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Introduction

One main goal of content-based music analysis and
retrieval is to reveal semantically meaningful relation-
ships between different music excerpts contained in a
given data collection. Here, the notion of similarity
used to compare different music excerpts is a delicate
issue and largely depends on the respective application.
In particular, for detecting harmony-based relations,
chroma features have turned out to be a powerful mid-
level representation for comparing and relating music
data in various realizations and formats [2, 3, 4, 6, 7].
An important step of the chroma feature calculation is
the grouping of spectral energy components that belong
to the same pitch class or chroma of the equal tempered
scale. Here, the octave identification introduces a
high degree of invariance to changes in timbre and
instrumentation [2]. In particular, such features are
useful in tasks such as cover song identification [3, 7] or
audio matching [4, 6], where one often has to deal with
large variations in timbre and instrumentation between
different versions of a single piece of music.

In this paper, we introduce a strategy to further increase
this invariance by combining the concept of chroma
features with the well-known concept of mel-frequency
cepstral coefficients (MFCCs). More precisely, recall
that the mel-frequency cepstrum is obtained by taking
a decorrelating cosine transform of a log power spectrum
on a logarithmic mel scale [5]. The lower MFCCs are
known to capture information on timbre [1, 8]. Therefore,
intuitively spoken, one should achieve some degree of
timbre-invariance when discarding exactly this informa-
tion. As our main contribution, we combine this idea
with the concept of chroma features by first replacing
the nonlinear mel scale by a nonlinear pitch scale. We
then apply a cosine transform on the logarithmized
pitch representation and only keep the upper coefficients,
which are finally projected onto the twelve chroma bins
to obtain a chroma representation. The technical details
of this procedure are described in the next section.
After that, we show how our novel features improve
the matching quality between harmonically-related music
excerpts contained in different versions and arrangements
of the same piece of music. Conclusions and prospects
on future work are given in the last section.

Feature Design

In this section, we present the technical details for our
novel audio features, see Fig. 1 for an overview. As
front end transform, the audio signal is decomposed into
120 frequency bands corresponding to the MIDI pitches
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Figure 1: Overview of the computation of the CRP (chroma
DCT-reduced log pitch) features.

1 to 120 using a suitable multirate filter bank. We
then calculate the local energy for each of the subbands
resulting in a sequence of 120-dimensional pitch feature
vectors. We refer to this sequence as pitch representation.
To obtain a conventional chroma representation, one
adds up the components of a pitch feature vector that
belong to the same chroma yielding a 12-dimensional
chroma feature vector. We refer to [6] for details and
to Fig. 2 (a) and (b) for an illustration.

For our novel audio features, we process the pitch
representation before doing the chroma binning. The
steps are similar to the ones in the computation of
MFCCs [5], where one uses a mel scale instead of a pitch
scale. First, the pitch representation is logarithmized by
replacing each value v by log(C · v + 1) with a positive
constant C. In our experiments we used C = 100. Then,
we apply a discrete cosine transform (DCT) to each of
the 120-dimensional logarithmized pitch vectors. The
resulting 120 coefficients have a similar interpretation
as the MFCCs. In particular, the lower coefficients are
related to timbre as observed by various researchers,
see [1, 8] and the references therein. Now our goal
of achieving timbre-invariance is the exact opposite of
the goal of capturing timbre. Therefore, we discard the
information given by the lower n − 1 coefficients for a
parameter n ∈ [1 : 120] by setting them to zero while
leaving the upper coefficients unchanged. Each resulting
120-dimensional vector is then transformed by the inverse
DCT and projected onto the twelve chroma bins to obtain
a 12-dimensional chroma vector. Finally, all chroma
vectors are normalized to have unit length. The resulting
audio features are referred to as CRP(n) (chroma DCT-
reduced log pitch) features, see Fig. 1.

As illustration, we consider the second Waltz of the Jazz
Suite No. 2 by Shostakovich. The theme of this piece
appears four times played in four different instrumenta-
tions (clarinet, strings, trombone, tutti). Due to these
differences, the resulting conventional chromagrams de-
viate strongly from each other. This is illustrated by
Fig. 2 (a) and (b) showing the conventional chromagrams
of the theme’s beginning of the first (clarinet) and third
(trombone) excerpt in an interpretation by Yablonsky.
Contrary, the corresponding two CRP(55) chromagrams
as shown in (c) and (d) coincide to a much larger degree.
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Figure 2: Various chromagrams of the theme’s beginning
of the second Waltz, Jazz Suite No. 2 by Shostakovich.
(a)/(b): Conventional chromagram of clarinet/trombone
version. (c)/(d): CRP(55) chromagram of clarinet/trombone
version. All chroma vectors are normalized.

Experiments

We compared our CRP features to conventional chroma
features using an application referred to as audio match-
ing : given a short query audio clip, the goal is to au-
tomatically retrieve all musically (harmonically) similar
excerpts in different versions and arrangements of the
same underlying piece of music [4, 6]. Here, the idea is to
transform the query and an audio database into suitable
feature sequences. Next, the query feature sequence is
locally compared to the database feature sequence using
a variant of Dynamic Time Warping (DTW) resulting
in a distance value for each local comparison. Now, if a
distance value is below a given threshold τ > 0 then the
corresponding excerpt from the database is returned as
a match. For details we refer to [6].

For evaluation purposes we compiled a collection of
audio recordings that comprises harmony-based music
of various genres. Here, the objective was to include
music material that, on the one hand, contains a large
number of harmonically related excerpts, which, on the
other hand, reveal significant differences in timbre and
instrumentation. Altogether, the collection consists of
32 recordings amounting to 166 minutes of music. We
carefully selected 101 audio excerpts with an average
length of 30 seconds, which were used as queries in our
matching experiments. The data collection was then
manually annotated by specifying all relevant matches for
each of the queries. Using this database we conducted an
experiment, to indicate the potential of the CRP features
for music retrieval applications in terms of precision and
recall. To this end, we computed for a fixed feature type
the local distance values for each of the queries. Then,
for a given positive distance threshold τ , we derive all
matches having a distance below τ as described above.
Using the ground truth information, we then compute
the precision value Pτ and the recall value Rτ for the
set of retrieved matches. From these values one obtains
the F-measure Fτ := 2·PτRτ

Pτ+Rτ

. Starting with a threshold τ

close to zero and increasing it little by little, one obtains a
family of precision (P) and recall (R) values, which can be
graphically visualized by a PR-diagram. As the diagram
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Figure 3: Retrieval performance in terms of precision
(vertical axis) and recall (horizontal axis) values for
conventional chroma and CRP(55) features.

indicates, one obtains much better PR-values using CRP
features than in the case of conventional chroma features.
A good indicator for this is the maximal F-value, which
is indicated by a dot within the respective PR-diagram
in Fig. 3. In our experiments, we obtained Fmax = 0.70
for the conventional chroma features and Fmax = 0.91 for
the CRP(55) features, which is an improvement of more
than 30% over the conventional features.

Conclusions and Future Work

In this paper, we introduced a new type of chroma
feature, which shows a higher degree of robustness to
changes in timbre than conventional chroma features.
Using our novel CRP features, one can significantly
improve the performance in matching and classifica-
tion applications, where one wants to be invariant to
instrumentation and tone color. For the future, we
plan to apply CRP features for various tasks in music
information retrieval. We will also further explore and
improve CRP features. Here, first experiments indicate
that one may further reduce the number of coefficients
without a degradation of the discriminative power.
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