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ABSTRACT

Similarity matrices have become an important tool in music audio
analysis. However, the quadratic time and space complexity as well
as the intricacy of extracting the desired structural information from
these matrices are often prohibitive with regard to real-world appli-
cations. In this paper, we describe an approach for enhancing the
structural properties of similarity matrices based on two concepts:
first, we introduce a new class of robust and scalable audio features
which absorb local temporal variations. As a second contribution,
we then incorporate contextual information into the local similarity
measure. The resulting enhancement leads to significant reduction in
matrix size and also eases the structure extraction step. As an exam-
ple, we sketch the application of our techniques to the problems of
audio summarization and audio synchronization, obtaining effective
and computationally feasible algorithms.

1. INTRODUCTION

The concept of similarity matrices has been introduced to the mu-
sic context by Foote in order to visualize the time structure of au-
dio and music [1]. The general idea is as follows: given two au-
dio data streams, one first transforms them into sequences~V :=

(~v1, ~v2, . . . , ~vN ) and ~W := (~w1, ~w2, . . . , ~wM ) of feature vectors
~vn ∈ F , 1 ≤ n ≤ N , and~wm ∈ F , 1 ≤ m ≤ M . Here,F denotes
a suitable feature space, e.g., a space of spectral, MFCC, or chroma
vectors. Based on a suitable similarity measured : F × F → R,
one can form asimilarity matrixS = (d(~vn, ~wm))nm by pairwise
comparison of the features~vn and ~wm. In case that~V = ~W , the
resulting matrix is also referred to asself-similarity matrix.

Similarity matrices have proven to be a valuable tool in audio
analysis. In Sect. 3, we address two such analysis tasks:audio sum-
marizationandaudio synchronization. The underlying principle is
that similar segments are revealed as paths along diagonals in the
corresponding similarity matrix. As an example, we consider the
first 94 seconds of an Ormandy interpretation of Brahms’ Hungar-
ian Dance No. 5, having the musical formA1A2B1B2 (segment
A2 being a repetition ofA1 andB2 being a repetition ofB1). The
self-similarity matrix (with respect to some suitable audio features),
shown in Fig. 1, reveals this structure: the path in the lower left cor-
ner indicates that the segment between 1 and 22 is similar to the seg-
ment between 22 and 42 (measured in seconds), whereas the curved
path in the upper right corner indicates that the segment between 42
and 69 is similar to the segment between 69 and 89. Note that in
the Ormandy interpretation, the tempo ofB2 is much faster than that
of B1, which is revealed by the gradient of the path encoding the
relative tempo difference between the two segments.

There are two major problems in music audio analysis based on
similarity matrices: the first problem concerns the robust extraction
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Fig. 1. Self-similarity matrices of the first 94 seconds of an Ormandy
interpretation of Brahm’s Hungarian Dances No. 5. The musical
form A1A2B1B2 is revealed by the path structure. The left side
shows a matrix with a feature sampling rate of10 Hz. The right side
shows an enhanced similarity matrix (Smin

10,2(21, 5)) with a feature
sampling rate of1 Hz.

of suitable paths revealing the structural similarity relations between
the underlying audio streams. So far, this problem has been studied
under the constant tempo assumption, which typically holds for pop
music, see Sect. 3.1 for references. For the case, however, that musi-
cally similar segments exhibit significant local tempo variations—as
often holds for Western classical music—there are yet no effective
and efficient solutions. The second problem concerns the high time
and space complexityO(NM) to compute and store the similarity
matrices, which makes the usage of similarity matrices infeasible
for largeN andM . Here, reducing the numberN andM by simply
increasing the feature analysis window often destroys the structural
properties of the similarity matrices, see Fig. 5.

In this paper, we suggest an approach for enhancing the path
structure of similarity matrices, which constitutes an important step
towards a solution of the above mentioned problems. In particular,
we cope with the delicate tradeoff between needing coarse and ro-
bust features on the one hand and requiring sufficient flexibility to
deal with local tempo variations on the other hand. Our basic idea
towards finding a good tradeoff can be summarized as follows. In-
stead of relying on one single mechanism, we take care of the tempo-
ral variations on various levels simultaneously: on the “feature level”
(using statistical features to absorb micro-variations), on the “local
distance measure level” (including flexible contextual information to
account for local variations) as well as on the “path extraction level”
(accounting for coarse global time variations). In Sect. 2, we de-
scribe this approach in detail and apply the techniques to the class of
chroma features. In Sect. 3, we then sketch the impact of our matrix
enhancement techniques to the problems of music summarization



and (multiresolution-based) audio synchronization. Suitable refer-
ences to the related work are given in each section. Further results
and examples can be found atwww-mmdb.iai.uni-bonn.de/
projects/simmat.

2. ENHANCEMENT TECHNIQUES

The properties of a similarity matrixS depend on the kind of au-
dio features extracted from the audio data streams as well as on the
(local) similarity measured. In this section, we describe some tech-
niques for the design of robust and scalable features (Sect. 2.2) and
for the enhancement of similarity measures (Sect. 2.3 and Sect. 2.4)
in order to amplify the path structure ofS. As an example, these
techniques are applied to the class of chroma features (Sect. 2.1).

2.1. Chroma Features

In the first stage, each audio signal is converted into a sequence of
acoustic features, e.g., spectral, MFCC, or chroma features. In the
following, we consider the case ofchroma featuresas suggested by
[2], which represent the spectral energy contained in each of the12
traditional pitch classes of the equal-tempered scale. More specifi-
cally, we decompose the audio signal into88 frequency bands cor-
responding to the musical notes A0 to C8 (MIDI pitches21 to 108)
using a suitable multirate filter bank. We then take the short-time
mean-square power (STMSP) for each of the 88 subbands by con-
volving the squared subband signals with a rectangular window cor-
responding to 200 ms with a50% overlap. Adding up the corre-
sponding STMSPs of all pitches belonging to the same chroma class
yields a real 12-dimensional vector~v = (v1, . . . , v12) for each anal-
ysis window. Finally, we normalize each chroma vector by replacing
~v by ~v/(

∑12
i=1 vi). The resulting sequence of12-dimensional fea-

ture vectors expresses the local energy distribution in the 12 chroma
classes and strongly correlates to the harmonic progression of the
audio signal, see [3]. The resulting feature sampling rate of10 Hz
will constitute the finest resolution level, chosen to be sufficient in
view of our intended applications.

2.2. Designing Robust and Scalable Features

For enhancing the similarity matrix, a flexible and computationally
inexpensive procedure is needed to adjust the feature resolution. In-
stead of simply modifying the analysis window during the above fea-
ture computation, we introduce a second, much larger statistics win-
dow and considershort-time statisticsconcerning the chroma energy
distribution over this window. More specifically, letQ : [0, 1] →
{0, 1, 2, 3, 4} be a quantization function defined byQ(a) := 0 for
a ∈ [0, 0.05), Q(a) := 1 for a ∈ [0.05, 0.1), Q(a) := 2 for
a ∈ [0.1, 0.2), Q(a) := 3 for a ∈ [0.2, 0.4), andQ(a) := 4
for a ∈ [0.4, 1]. Then, we quantize each chroma energy distribu-
tion vector~vn = (vn

1 , . . . , vn
12) ∈ [0, 1]12 by applyingQ to each

component of~vn, yielding Q(~vn) := (Q(vn
1 ), . . . , Q(vn

12)). Intu-
itively, this quantization assigns the value4 to a chroma component
vn

i if the corresponding chroma class contains more than40 percent
of the signal’s total energy and so on. The thresholds are chosen
in a logarithmic fashion. Furthermore, chroma components below
a 5 percent threshold are excluded from further considerations. In
a subsequent step, we convolve the sequence(Q(~v1), . . . , Q(~vN ))
component-wise with a Hann window of lengthw ∈ N. This again
results in a sequence of12-dimensional vectors with non-negative
entries, representing a kind of weighted statistics of the energy dis-
tribution over a window ofw consecutive vectors. In a last step, this
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Fig. 2. Similarity matricesS(41, 10) (left) andS10(41, 10) (right)
of Shostakovich’s Waltz 2, Jazz Suite No. 2, interpreted by Chailly.

sequence is downsampled by a factor ofq. The resulting vectors
are normalized with respect to the Euclidean norm. For example, if
w = 41 andq = 10, one obtains one feature vector per second each
corresponding to roughly 4100 ms of audio. The resulting feature
sequence will be referred to as CENS(w, q) (ChromaEnergy distri-
butionNormalizedStatistics) sequence. Similar features have been
applied in the audio matching scenario, see [3].

By modifying the parametersw andq, we may adjust the feature
granularity and sampling rate without repeating the cost-intensive
computations in Sect. 2.1. Furthermore, by changing the thresholds
and values of the quantization functionQ one can enhance or mask
out certain aspects of the audio signal, e.g., making the CENS fea-
tures insensitive to noise components that may arise during note at-
tacks. Finally, taking statistics over relatively large windows not
only smooths out micro-temporal deviations, as may occur for ar-
ticulatory reasons, but also compensates for different realizations of
note groups such as trills or arpeggios.

In the following discussion, we use the similarity measured de-
fined byd(~v, ~w) := 1 − 〈~v, ~w〉 for CENS feature vectors~v, ~w ∈
[0, 1]12 and for fixed parametersw andq. Since~v and~w are normal-
ized, the inner product〈~v, ~w〉 coincides with the cosine of the angle
between~v and ~w. For short, the resulting similarity matrix will also
be denoted byS(w, q).

2.3. Including Contextual Information

In order to keep the size of the similarity matrix manageable, one of-
ten has to drastically reduce the feature sampling rate. This can lead
to a heavily deteriorated similarity matrix when simply enlarging the
feature analysis window (with a fixed overlap ratio), see Fig. 5. To
alleviate the loss in quality, we incorporate some contextual infor-
mation into the local similarity measure. A similar approach has
been suggested in [4], where HMM-based “dynamic” features are
used, which model the temporal evolution of the spectral shape over
a fixed time duration. For the case of CENS features, the following
simple procedure has proven to be a flexible and effective method.
(For the moment, we assume constant tempo and then describe in
Sect. 2.4 how to get rid of this assumption.) We define thecontex-
tual similarity measuredL by

dL(n, m) :=
1

L

L−1
∑

ℓ=0

d(~vn+ℓ, ~wm+ℓ)

for some length parameterL ∈ N, 1 ≤ n ≤ N − L + 1, 1 ≤
m ≤ M − L + 1. By suitably extending the CENS sequences
(~v1, . . . , ~vN ) and (~w1, . . . , ~wM ), e.g., via zero-padding, one may
extend the definition to1 ≤ n ≤ N and1 ≤ m ≤ M . Then, the



contextual similarity matrixSL is defined bySL = (dL(n, m))nm.
In this matrix, a valuedL(n, m) ∈ [0, 1] close to zero implies
that the entireL-sequence(~vn, . . . , ~vn+L−1) is similar to theL-
sequence(~wn, . . . , ~wn+L−1), resulting in an enhancement of the
diagonal path structure in the similarity matrix. This is also illus-
trated by Fig. 2, showingS andS10 for a Chailly interpretation of
Shostakovich’s Waltz 2, Jazz Suite No. 2. In this piece, the theme
appears four times (A1, A2, A3, A4) each time in a modified form,
e.g., concerning instrumentation and articulation. Here, the diagonal
path structure ofS10—opposed to the one ofS—is prominent which
not only facilitates the extraction of structural information but also
the reduction of the feature sampling rate.

Finally, note that the contextual similarity matrixSL can be ef-
ficiently computed fromS by applying an averaging filter along the
diagonals. More precisely,SL(n, m) = 1

L

∑L−1
ℓ=0 S(n + ℓ, m + ℓ)

(with a suitable zero-padding ofS).

2.4. Incorporating Flexibility towards Local Tempo Variations

So far, we have enhanced similarity matrices by regarding the con-
text of L consecutive features vectors. This procedure is problem-
atic when similar segments do not have the same tempo. Such a
situation frequently occurs in classical music—even within the same
interpretation—as is shown by the Brahms example of Fig. 1, where
the theme inA1 (seconds 42 to 69) is repeated in a much faster and
increasing tempo inA2 (seconds 69 and 89). To account for such
variations we, intuitively spoken, create several versions of one of
the audio data streams corresponding to different tempi, which are
then incorporated into one single similarity matrix. We now describe
the procedure in detail.

Recall from Sect. 2.2 that the two audio data streams are trans-
formed into CENS(w, q) sequences~V (w, q) of lengthN(w, q) and
~W (w, q) of lengthM(w, q), where the dependency on the window
sizew and the downsampling factorq is indicated in terms of the
arguments. For the sake of concreteness we chosew = 41 and
q = 10, resulting in a feature sampling rate of1 Hz. We now sim-
ulate a tempo change of the second data stream by changing the
values ofw andq. For example, using a window size ofw = 53
(instead of41) and a downsampling factor ofq = 13 (instead of10)
simulates a tempo change of the original data stream by a factor of
10/13 ≈ 0.77. In our experiments, we used8 different tempi as
indicated by Table 1, covering tempo variations of roughly−40 to
+40 percent. We then define a new similarity measuredmin

L by

dmin
L (n, m) = min

(w,q)

1

L

L−1
∑

ℓ=0

d
(

~v(41, 10)n+ℓ, ~w(w, q)⌈m·10/q⌉+ℓ
)

,

where the minimum is taken over the pairs(w, q) from Table 1. In
other words, at position(n, m), the L-subsequence of~V (41, 10)
starting at absolute timen (note that the feature sampling rate is1

Hz) is compared with theL-subsequence of~W (w, q) (simulating a
tempo change of10/q) starting at absolute timem (corresponding to
feature position⌈m · 10/q⌉). From this we obtain the modified con-
textual similarity matrixSmin

L = (dmin
L (~vn, ~wm))nm. Fig. 3 shows

that incorporating local tempo variations into contextual similarity
matrices significantly improves the quality of the path structure, in
particular for the case that similar audio segments exhibit different
local relative tempi.

Altogether, we have introduced a combination of techniques that
enhance the structural properties of similarity matrices. Introducing
contextual information, expressed by the parameterL, may allow
to further decrease the matrix size by a subsequent downsampling

w 29 33 37 41 45 49 53 57
q 7 8 9 10 11 12 13 14
tc 1.43 1.25 1.1 1.0 0.9 0.83 0.77 0.7

Table 1. Tempo changes (tc) simulated by changing the statistics
window sizew and the downsampling factorq.
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Fig. 3. Left: Similarity matrixS15(41, 10) of three concatenations
(normal tempo/150 percent of normal tempo/accelerating from 70
to 150 percent and then decelerating back to 70 percent of normal
tempo) of Bach’s Toccata BWV 565. Center: Enlargement of the
region ofS15(41, 10) indicated by the dashed square. Right: Corre-
sponding region ofSmin

15 (41, 10).

operation without a significant loss of structural quality, see Fig. 5.
We express this operation by an additional downsampling parameter
p ∈ N and denote the resulting similarity matrix bySmin

L,p (w, q).

3. APPLICATIONS

Our matrix enhancement strategy enables certain audio analysis tasks
such as audio summarization or audio synchronization on music au-
dio data, where musically similar segments may exhibit large varia-
tions in dynamics, timbre, articulation, and local tempo. In the fol-
lowing, we sketch how problems which typically arise in previous
approaches can be overcome by using the proposed techniques.

3.1. Audio summarization

One major goal ofaudio summarizationis, given a particular au-
dio signal, to automatically extract the significant repetitions, from
which musical thumbnails may be derived, see, e.g., [5, 6, 4] and
the references therein. Most of these approaches are based on the
constant tempo assumption (dealing with pop music) and develop re-
fined methods for extracting suitable (straight) diagonal paths from
the self-similarity matrix. Here, the main difficulties arise from
the fact that due to spectral and temporal variations, actual repeti-
tions may correspond to a number of disconnected path fragments,
see, e.g., the fragmentary path representing the repetitionA3 of A1

shown in the dashed box of the left part of Fig. 2. Instead of relying
on complicated and delicate path extraction algorithms, we suggest
a different approach by taking care of the variations also at the fea-
ture and similarity measure levels. By improving the path structure
of the matrix, one can then extract the paths in an automatic and ro-
bust fashion. As an illustration, compare the left and right part of
Fig. 2. Similarly, the enhanced matrixSmin

10,2(21, 5) of the Brahms
example shown in the right part of Fig. 1 clearly reveals the path
structure, which makes a robust extraction even of the curved path
possible. Here, the main observation is that such an amplified and
smoothed path can typically be identified by looking at local vertical
and horizontal minima.
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Fig. 4. Left: S(41, 10) of a Zukerman (vertical) and Mae (horizon-
tal) interpretation of Vivaldi’s Spring RV 269, No. 1. Center: En-
largement of the region ofS(41, 10) indicated by the dashed square
with (incorrect) alignment path indicated by white dots. Right: Cor-
responding region ofSmin

10 (41, 10) with (correct) alignment path.

3.2. Multiresolution Audio Synchronization

The goal ofaudio synchronizationis to time-align two given audio
versions of the same underlying piece of music. Most approaches,
see, e.g., [7, 8], rely on some variant of dynamic time warping (DTW):
first, a suitable similarity (or cost) matrix is computed with respect
to the two audio versions. Then, the similarity-maximizing (cost-
minimizing) alignment path is determined from this matrix via dy-
namic programming. One major problem (as typical for, e.g., clas-
sical music) arises from the fact that two interpretations of the same
piece of music may differ considerably in some sections due to dif-
ferent realizations of note groups such as trills or arpeggios. For
example, the Mae interpretation of the Vivaldi example of Fig. 4 in-
cludes many additional ornamentations, which can not be found in
the Zukerman interpretation. This may lead to distorted and incor-
rect alignment paths as illustrated by the center part of Fig. 4. In this
case, the inclusion of contextual information into the similarity mea-
sure helps to absorb such local inconsistencies, leading to robuster
and more reliable alignment estimations, see the right part of Fig. 4.

Another problem concerns the high time and space complex-
ity of O(NM) to compute and store similarity matrices. To this
end, Salvador et al. [9] propose a multiresolution DTW approach
that recursively projects an alignment solution from a coarse resolu-
tion level to the next higher level and then refines the projected so-
lution. One hazard with this approach is that an incorrect alignment
on a low resolution level propagates to higher levels resulting in er-
roneous alignment results. This hazard is fostered by the fact that
coarsening the features can lead to heavily deteriorated similarity
matrices, see the first row of Fig. 5. In this context, by our enhance-
ment strategy one can achieve a good compromise in reducing the
feature sampling rate without sacrificing too much of the structural
properties of the similarity matrix; the second row of Fig. 5 gives an
example.

4. CONCLUSIONS

We have described an approach for enhancing the structural prop-
erties of similarity matrices by taking care of temporal variations
in the audio data on the three levels of feature design, similarity
measure, and structure extraction. As our experiments indicate, this
strategy serves as an important step towards solving various audio
analysis tasks for genres such as classical music, which exhibit the
above mentioned variations to a significant degree even for musi-
cally similar excerpts. (See alsowww-mmdb.iai.uni-bonn.
de/projects/simmat for a more comprehensive account on
our experiments.) In the future, a more detailed investigation of the
application of our enhancement techniques to music analysis tasks as
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Fig. 5. First row:S(41, 10), S(81, 20) andS(161, 40) of an audio
file and a temporally distorted version. The alignment paths indi-
cated by the white dots are incorrect for the two lower resolution
levels. Second row:Smin

4,1 (41, 10), Smin
4,2 (41, 10) andSmin

8,4 (41, 10)
of the same audio files leading to correct alignment paths even on
the lower resolution levels.

well as a quantitative evaluation of the experimental results will be
necessary. Here, an important point will be the automatic adjustment
of the enhancement parameters. We furthermore plan to transfer our
general enhancement techniques—in this paper only applied to the
class of chroma features—to other features classes.
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