recording is an orches-

tral version conducted by Ormandi. This excerpt is very

challenging because of several abrupt changes in tempo.

Additionally, the novelty curve is rather noisy because of

many weak note onsets played by strings. Fig. 3a shows

the extracted novelty curve, the tempogram, and the ex-

tracted tempo. Despite of poor note onset information, the

tempogram correctly captures the predominant eighth note

pulse and the tempo for most time positions. A manual

inspection reveals that the excerpt starts with a tempo of

180 BPM (measures 26−28, seconds 0−4), then abruptly

changes to 280 BPM (measures 29 − 32, seconds 4 − 6),

and continues with 150 BPM (measures 33 − 38, seconds

6 − 18). Due to the corrupted novelty curve and the rather

diffuse tempogram, the extraction of the predominant sinu-

soidal kernels is problematic. However, accumulating all

these kernels smooths out many of the extraction errors.

The peaks of the resulting PLP curve Γ (Fig. 3b) correctly

indicate the musically relevant eighth note pulse positions

in the novelty curve. At this point, we emphasize that all

of the sinusoidal kernels have the same unit amplitude in-

dependent of the onset strengths. Actually, the amplitude

of Γ indicates the confidence in the periodicity estimation.

Consistent kernel estimations produce constructive inter-

ferences in the accumulation resulting in high values of

Γ. Contrary, outliers or inconsistencies in the kernel es-

timations cause destructive interferences in the accumula-

tion resulting in lower values of Γ. This effect is visible

in the PLP curve shown in Fig. 3b, where the amplitude

decreases in the region of the sudden tempo change. As

noted above, PLP curves can be regarded as a periodicity

enhancement of the original novelty curve. Based on this

observation, we compute a second tempogram now based

on the PLP instead of the original novelty curve. Com-

paring the resulting tempogram (Fig. 3b) with the origi-

nal tempogram (Fig. 3a), one can note a significant clean-

ing effect, where only the tempo information of the dom-

inant pulse (and its harmonics) is maintained. This exam-

ple shows how our PLP concept can be used in an iterative

framework to stabilize local tempo estimations. Finally,

Fig. 3c shows the manually generated ground truth onsets
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Figure 4: Beginning of the Piano Etude Op. 100 No. 2 by Burgmüller. Tempograms and PLP curves (KS = 4 sec) are shown for various
sets Θ specifying the used tempo range (given in BPM). (a) Θ = [30 : 500] (full tempo range). (b) Θ = [40 : 180] (quarter note tempo
range). (c) Θ = [140 : 280] (eighth note tempo range). (d) Θ = [350 : 500] (sixteenth note tempo range).

as well as the resulting tempogram (using the onsets as ide-

alized novelty curve). Comparing the three tempograms of

Fig. 3 again indicates the robustness of PLP curves to noisy

input data and outliers.

In our final example, we look at the beginning of the

Piano Etude Op. 100 No. 2 by Burgmüller, see Fig. 4. The

audio recording includes the repetition and is played in a

rather constant tempo. However, the predominant pulse

level changes several times within the excerpt. The piece

begins with four quarter note chords (measures 1−2), then

there are some dominating sixteenth note motives (mea-

sures 3 − 6) followed by an eighth note pulse (measures

7 − 10). The change of the predominant pulse level is

captured by the PLP curve as shown by Fig. 4a. We

now indicate how our PLP concept allows for incorpo-

rating prior knowledge on the expected tempo range to

exhibit information on different pulse levels. Here, the

idea is to constrain the set Θ of tempo parameters in the

maximization (4) of Sect. 3. For example, using a con-

strained set Θ = [40 : 180] instead of the original set

Θ = [30 : 500], one obtains the tempogram and PLP

curve shown in Fig. 4b. In this case, the PLP curve cor-

rectly reveals the quarter note pulse positions as well as

the quarter note tempo of 100 BPM. Similarly, using the

set Θ = [140 : 280] (Θ = [350 : 500]) reveals the eighth

(sixteenth) note pulse positions and the corresponding tem-

pos, see Fig. 4c (Fig. 4d). In other words, in the case there

is a dominant pulse of (possibly varying) tempo within the

specified tempo range Θ, the PLP curve yields a good pulse

tracking on the corresponding pulse level.

In view of a quantitative evaluation of the PLP concept,

we conducted a systematic experiment in the context of

tempo estimation. To this end, we used a representative

set of ten pieces from the RWC music database [7] con-

sisting of five classical pieces, three jazz, and two popular

pieces, see Table 1 (first column). The pieces have differ-

ent instrumentations containing percussive as well as non-

percussive passages of high rhythmic complexity. In this

experiment, we investigated to what extend our PLP con-

cept is capable of capturing local tempo deviations. Using

the MIDI files supplied by [7], we manually determined

the pulse level that dominates the piece. Then, for each

MIDI file, we set the tempo to a constant value with regard

to the respective dominant pulse level, 1 see Table 1 (sec-

ond and third columns). The resulting MIDI files are re-

ferred to as original MIDIs. We then temporally distorted

the MIDI files by simulating strong local tempo changes

such as ritardandi, accelerandi, and fermatas. To this end,

we divided the original MIDIs into 20-seconds segments

and then alternately applied to each segment a continuous

speed up or slow down (referred to as warping procedure)

so that the resulting tempo of the dominant pulse fluctu-

ates between +30% and −30% of the original tempo. The

resulting MIDI files are referred to as distorted MIDIs. Fi-

nally, audio files were generated from the original and dis-

torted MIDIs using a high-quality synthesizer.

To evaluate the tempo extraction capability of our PLP

concept, we proceed as follows. Given an original MIDI,

let τ denote the tempo and let Θ be the set of integer tempo

parameters covering the tempo range of ±40% of the orig-

inal tempo τ . This coarse tempo range reflects the prior

knowledge of the respective pulse level (in this experiment,

we do not want to deal with tempo octave confusions) and

comprises the tempo values of the distorted MIDI. Based

on Θ, we compute for each time position t the maximizing

tempo parameter τt ∈ Θ as defined in (4) of Sect. 3 for

the original MIDI using various kernel sizes. We consider

the local tempo estimate τt correct, if it falls within a 2%
deviation of the original tempo τ . The left part of Table 1

shows the percentage of correctly estimated local tempi for

each piece. Note that, even having a constant tempo, there

are time positions with incorrect tempo estimates. Here,

one reason is that for certain passages the pulse level or

the onset information is not suited or simply not sufficient

for yielding good local tempo estimations, e. g., caused by

musical rests or local rhythmic offsets. For example, for

the piece C022 (Brahms’s Hungarian Dance No. 5), the

tempo estimation is correct for 74.5% of the time param-

eters when using a kernel size (KS) of 4 sec. Assuming a

constant tempo, it is not surprising that the tempo estima-

tion stabilizes when using a longer kernel. In case of C022,

the percentage increases to 85.4% for KS = 12 sec.

1 In this experiment, we make the simplistic assumption that the pre-
dominant pulse does not change throughout the piece. Actually, this is not
true for most pieces such as C003 (Beethoven’s Fifth), C022 (Brahms’s
Hungarian Dance No. 5), or J001 (Nakamura’s Jive).



original MIDI distorted MIDI
Piece Tempo Level 4 6 8 12 4 6 8 12

C003 360 1/16 74.5 81.6 83.7 85.4 73.9 81.1 83.3 86.2
C015 320 1/16 71.4 78.5 82.5 89.2 61.8 67.3 71.2 76.0
C022 240 1/8 95.9 100.0 100.0 100.0 95.0 98.1 99.4 89.2
C025 240 1/16 99.6 100.0 100.0 100.0 99.6 100.0 100.0 96.2
C044 180 1/8 95.7 100.0 100.0 100.0 82.6 85.4 77.4 59.8
J001 300 1/16 43.1 54.0 60.6 67.4 37.8 48.4 52.7 52.7
J038 360 1/12 98.6 99.7 100.0 100.0 99.2 99.8 100.0 96.7
J041 315 1/12 97.4 98.4 99.2 99.7 95.8 96.6 97.1 95.5
P031 260 1/8 92.2 93.0 93.6 94.7 92.7 93.7 93.9 93.5
P093 180 1/8 97.4 100.0 100.0 100.0 96.4 100.0 100.0 100.0

average: 86.6 90.5 92.0 93.6 83.5 87.1 87.5 84.6

average (after iteration): 89.2 92.0 93.0 95.2 86.0 88.8 88.5 83.1

Table 1: Percentage of correctly estimated local tempi for the
experiment based on original MIDI files (constant tempo) and
distorted MIDI files for kernel sizes KS = 4, 6, 8, 12 sec.

Anyway, the tempo estimates for the original MIDIs

with constant tempo only serve as reference values for

the second part of our experiment. Using the distorted

MIDIs, we again compute the maximizing tempo param-

eter τt ∈ Θ for each time position. Now, these values

are compared to the time-dependent distorted tempo val-

ues that can be determined from the warping procedure.

Analogous to the left part, the right part of Table 1 shows

the percentage of correctly estimated local tempi for the

distorted case. The crucial point is that even when using

strongly distorted MIDIs, the quality of the tempo estima-

tions only slightly decreases. For C022, the tempo estima-

tion is correct for 73.9% of the time parameters when using

a kernel size of 4 sec (compared to 74.5% in the original

case). Averaging over all pieces, the percentage decreases

from 86.6% (original MIDIs) to 83.5% (distorted MIDIs),

for KS = 4 sec. This clearly demonstrates that our concept

allows for capturing even significant tempo changes. As

mentioned above, using longer kernels naturally stabilizes

the tempo estimation in the case of constant tempo. This,

however, does not hold when having music with constantly

changing tempo. For example, looking at the results for the

distorted MIDI of C044 (Rimski-Korsakov, The Flight of

the Bumble Bee), we can note a drop from 82.6% (4 sec
kernel) to 59.8% (12 sec kernel).

Furthermore, we investigated the iterative approach al-

ready sketched for the Brahms example, see Fig 3b. Here,

we use the PLP curve as basis for computing a second

tempogram from which the tempo estimation is derived.

As indicated by the last line of Table 1, this iteration in-

deed yields an improvement for the tempo estimation for

the original as well as the distorted MIDI files. For exam-

ple, in the distorted case with KS = 4 sec the estimation

rate raises from 83.5% (tempogram based on ∆̄) to 86.0%
(tempogram based on Γ).

5. CONCLUSIONS

In this paper, we introduced a novel concept for extracting

the predominant local pulse even from music with weak

non-percussive note onsets and strongly fluctuating tempo.

We indicated and discussed various application scenarios

ranging from pulse tracking, periodicity enhancement of

novelty curves, and tempo tracking, where our mid-level

representation yields robust estimations. Furthermore, our

representation allows for incorporating prior knowledge on

the expected tempo range to adjust to different pulse lev-

els. In the future, we will use our PLP concept for sup-

porting higher-level music tasks such as music synchro-

nization, tempo and meter estimation, onset detection, as

well as rhythm-based audio segmentation. In particular

the sketched iterative approach, as first experiments show,

constitutes a powerful concept for such applications.
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