ENHANCING SIMILARITY MATRICESFOR MUSIC AUDIO ANALYSIS
Meinard Muller, Frank Kurth

Department of Computer Science lll, University of Bonn
Romerstr. 164, D-53117 Bonn, Germany
{meinard, frank@cs.uni-bonn.de

ABSTRACT L ARz, B B
Similarity matrices have become an important tool in music audic900 LT ;
analysis. However, the quadratic time and space complexity as wegooft: = = it - - B2 80 /
as the intricacy of extracting the desired structural information fron700- .- 4. . 70 ’
these matrices are often prohibitive with regard to real-world appli-600f' * =
cations. In this paper, we describe an approach for enhancing ttsoof : |
structural properties of similarity matrices based on two conceptsaoo : e 42 40 /
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first, we introduce a new class of robust and scalable audio featureoo
which absorb local temporal variations. As a second contributionygo
we then incorporate contextual information into the local similarity g9}
measure. The resulting enhancement leads to significant reduction PRSI

matrix size and also eases the structure extraction step. As an exa... 200 400 600 80O 20 40 60 80
ple, we sketch the application of our techniques to the problems
audio summarization and audio synchronization, obtaining effecti
and computationally feasible algorithms.

qéig. 1. Self-similarity matrices of the first 94 seconds of an Ormandy

Vﬁwterpretation of Brahm’s Hungarian Dances No. 5. The musical
form A, A; B1 B, is revealed by the path structure. The left side
shows a matrix with a feature sampling ratel6fHz. The right side

1. INTRODUCTION shows an enhanced similarity matrigi¢' (21, 5)) with a feature

. ) . sampling rate of Hz.
The concept of similarity matrices has been introduced to the mu-

sic context by Foote in order to visualize the time structure of au-

dio and music [1]. The general idea is as follows: given two au-u¢ gjitaple paths revealing the structural similarity relations between

dio data streams, one first transforms them into sequeWices:  the underlying audio streams. So far, this problem has been studied
(0, 9%,...,oY) andW := (@', @?, ..., @) of feature vectors under the constant tempo assumption, which typically holds for pop
" e F,1<n< N,andu™ € F,1 <m < M. Here,F denotes  music, see Sect. 3.1 for references. For the case, however,ukat m
a suitable feature space, e.g., a space of spectral, MFCC, or chromally similar segments exhibit significant local tempo variations—as
vectors. Based on a suitable similarity measdre 7 x 7 — R,  often holds for Western classical music—there are yet no effective
one can form aimilarity matrixS = (d(v",w™))nm by pairwise  and efficient solutions. The second problem concerns the high time
comparison of the featurag' and«™. In case that/ = W, the  and space complexit® (N M) to compute and store the similarity
resulting matrix is also referred to aslf-similarity matrix matrices, which makes the usage of similarity matrices infeasible
Similarity matrices have proven to be a valuable tool in audiofor large N and M. Here, reducing the numbé¢ andM by simply
analysis. In Sect. 3, we address two such analysis taskBo sum-  increasing the feature analysis window often destroys the structural
marizationandaudio synchronizationThe underlying principle is  properties of the similarity matrices, see Fig. 5.
that similar segments are revealed as paths along diagonals in the In this paper, we suggest an approach for enhancing the path
corresponding similarity matrix. As an example, we consider thestructure of similarity matrices, which constitutes an important step
first 94 seconds of an Ormandy interpretation of Brahms’ Hungartowards a solution of the above mentioned problems. In particular,
ian Dance No. 5, having the musical foray A, B1 B> (segment we cope with the delicate tradeoff between needing coarse and ro-
As being a repetition ofA; and B2 being a repetition oB;). The  bust features on the one hand and requiring sufficient flexibility to
self-similarity matrix (with respect to some suitable audio features)deal with local tempo variations on the other hand. Our basic idea
shown in Fig. 1, reveals this structure: the path in the lower left cortowards finding a good tradeoff can be summarized as follows. In-
ner indicates that the segment between 1 and 22 is similar to the segftead of relying on one single mechanism, we take care of the tempo-
ment between 22 and 42 (measured in seconds), whereas the curvativariations on various levels simultaneously: on the “feature level”
path in the upper right corner indicates that the segment between 4@sing statistical features to absorb micro-variations), on the “local
and 69 is similar to the segment between 69 and 89. Note that idistance measure level” (including flexible contextual information to
the Ormandy interpretation, the tempo®f is much faster than that account for local variations) as well as on the “path extraction level”
of Bi, which is revealed by the gradient of the path encoding thgaccounting for coarse global time variations). In Sect. 2, we de-
relative tempo difference between the two segments. scribe this approach in detail and apply the techniques to the class of
There are two major problems in music audio analysis based ochroma features. In Sect. 3, we then sketch the impact of our matrix
similarity matrices: the first problem concerns the robust extractioenhancement techniques to the problems of music summarization



and (multiresolution-based) audio synchronization. Suitable refer?20[* s g 1 " e 220

ences to the related work are given in each section. Further resul’y e’y ] e igg/j// /e
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The properties of a similarity matri§ depend on the kind of au- 4o [Bf { & T s i tﬁfiy | 20 i / /
dio features extracted from the audio data streams as well as on tl2g <= =" = WA o ” /
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(local) similarity measurd. In this section, we describe some tech 5 100 150 200 0 100 150 200

nigues for the design of robust and scalable features (Sect. 2.2) ana

for the enhancement of similarity measures (Sect. 2.3 and Sect. 2.¢)g. 2. Similarity matricesS(41, 10) (left) andS10(41, 10) (right)
in order to amplify the path structure f. As an example, these of Shostakovich’s Waltz 2, Jazz Suite No. 2, interpreted by Chailly.
techniques are applied to the class of chroma features (Sect. 2.1).

21. Chroma Features sequence is downsampled by a factorqgof The resulting vectors

are normalized with respect to the Euclidean norm. For example, if
In the first stage, each audio signal is converted into a sequence gf = 41 andq = 10, one obtains one feature vector per second each
acoustic features, e.g., spectral, MFCC, or chroma features. In thgdyrresponding to roughly 4100 ms of audio. The resulting feature
following, we consider the case ohroma featuresis suggested by sequence will be referred to as CENS ¢) (ChromaEnergy distri-
[2], which represent the spectral energy contained in each df2zhe pution NormalizedStatistics) sequence. Similar features have been
traditional pitch classes of the equal-tempered scale. More specifipplied in the audio matching scenario, see [3].
cally, we decompose the audio signal st frequency bands cor- By modifying the parameters andq, we may adjust the feature
responding to the musical notes AO to C8 (MIDI pitclzdsto 108)  granularity and sampling rate without repeating the cost-intensive
using a suitable multirate filter bank. We then take the short-timgomputations in Sect. 2.1. Furthermore, by changing the thresholds
mean-square power (STMSP) for each of the 88 subbands by coand values of the quantization functiGhone can enhance or mask
volving the squared subband signals with a rectangular window cofput certain aspects of the audio signal, e.g., making the CENS fea-
responding to 200 ms with 80% overlap. Adding up the corre- tures insensitive to noise components that may arise during note at-
sponding STMSPs of all pitches belonging to the same chroma clasacks. Finally, taking statistics over relatively large windows not
yields a real 12-dimensional vectdr= (v, ...,v12) foreach anal-  only smooths out micro-temporal deviations, as may occur for ar-
ysis window. Finally, we normalize each chroma vector by replacingiculatory reasons, but also compensates for different realizations of
v by #/(3°12, vi). The resulting sequence og-dimensional fea-  note groups such as trills or arpeggios.
ture vectors expresses the local energy distribution in the 12 chroma |n the following discussion, we use the similarity measdipke-
classes and strongly correlates to the harmonic progression of thidied by d(7, @) := 1 — (@, @) for CENS feature vectors, @ €
audio signal, see [3]. The resulting feature sampling rate0dfiz [0, 1)*2 and for fixed parameters andg. Sinces and« are normal-
will constitute the finest resolution level, chosen to be sufficient inized, the inner produdt, @) coincides with the cosine of the angle
view of our intended applications. betweeni and«w. For short, the resulting similarity matrix will also

be denoted bys (w, ).

2.2. Designing Robust and Scalable Features

. o . , ) 2.3. Including Contextual Information
For enhancing the similarity matrix, a flexible and computationally

inexpensive procedure is needed to adjust the feature resolution. Iln order to keep the size of the similarity matrix manageable, one of-
stead of simply modifying the analysis window during the above featen has to drastically reduce the feature sampling rate. This can lead
ture computation, we introduce a second, much larger statistics wirio a heavily deteriorated similarity matrix when simply enlarging the
dow and consideshort-time statisticeoncerning the chroma energy feature analysis window (with a fixed overlap ratio), see Fig. 5. To
distribution over this window. More specifically, 1€ : [0,1] — alleviate the loss in quality, we incorporate some contextual infor-
{0,1,2, 3,4} be a quantization function defined i63(a) := 0 for mation into the local similarity measure. A similar approach has
a € [0,0.05), Q(a) := 1fora € [0.05,0.1), Q(a) := 2 for been suggested in [4], where HMM-based “dynamic” features are
a € [0.1,0.2), Q(a) := 3 fora € [0.2,04), andQ(a) := 4 used, which model the temporal evolution of the spectral shape over
for a € [0.4,1]. Then, we quantize each chroma energy distribu-a fixed time duration. For the case of CENS features, the following

tion vectors™ = (vf,...,v}%) € [0,1]'2 by applyingQ to each  simple procedure has proven to be a flexible and effective method.
component ofi”, yielding Q(7") := (Q(v]),...,Q(vi2)). Intu-  (For the moment, we assume constant tempo and then describe in

itively, this quantization assigns the valééo a chroma component Sect. 2.4 how to get rid of this assumption.) We definectietex-
vy if the corresponding chroma class contains more titgpercent  tual similarity measurelr, by

of the signal’s total energy and so on. The thresholds are chosen
in a logarithmic fashion. Furthermore, chroma components below
a 5 percent threshold are excluded from further considerations. In
a subsequent step, we convolve the sequé@de”), ..., Q"))
component-wise with a Hann window of lengihe N. This again  for some length parametdr € N, 1 < n < N—-L+ 1,1 <
results in a sequence @R-dimensional vectors with non-negative m < M — L + 1. By suitably extending the CENS sequences
entries, representing a kind of weighted statistics of the energy digs?, ..., ") and (&, ..., w™), e.g., via zero-padding, one may
tribution over a window otv consecutive vectors. In a last step, this extend the definitiontd < n < N andl < m < M. Then, the
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contextual similarity matrixS;, is defined bySz, = (dL (1, m))nm. w 2? 35’ 3; ‘1% ﬁ ‘1‘2 ig iz
. . . - q

In this matrix, a vaIuedL(nJ m) € [0,1] close to zero implies c 143 125 11 10 09 083 077 07

that the entireL-sequencedy, ..., U,+r—1) is similar to theL-

sequenc&wy, . .., Wn+r—1), resulting in an enhancement of the

Table 1. Tempo changes (tc) simulated by changing the statistics

diagonal path structure in the similarity matrix. This is also illus- window sizew and the downsampling facter

trated by Fig. 2, showing andS;, for a Chalilly interpretation of
Shostakovich’s Waltz 2, Jazz Suite No. 2. In this piece, the theme

appears four timesA4, A, As, A4) each time in a modified form, o y 360 / / 360/
e.g., concerning instrumentation and articulation. Here, the diagones| ¥ = #| # | *° o
path structure of1o—opposed to the one ¢i—is prominent which ~ ** 7 200 200 /
not only facilitates the extraction of structural information but also,,| [« 170 £ 1K 280 /
the reduction of the feature sampling rate. 150 1 i
Finally, note that the contextual similarity matd, can be ef- 10 / / 20f / 220 / /
ficiently computed fronsS by applying an averaging filter along the *° 200 200
diagonals. More pFECiSEB&'L (n7 m) — % Zfz_ol S(n + &m + 4) 100 200 300 400 100 150 200 100 150 200
(with a suitable zero-padding &). Fig. 3. Left: Similarity matrixSi5(41, 10) of three concatenations

(normal tempo/150 percent of normal tempo/accelerating from 70
2.4. Incorporating Flexibility towards L ocal Tempo Variations to 150 percent and then decelerating back to 70 percent of normal
tempo) of Bach’s Toccata BWV 565. Center: Enlargement of the

So far, we have enhanced similarity matrices by regarding the COMregion ofS;5 (41, 10) indicated by the dashed square. Right: Corre-
text of L consecutive features vectors. This procedure is problemsponding region ofj2™ (41, 10).

atic when similar segments do not have the same tempo. Such a
situation frequently occurs in classical music—even within the same
interpretation—as is shown by the Brahms example of Fig. 1, where . . . . .
the theme ind; (seconds 42 to 69) is repeated in a much faster an peration Wlthput a S|g.n|f|cant loss c.)f. structural quallty, see Fig. 5.
increasing tempo imM, (seconds 69 and 89). To account for such e express this operation b_y an _ad_dltl_onal doyvnsairlwpllng parameter
variations we, intuitively spoken, create several versions of one of € N and denote the resulting similarity matrix 8¢’ (w, ¢)-

the audio data streams corresponding to different tempi, which are
then incorporated into one single similarity matrix. We now describe
the procedure in detail.

Recall from Sect. 2.2 that the two audio data streams are trans- ) ] ) )
formed into CENS$w, ¢) sequence¥ (w, q) of length N (w,¢) and ~ Our matrix enhancement strategy enables certain audio analysis tasks
VT/(w, q) of length M (w, q), where the dependency on the window Sl_JCh as audio summ_arlzatlt_)n or audio synchron|zat|c_>n_ on music au-
sizew and the downsampling factaris indicated in terms of the dio data, where musically similar segments may exhibit large varia-
arguments. For the sake of concreteness we chose 41 and tlon_s in dynamics, timbre, artlculatlon, and I_ocal ten_wpo: In the_ fol-
¢ = 10, resulting in a feature sampling rate bHz. We now sim- lowing, we sketch how problems which typically arise in previous

ulate a tempo change of the second data stream by changing tABProaches can be overcome by using the proposed techniques.

values ofw andq. For example, using a window size of = 53
(instead of41) and a downsampling factor gf= 13 (instead ofl0)
simulates a tempo change of the original data stream by a factor
10/13 ~ 0.77. In our experiments, we usetldifferent tempi as
indicated by Table 1, covering tempo variations of roughi0 to
+40 percent. We then define a new similarity meastjf&' by

3. APPLICATIONS

&1. Audio summarization

One major goal ofaudio summarizatiors, given a particular au-
dio signal, to automatically extract the significant repetitions, from
which musical thumbnails may be derived, see, e.g., [5, 6, 4] and

| L=t the references therein. Most of these approaches are based on the
dP™ (n,m) = min — Z d(g(417 10)™*, @(w, q)(m~10/qw+é>7 constant tempo assumption (dealing with pop music) and develop re-
(w,q) L = fined methods for extracting suitable (straight) diagonal paths from

o ) the self-similarity matrix. Here, the main difficulties arise from
where the minimum is taken over the pajis, ) from Table 1. In  the fact that due to spectral and temporal variations, actual repeti-
other words, at positiorin, m), the L-subsequence d¥ (41, 10) tions may correspond to a number of disconnected path fragments,
starting at absolute time (note that the feature sampling ratelis  see, e.qg., the fragmentary path representing the repetitionf A,

Hz) is compared with thé-subsequence df/(w, q) (simulatinga  shown in the dashed box of the left part of Fig. 2. Instead of relying
tempo change of0/q) starting at absolute time (correspondingto  on complicated and delicate path extraction algorithms, we suggest
feature positiorfn - 10/¢1). From this we obtain the modified con- a different approach by taking care of the variations also at the fea-
textual similarity matrixSy® = (dF™ (7", %™))nm. Fig. 3 shows ture and similarity measure levels. By improving the path structure
that incorporating local tempo variations into contextual similarity of the matrix, one can then extract the paths in an automatic and ro-
matrices significantly improves the quality of the path structure, inbust fashion. As an illustration, compare the left and right part of
particular for the case that similar audio segments exhibit differenFig. 2. Similarly, the enhanced matrd 5{3(21, 5) of the Brahms
local relative tempi. example shown in the right part of Fig. 1 clearly reveals the path

Altogether, we have introduced a combination of techniques thastructure, which makes a robust extraction even of the curved path
enhance the structural properties of similarity matrices. Introducingpossible. Here, the main observation is that such an amplified and
contextual information, expressed by the paramétemay allow  smoothed path can typically be identified by looking at local vertical
to further decrease the matrix size by a subsequent downsampliragnd horizontal minima.
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Fig. 4. Left: S(41,10) of a Zukerman (vertical) and Mae (horizon- zz
tal) interpretation of Vivaldi's Spring RV 269, No. 1. Center: En- 7
largement of the region & (41, 10) indicated by the dashed square 23
with (incorrect) alignment path indicated by white dots. Right: Cor-
responding region a3 (41, 10) with (correct) alignment path. 30
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) o ) . . . Fig. 5. First row: §(41,10), S(81,20) andS(161, 40) of an audio

The goal ofaudio synchronizatiois to time-align two given audio  fije and a temporally distorted version. The alignment paths indi-
versions of the same underlying piece of music. Most approacheggieq by the white dots are incorrect for the two lower resolution
see, e.g., [7, 8], rely on some variant of dynamic time warping (DTWjayels. Second rowS;" (41, 10), SPi* (41, 10) and S~ (41, 10)
first, a suitable similarity (or cost) matrix is computed with respectys the same audio files leading to correct alignment paths even on
to the two audio versions. Then, the similarity-maximizing (cost-ihe |ower resolution levels.
minimizing) alignment path is determined from this matrix via dy-
namic programming. One major problem (as typical for, e.g., clas-
sical music) arises from the fact that two interpretations of the sam@ell as a quantitative evaluation of the experimental results will be
piece of music may differ considerably in some sections due to difnecessary. Here, an important point will be the automatic adjustment
ferent realizations of note groups such as trills or arpeggios. Fogf the enhancement parameters. We furthermore plan to transfer our
example, the Mae interpretation of the Vivaldi example of Fig. 4 in-general enhancement techniques—in this paper only applied to the
cludes many additional ornamentations, which can not be found ig|ass of chroma features—to other features classes.
the Zukerman interpretation. This may lead to distorted and incor-
rect alignment paths as illustrated by the center part of Fig. 4. In this
case, the inclusion of contextual information into the similarity mea-
sure helps to absorb such local inconsistencies, leading to robus r] Jonathan Foote, “Visualizing music and audio using self-
and more reliable alignment estimations, see the right part of Fig. 4. similarity.” in ACi\/I Multimedia (1) 1999, pp. 7780

Another problem concerns the high time and space complex- ' T '
ity of O(NM) to compute and store similarity matrices. To this [2] Mark A. Bartsch and Gregory H. Wakefield, “Audio thumb-
end, Salvador et al. [9] propose a multiresolution DTW approach ~ hailing of popular music using chroma-based representations,”’
that recursively projects an alignment solution from a coarse resolu- |EEE Trans. on Multimediavol. 7, no. 1, pp. 96104, Feb. 2005.

tion level to the next higher level and then refines the projected Sq's] Meinard Muller, Frank Kurth, and Michael Clausen, “Audio
lution. One hazard with this approach is that an incorrect alignment  matching via chroma-based statistical featuresPrioc. ISMIR,
on a low resolution level propagates to higher levels resulting in er- | ondon, GB 2005.
roneous alignment results. This hazard is fostered by the fact thi/j']
coarsening the features can lead to heavily deteriorated similarit!
matrices, see the first row of Fig. 5. In this context, by our enhance-
ment strategy one can achieve a good compromise in reducing the
feature sampling rate without sacrificing too much of the structura[5] Masataka Goto, “A chorus-section detecting method for musical
properties of the similarity matrix; the second row of Fig. 5 gives an  audio signals,” irProc. IEEE ICASSP2003, pp. 437-440.
example. [6] Lie Lu, Muyuan Wang, and Hong-Jiang Zhang, “Repeating pat-
tern discovery and structure analysis from acoustic music data,
4. CONCLUSIONS in Workshop on Multimedia Information Retrieval, ACM Multi-
mediag 2004.
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3.2. Multiresolution Audio Synchronization
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