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53117 Bonn, Germany

Masakazu Jimbo

Graduate School of Information Science, Nagoya University, Furo-cho,
Chikusa-ku, 464-8601, Japan

Abstract

In this paper, we investigate cyclic sequences which contain as elements all k-subsets
of {0, 1, . . . , n−1} exactly once such that the unions of any two consecutive k-subsets
of this sequences are pairwise distinct. Furthermore, if Y is some prescribed subset of
the power set of {0, 1, . . . , n− 1}, we require that all unions are in Y . In particular,
we are interested in the case where Y consists of all subsets of order having the
same parity as k. Among others, we show the existence of such cyclic sequences for
for k = 2, 3, . . . , 7 and sufficiently large n. This kind of combinatorial problems is
motivated from applications in combinatorial group testing. From our results, one
obtains error detecting group testing procedures for items having the 2-consecutive
positive property.
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1 Introduction

The following cyclic sequence S contains each 3-subset of the set {0, 1, 2, 3, 4, 5}
exactly once, where the first element of the sequence is considered to succeed
the last one.
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S = ( 245, 025, 035, 013, 014, 124, 125, 235, 024, 034,
135, 145, 023, 015, 045, 345, 234, 123, 012, 134 )

(Often, we will leave out the brackets in the set notation to improve readability.
For example, the first set {2, 4, 5} is simply written as 245.) The interesting
property of this cyclic sequence is that the unions of any two consecutive 3-
subsets are pairwise distinct. Indeed, one obtains the following list of unions:

( 0245, 0235, 0135, 0134, 0124, 1245, 1235, 02345, 0234, 01345,
1345, 012345, 01235, 0145, 0345, 2345, 1234, 0123, 01234, 12345 )

This is a typical example for the kind of combinatorial problem we are going
to consider in this paper.

We now state the general problem introducing some notation. Let P(n) :=
2[0:n−1] denote the power set of [0 : n−1] := {0, 1, . . . , n−1} and let X ⊂ P(n)
be a subset with m := |X|. A cyclic sequence of the elements of X is a sequence
S = (x1, . . . , xm), xi ∈ X, such that each element of X appears exactly once
in S. The indices of the elements xi of S are considered modulo m, i. e., the
element x1 is the successor of the element xm and xk+m = xm for k ∈ Z. The
sequence S is said to be a cyclic sequence with distinct (consecutive) unions
(CSDU) if the unions yi := xi ∪ xi+1, 1 ≤ i ≤ m, of any two consecutive
elements of S are pairwise distinct. The class of all such sequences is denoted
by CSDU(X). In particular, we are interested in the case X = P(n, k), where
P(n, k) denotes the set of all k-subsets of [0 : n − 1]. In this case we simply
write CSDU(n, k) := CSDU(P(n, k)). For example, the cyclic sequence given
above is an element in CSDU(6, 3). One may further confine the choice of
the unions by requiring that all unions yi are elements of some prescribed
set Y ⊂ P(n). The subclass of CSDU(X) of sequences with unions in Y
is denoted by CSDU(X|Y ). As above, we also write CSDU(n, k|Y ) if X =
P(n, k). Finally, for the case Y =

⋃r
i=1P(n, `i) for integers `1 < `2 < . . . <

`r we set CSDU(n, k|`1, `2, . . . , `r) := CSDU(P(n, k)|Y ). For example, the
following sequence is in CSDU(6, 2|4):

S = (05, 23, 01, 45, 13, 25, 04, 35, 24, 15, 03, 14, 02, 34, 12).

The concept of CSDUs, which to the best of the author’s knowledge has not
been considered before in the literature, is motivated by applications in combi-
natorial group testing. As we will see in Section 2, CSDUs lead to group testing
procedures for items having the 2-consecutive positive property. Müller and
Jimbo [7] give implicitly a construction of sequences in CSDU(n, k) for all
n ≥ 5 and 1 ≤ k ≤ bn

2
c. The case, where the unions are confined to some
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set Y , is much more difficult including many yet unsolved problems such as
the middle two levels problem (see below). In this paper, we focus on the
case Y = P(k mod 2)(n), where P0(n) ⊂ P(n) consists of all sets of even order
and P1(n) ⊂ P(n) consists of all sets of odd order. This case is of particular
interest in view of the group testing application since it leads to group test-
ing procedures which allow to detect up to one error (see Section 2). In the
subsequent sections we give some general recursive constructions of CSDUs
(Section 3) and a cyclic construction of CSDUs (Section 4). From the latter
construction we obtain CSDUs for small parameters n and k which will serve
as starting sequences for our recursions. As main result of this paper, we ob-
tain sequences in CSDU(n, k|P(k mod 2)(n)) for k = 2, 3, . . . , 7 and sufficiently
large n (Section 5).

We close this introduction with a summary of related problems and known
results. The concept of CSDUs fits into the framework of combinatorial Gray
codes referring to any method for generating combinatorial objects so that
successive objects differ in some pre-specified, usually small way. We refer
to Savage [11] for an overview. The famous, yet unsolved middle two levels
problem deals with the question whether there is a Hamiltonian cycle in the
middle two levels P(2k + 1, k) and P(2k + 1, k + 1) of the Boolean lattice
B2k+1, i.e., the partially ordered set of all subsets of [0 : n − 1] ordered by
inclusion. Obviously, such Hamiltonian cycles correspond exactly to the ele-
ments CSDU(2k + 1, k|k + 1). The largest value for which a Hamiltonian cycle
is known to exist is k = 15, see Shields and Savage [12].

A generalization of the middle two levels problem is the antipodal layers prob-
lem which asks for a Hamiltonian cycle among k-sets and (n − k)-sets of
[0 : n−1], where two sets are joined by an edge if and only if one is a subset of
the other (see, e. g., Hurlbert [6]). Note that any solution S = (x1, . . . , xm) ∈
CSDU(n, k|n− k) gives a solution (x1, y1, x2, y2, . . . , xm, ym), yi = xi ∪ xi+1,
of the corresponding antipodal layers problem. The converse, however, is in
general not true since the condition that yi contains the two k-sets xi and
xi+1 is in general weaker than the condition that yi equals the union of xi and
xi+1. The antipodal layers problem has so far only been solved in case that
n ≥ (3k + 1 +

√
5k2 − 2k + 1)/2, see Chen [1].

Further notes and references can be found in Section 6. Concerning the group
testing application references are given in the next section. We summarize the
known results about CSDUs in the following theorem.

Theorem 1.1 (i) For any n ∈ N and k with 1 ≤ k ≤ bn
2
c there is a cyclic

sequence in CSDU(n, k) except for the parameters n = 2, k = 1 and
n = 4, k = 2. (See Müller and Jimbo [7].)

(ii) There is a cyclic sequence in CSDU(2k + 1, k|k + 1) for k = 1, . . . , 15.
(See Shields and Savage [12].)
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2 Application to combinatorial group testing

To motivate the definition of CSDUs we give some short outline of some appli-
cation to combinatorial group testing. Let C = {c1, . . . , cm} be a set of items
and σ : C → {0, 1} a map indicating the state of each item. An item ci is said
to be positive if σ(ci) = 1, otherwise negative. In applications such as DNA
library screening (in this case, the items are clones) one has the goal to de-
termine the set of all positive items in C, where a method is given to test the
state of each item (e.g., by some chemical analysis). To reduce the number of
tests, one chooses a subset P ⊂ C, also denoted as group or pool, and tests all
items of P in one stroke. The state of a pool is positive if it contains at least
one positive item, otherwise negative. This strategy is known as group testing
which can be defined as the process of selecting pools and testing them to de-
termine exactly which items are postive. A nonadaptive adaptive group testing
procedure, where all pools are specified a priori without knowing the state of
other pools, may be represented by some n ×m-incidence matrix H = (hij)
over {0, 1}. Here, the columns of H correspond with the m items, the rows of
H correspond with the n pools, and hij = 1 means that the ith pool contains
the jth item cj, 1 ≤ j ≤ m, 1 ≤ i ≤ n. For an overview of different group
testing methods and some of their applications we refer to Du and Hwang [5].

Colbourn [2] considered the setting were the set C is equipped with a linear
order ci≺ ci+1, 1 ≤ i < m, and has the d-consecutive positive property, i.e.,
the set of positive items is a consecutive set with respect to the ordering ≺
and contains at most d items. He shows how to reduce the case d ≥ 2 to the
case d = 2. As is noted by Müller and Jimbo [7], one can distinguish up to any
two consecutive positive items if all columns of H as well as all vectors arising
as bitwise OR-sum of two consecutive (or the first and last) columns of H
are pairwise distinct. Such matrices are also denoted as cyclic 2-consecutive
positive detectable matrices. Furthermore, in view of the application it is desir-
able that each item has the same replication number, i.e., it appears the same
number of times in the pools. In other words, all columns of the incidence
matrix H should have some fixed constant weight, say k.

Now, it is obvious that the incidence matrices H of cyclic sequences S ∈
CSDU(n, k) correspond in a one-to-one fashion to the cyclic 2-consecutive

positive detectable matrices with n rows, m =
(

n
k

)
columns, and constant

column weight k. For example, the incidence matrix H of the sequence S ∈
CSDU(6, 3) given in the introduction looks as follows:
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H =




1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 0 0
1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0 1
0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1
1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 1 1 0
0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 1
0 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0




As is pointed out in [2,9,10], error correction capability of group testing proce-
dures is essential in view of applications such as DNA library screening. Note
that if the sets xi of some cyclic sequence S = (x1, . . . , xm) ∈ CSDU(n, k) and
the corresponding unions yi = xi∪xi+1 are either all of even order or all of odd
order, the set {xi, yi|1 ≤ i ≤ m} has minimum distance two. In view of this
fact, the class CSDU(n, k|P(k mod 2)(n)) is of particular interest. We summarize
the result in the following theorem and refer for further details to Müller and
Jimbo [7].

Theorem 2.1 Each S ∈ CSDU(n, k) defines a group testing procedure for

items having the 2-consecutive positive property with n pools of size k
n
·
(

n
k

)
and

m =
(

n
k

)
items, where each item appears in exactly k pools. These group testing

procedures are optimal in the sense that the number of items is maximal with
respect to a fixed number of pools. If, in addition, S ∈ CSDU(n, k|P(k mod 2)(n)),
the resulting group testing procedure can detect up to one error.

3 Recursive constructions of CSDUs

As in the introduction, let S = (x1, . . . , xm) ∈ CSDU(n, k|Y ) with m =
(

n
k

)

and let yi = xi ∪ xi+1, 1 ≤ i ≤ m, be the corresponding unions. Since |yi| > k,
1 ≤ i ≤ m, and since the yi are pairwise distinct, one obtains the following
necessary condition.

Lemma 3.1 Let S ∈ CSDU(n, k|Y ), then
(

n
k

)
≤ |{y ∈ Y ||y| > k}|.

The permutation group Sn of [0 : n − 1] induces in a natural way a group
action on P(n) via σ(Γ) := {σ(γ) | γ ∈ Γ} for Γ ∈ P(n) and σ ∈ Sn. The
following obvious lemma will be applied in the subsequent constructions.

Lemma 3.2 Let X and Y be Sn-invariant subsets of P(n), then CSDU(X|Y )
is invariant under the Sn-action, i.e., if S = (x1, . . . , xm) ∈ CSDU(X|Y ) then
σ(S) := (σ(x1), . . . , σ(xm)) ∈ CSDU(X|Y ). Furthermore, for any k ∈ [1 : m]
one also has (xk+1, . . . , xm, x1, . . . , xk) ∈ CSDU(X|Y ).

Next we introduce some useful operators. For a k-subset x ∈ P(n, k), let x+

be the (k + 1)-subset of [0 : n] by adding the element n, i.e., x+ := x ∪ {n}.
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Furthermore, let x− denote the same k-subset x, however this time understood
as a subset of [0 : n]. These two operations may be repeatedly applied. For
example, for the 2-subset x = {0, 2} of [0 : 4] we obtain x+ = {0, 2, 5},
x− = {0, 2}, x++ = {0, 2, 5, 6} and x−+ = {0, 2, 6}. Finally, we write X+ :=
{x+|x ∈ X} and X− := {x−|x ∈ X} for any X ⊂ P(n). The following lemma
gives some easy recursive construction.

Lemma 3.3 Let A = (a1, a2, . . . , ar) ∈ CSDU(n, k) with r =
(

n
k

)
and B =

(b1, b2, . . . , bs) ∈ CSDU(n, k + 1) with s =
(

n
k+1

)
. If ar ∪ b1 6= bs ∪ a1 and

{ar ∪ b1, bs ∪ a1} ∩ {ai ∪ ai+1|1 ≤ i ≤ r − 1} = ∅, then the cyclic sequence

S = (a1
+, a2

+, . . . , ar
+, b1

−, b2
−, . . . , bs

−)

defines an element in CSDU(n + 1, k + 1).

Proof: Obviously, S contains all (k + 1)-subsets of [0 : n] exactly once. Fur-
thermore, the conditions imposed on the k-subsets and (k + 1)-subsets guar-
antee that all unions of two consecutive unions of elements in S are pairwise
distinct. ¤

For the next recursive construction, we need some technical condition on the
cyclic sequences. We say that S = (x1, . . . , xm) ∈ CSDU(n, k|Y ) has a con-
nector of size `, k+1 ≤ ` ≤ 2k, if there is some element y ∈ Y of order ` = |y|
such that

(1) y does not appear among the unions yi = xi ∪ xi+1, 1 ≤ i ≤ m, and
(2) there is some index i ∈ [1 : m] such that xi ⊂ y, |xi ∪ xi+1| = `, and

|y \ xi+1| = 2(`− k).

We then also call y an `-connector of S.

Theorem 3.4 Let Y and Z be Sn-invariant subsets of P(n). Furthermore
let A ∈ CSDU(n, k|Y ) be a cyclic sequence with `-connector y and let B ∈
CSDU(n, k + 1|Z) be a cyclic sequence having at least one union of order
` + 1. Then there is some cyclic sequence S ∈ CSDU(n + 1, k + 1|Y + ∪ Z−)
having a connector of size (` + 1).

Proof: Let A = (a1, . . . , ar) and B = (b1, . . . , bs) be as in the claim of the
theorem. Since A has an `-connector and by applying Lemma 3.2, we may
assume that a1 = {0, . . . , k−1}, ar = {`−k, . . . , `−1}, and y = {`−k, . . . , 2`−
k− 1}, where y /∈ {ai∪ai+1 | 1 ≤ i ≤ r}. Note that |y \a1| = |{k, . . . , 2`−k−
1}| = 2(`−k). Similarly, we may assume that b1 = {2`−2k−1, . . . , 2`−k−1}
and bs = {`− k − 1, . . . , `− 1}. Then

(i) ar ∪ b1 = {`− k, . . . , 2`− k − 1} = y,
(ii) bs ∪ a1 = {0, . . . , `− 1} = a1 ∪ ar 6= y, and
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(iii) {ar ∪ b1, bs ∪ a1} ∩ {ai ∪ ai+1|1 ≤ i ≤ r − 1} = ∅.

Therefore, by Lemma 3.3, S = (a1
+, . . . , ar

+, b1
−, . . . , bs

−) is a cyclic sequence
in CSDU(n + 1, k + 1). Since the consecutive unions of S are obviously either
in Y + or in Z−, we obtain S ∈ CSDU(n + 1, k + 1|Y + ∪ Z−). Finally, note
that the element z := bs

− ∪ b1
− = {` − k − 1, . . . , 2` − k − 1} ∈ Z− is not

among the consecutive unions of S. Since |z| = ` + 1, bs
− ⊂ z, |bs

− ∪ a1
+| =

|{0, . . . `− 1, n + 1}| = ` + 1, and |z \ a1
+| = |{k, . . . , 2`− k− 1}| = 2(`− k) =

2(` + 1− (k + 1)), z is an (` + 1)-connector of S. ¤

To apply the recursive construction from the last theorem we need starting
sequences which will be constructed in the next section.

4 Cyclic constructions of CSDUs

The cyclic additive group Zn of order n operates on [0 : n − 1] by addition
modulo n. This induces a group action on the set P(n, k) via k + Γ := {(k +
γ) mod n | γ ∈ Γ} for Γ ∈ P(n, k) and k ∈ Zn. We say that two k-sets x and
x′ are equivalent if they lie in the same Zn-orbit. A Zn-orbit is called full if it
contains n elements, otherwise it is called short. It is not hard to see that the
length of a short orbit is a divisor of n.

Any k-subset x ∈ P(n, k) can be written in the form x = {j1, j2, . . . jk} with
0 ≤ j1 < j2 < . . . jk < n. We associate to x the sequence of differences
(d1, d2, . . . , dk) with di = ji+1 − ji, 1 ≤ i ≤ k, where indices are modulo k
and arithmetic is modulo n. Then di > 0 and d1 + d2 + . . . + dk = n. The
sequence (ds, ds+1, . . . , dk, d1, . . . , ds−1) is called a cyclic shift of (d1, d2, . . . , dk)
by s, 0 ≤ s < k. Two sequences of differences are called equivalent if one is a
cyclic shift of the other. An equivalence class is written as [d1, d2, . . . , dk] and
denoted as type of x. Obviously, two k-sets are equivalent if and only if they are
of the same type. A type is called full if it corresponds to a full orbit of k-sets,
otherwise it is called short. For example, in the case n = 5 and k = 2 there are
the two types [1, 4] and [2, 3] which are both full. The 2-subsets of type [2, 3]
are {0, 2}, {1, 3}, {2, 4}, {0, 3}, and {1, 4}. It is not hard to see that a short
type corresponds to a short orbit of length ` if and only if the type is composed
of n/` copies of a contiguous subsequence of differences. For example, in the
case n = 6 and k = 4 the type [1, 2, 1, 2] corresponds to the short orbit of
length ` = 3 consisting of {0, 1, 3, 4}, {1, 2, 4, 5}, and {0, 2, 3, 5}. In particular,
if (n, k) = 1, i.e., if k is relatively prime to n, all orbits are full and the number

of full orbits is
(

n
k

)
/n. Based on these observations, the following lemma gives

a sufficient condition for a cyclic construction of CSDUs.

Lemma 4.1 Let k be relatively prime to n and j :=
(

n
k

)
/n. Furthermore,
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let S0 = (x1, x2, . . . , xj, xj+1) be a sequence of k-subsets of [0 : n − 1], and
yi = xi ∪ xi+1, 1 ≤ i ≤ j. Suppose the following conditions are fulfilled:

(i) The types of x1, x2, . . . , xj are pairwise distinct, i.e., x1, x2, . . . , xj form
a transversal of the Zn-action on P(n, k).

(ii) x1 and xj+1 are of the same type and xj+1 = x1 + δ for some δ with
(n, δ) = 1 (here the addition is understood elementwise and modulo n).

(iii) The types of y1, y2, . . . , yj are pairwise distinct and full.

Then S0 extends to some S ∈ CSDU(n, k).

Proof: Let S0 be a sequence as formulated in the lemma satisfying (i), (ii)
and (iii). Furthermore, let S(i) := (x1 + i, x2 + i, . . . xj + i) for 0 ≤ i < n, then
one obtains the cyclic sequence

S := (S(0),S(δ),S(2δ), . . . ,S((n− 1)δ))

of length m = n·j =
(

n
k

)
by concatenation. Since (n, δ) = 1, all S(i), 0 ≤ i < n,

appear in this concatenation exactly once. From (n, k) = 1 and condition (i) it
follows that all k-subsets of P(n, k) appear in S exactly once. From condition
(ii) and condition (iii) it follows that all unions of consecutive k-subsets are
pairwise distinct. ¤

A sequence S0 satisfying the conditions (i), (ii), and (iii) of Lemma 4.1 will be
called a base sequence. We give some examples.

Example 4.2 (i) For n = 5 and k = 2 there are two full types [1, 4] and
[2, 3] and for ` = 3 two full types [1, 1, 3] and [1, 2, 2]. One easily checks
that S0 = (01, 13, 12) defines a base sequence with δ = 1 extending to a
sequence in CSDU(5, 2|3).

(ii) For n = 7 and k = 2 there are the three full types [1, 6], [2, 5], [3, 4]. The
sequence S0 = (01, 24, 03, 12) defines a base sequence with δ = 1 since
the types of the unions are [1, 1, 2, 3], [1, 1, 3, 2], and [1, 1, 1, 4] which are
distinct and full. Therefore, in the resulting sequence S ∈ CSDU(7, 2|4)
no consecutive union is of type [1, 2, 2, 2] or of type [1, 2, 1, 3]. Now, let
y = {0, 1, 3, 5}. Then y is of type [1, 2, 2, 2], {0, 1} ⊂ y, |{0, 1}∪ {2, 4}| =
4, and |y \ {2, 4}| = 4, i.e., y is a 4-connector of S.

(iii) The sequence S0 = (012, 267, 157, 247, 134, 457, 237, 567) defines a base
sequence for some sequence in CSDU(8, 3|5).

Theorem 4.3 There is a cyclic sequence in CSDU(n, 2|4) if and only if n ≥ 6.
Furthermore, for all n ≥ 7 there exists a cyclic sequence with a connector of
size 4.

Proof: By Lemma 3.1 there is no CSDU(n, 2|4) for n ≤ 5. The cases n = 6
and n = 7 are covered by the example in the introduction and by Example 4.2,
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respectively. Furthermore, the following sequence is in CSDU(8, 2|4) with a
connector of size 4 (consider, e.g., y = {0, 4, 5, 6} with xi = {5, 6} and xi+1 =
{2, 7}):

S = ( 06, 17, 26, 07, 36, 47, 16, 37, 56, 27, 46, 57, 01, 45,

13, 25, 04, 35, 24, 15, 03, 14, 02, 34, 12, 05, 67, 23 )

We now consider the case for odd n ≥ 9, i.e., n = 2m + 1 for m ≥ 4, claiming
that

S0 := ({0, 1}, {2, 4}, {k, 2k + 3} for k = 0, 1, . . . , m− 3, {2m, 0}).

is a base sequence for CSDU(n, 2|4) with δ = 2m. The types of the first m =(
n
2

)
/n elements are [1, n−1], [2, n−2] and [k+3, n−k−3] for k = 0, 1, . . . , m−3

which cover exactly all m types for n = 2m + 1 and k = 2. Since (n, k) = 1,
all types are full. Furthermore, the types of the first element {0, 1} and last
element {2m, 0} of S0 coincide and δ = 2m. For the unions we obtain the types
[1, 1, 2, n − 4], [2, 1, 1, n − 4], [1, k + 2, 2, n − (k + 5)] for k = 0, 1, . . . , m − 4,
and [m − 3,m, 3, 1]. Since m ≥ 4 and (n, 4) = 1, these types are pairwise
distinct and full. Hence, S0 indeed defines a base sequence extending to some
sequence S ∈ CSDU(n, 2|4). Finally, note that S has a connector of size 4:
Let y = {1, 2, 4, 5} then {2, 4} ⊂ y, |{2, 4} ∪ {0, 3}| = 4, and |y \ {0, 3}| = 4.
Furthermore, the type [1, 2, 1, n − 4] of y differs from all types of the unions
of S, i.e., y does not appear among the unions.

It remains to consider the case for even n ≥ 10, i.e., n = 2m for m ≥ 5. Note
that in the even case there is exactly one short orbit of type [m,m] for k = 2.
Nevertheless, we can use the same construction as for the odd case with a
slight modification. Let

S0 = ({0, 1}, {2, 4}, {k, 2k + 3} for k = 0, 1, . . . , m− 4, {2m− 1, 0}).

The types of the first m− 1 sets are [1, n− 1], [2, n− 2] and [k + 3, n− k− 3]
for k = 0, 1, . . . , m − 4 which cover exactly all full types. Furthermore, the
types of the first element {0, 1} and last element {2m − 1, 0} coincide and
δ = 2m− 1. For the unions we obtain the types [1, 1, 2, n− 4], [2, 1, 1, n− 4],
[1, k+2, 2, n−(k+5)] for k = 0, 1, . . . , m−5, and [m−4,m−1, 4, 1]. One checks
that all these types are full. Therefore, we can expanding S0 as in the proof of
Lemma 4.1 resulting in a cyclic sequence S with distinct consecutive unions
covering, however, only all 2-sets belonging to full orbits. We now extend S
by inserting the sequence ({0, m}, {1,m + 1}, . . . , {m − 1, 2m − 1}), which
consists of the missing 2-sets of the short orbit, between the elements {2, 4}
and {0, 3} of S. Then one checks that the type [2, 2,m − 4,m] of the union
{2, 4}∪ {0,m}, the type [3, m− 4,m, 1] of the union {m− 1, 2m− 1}∪ {0, 3},
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and the type [1,m− 1, 1,m− 1] of the unions {k, m + k} ∪ {k + 1,m + k + 1}
for k = 0, . . . , m − 2 are distinct and differ from all types of the unions of
S. Therefore, the so extended cyclic sequence defines indeed an element in
CSDU(n, 2|4). Considering again the set y = {1, 2, 4, 5} one sees as in the odd
case that the sequence has a connector of size 4. ¤

5 Some results and open problems

Combining the results of the last two sections, one can recursively construct
CSDUs. For example, one obtains the following result.

Corollary 5.1 The class CSDU(n, 3|P1(n)) is non-empty if and only if n ≥ 8.
In particular, CSDU(n, 3|5) is non-empty for n ≥ 8 and there is a sequence
with a 5-connector in CSDU(n, 3|5) for n ≥ 9.

Proof: By Lemma 3.1 there is no sequence in CSDU(n, 3|P1(n)) for n ≤ 7.
By Theorem 4.3, there is a sequence with a 4-connector in CSDU(n, 2|4) for
n ≥ 7. Furthermore, Example 4.2 gives some sequence in CSDU(8, 3|5). Then,
by Theorem 3.4, there is a sequence with a 5-connector in CSDU(9, 3|5). In the
same fashion, one can apply Theorem 3.4 recursively for n ≥ 8 to construct
a sequence with a 5-connector in CSDU(n + 1, 3|5) from a sequence with a
4-connector in CSDU(n, 2|4) and a sequence in CSDU(n, 3|5). ¤

Now, using the CSDUs from Corollary 5.1 one can proceed in the same way
to construct sequences with a 6-connector in CSDU(n, 4|6) for n ≥ n4 as
long as one has a starting sequence in CSDU(n4, 4|6) for some n4 ≥ 10. More
generally, the following corollary holds.

Corollary 5.2 Suppose there is an increasing sequence n3 ≤ n4 ≤ n5 ≤ . . .
of natural numbers nk, k ≥ 3, such that CSDU(nk, k|k + 2) is non-empty.
Then there is a sequence (with a (k + 2)-connector) in CSDU(n, k|k + 2) for
all n ≥ nk (n > nk).

The hard part is to find starting sequences in CSDU(nk, k|k + 2) for suit-
able nk. From Lemma 3.1 it follows that the smallest possible nk are given by
nk = 2k+2. The last corollary would then yield solutions for CSDU(n, k|k + 2)
for all parameters n and k satisfying the necessary condition implied by
Lemma 3.1.

Problem 5.3 Is CSDU(2k + 2, k|k + 2) non-empty for all k ≥ 2?

This problem seems to be as hard as the middle two levels problem and even
harder than the corresponding antipodal layers problem. We can relax the
problem by either increasing the numbers nk or by enlarging the set Y of
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admissible unions. In view of the group testing application a solution to the
following problem would also give optimal solutions for group testing proce-
dures with error detecting capability (see Theorem 2.1).

Problem 5.4 Is CSDU(2k + 2, k|P(k mod 2)(n)) non-empty for all k ≥ 2? If
yes, is there a sequence in each such CSDU(2k + 2, k|P(k mod 2)(n)) such that
at least one consecutive union is of order k + 2?

So far, we have not yet succeeded to solve the last problem even though
there seem to be a lot of freedom in the construction of such CSDUs. By a
randomized algorithm we constructed with the help of a computer sequences
for the following classes 1 : CSDU(11, 4|6), CSDU(12, 5|7, 9), CSDU(13, 5|7),
CSDU(17, 6|8, 10) and CSDU(19, 7|9, 11) with at least one union having order
k + 2, respectively. This yields the following result.

Corollary 5.5 There is a sequence in CSDU(n, k|P(k mod 2)(n)) for all n ≥ nk

for the following parameters k and nk:

k 2 3 4 5 6 7

nk 6 8 11 12 17 19

Using a more involved strategy, e.g., similar to the one of Shield and Sav-
age [12], one can easily extend this result by using a computer. The interest-
ing question, however, is to find a general construction principle for infinitely
many parameters k.

6 Final Remarks

In this paper we introduced the concept of cyclic sequences with distinct
(consecutive) unions which is motivated from applications in nonadaptive
group testing. In particular, we constructed such sequences for the case that
all involved sets and unions have either even or odd order yielding group
testing procedures which can detect up to one error. In our recursive con-
struction, the hard part is to find suitable starting sequences. For the classes
CSDU(2k + 2, k|k + 2) the problem is strongly connected to the yet unsolved
middle two levels problem and the antipodal levels problem. However, for the
less restrictive classes CSDU(n, k|P(k mod 2)(n)) there seem to be quite a lot of
freedom so that a general construction may be feasible.

To obtain group testing procedures with higher error detecting capability, one
could try to start with some error correcting code C of minimum distance d.

1 The CSDUs can be obtained as text file from the first author via Email.
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Then the question is, if one finds a partition C = X∪̇Y such that there exists
some cyclic sequence in CSDU(X|Y ). Any such sequence would define a group
testing procedures which can detect up to d− 1 errors.

One further interesting problem is to prove lower bounds on the length of
the longest cyclic sequence with distinct consecutive unions by constructing
such sequences which not necessarily comprise all elements of X. For exam-
ple, the middle two levels problem has been approached in this way: Shield
and Savage [12] proved that there is a cycle in the middle two levels of the
Boolean lattice B2k+1, having a length of at least 0.86 times the length of the
corresponding optimal Hamiltonian cycle.

Note that the group testing problem, where one does not require the positives
to be consecutive, is essentially different to the one discussed in this paper.
The case, where one just assumes that the positive items are bounded by
some number d, requires that the OR-sums of any d (not necessarily distinct)
columns of the group testing incidence matrix are pairwise distinct. This prob-
lem has lead to the concept of d-disjunctive matrices. For an overview and
further references concerning these matrices we refer the reader to Du and
Hwang [5] and Ngo and Du [9].

Finally, we want to mention another related concept of so-called (d, f)-cluttered
orderings, which has been introduced and studied by Cohen and Colbourn [3,4]
for various set systems such as the complete graphs and Steiner triple systems.
For general set systems a (d, f)-cluttered ordering may be regarded as cyclic
sequence consisting of all sets of the system such that the union of any d con-
secutive sets contain at most f points. For further details we refer to [3,4,8].
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