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Figure 1:Qualitative features describing geometric relations lemthe body points of a pose that are indicated by red anil iackers.

Abstract

The reuse of human motion capture data to create new, ieatist
tions by applying morphing and blending techniques hasibecn
important issue in computer animation. This requires tiemtidi-
cation and extraction of logically related motions scattiewithin
some data set. Such content-based retrieval of motion reagata,
which is the topic of this paper, constitutes a difficult aimde-
consuming problem due to significant spatio-temporal viarns
between logically related motions. In our approach, wepitice
various kinds of qualitative features describing georetlations

between specified body points of a pose and show how these fea

tures induce a time segmentation of motion capture datarase
By incorporating spatio-temporal invariance into the getin fea-
tures and adaptive segments, we are able to adopt efficeting
methods allowing for flexible and efficient content-baseiaeal
and browsing in huge motion capture databases. Furthermere
obtain an efficient preprocessing method substantiallglacating
the cost-intensive classical dynamic time warping techesqfor
the time alignment of logically similar motion data stream#&/e
present experimental results on a test data set of more tireamib-
lion frames, corresponding to 180 minutes of motion. Thedhity
of our indexing algorithms guarantees the scalability of results
to much larger data sets.

CR Categories. 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; H.3 [Information Storamel
Retrieval]: Information Search and Retrieval

Various editing and morphing techniques for the modificatimd
adaptation of existing motion data [Bruderlin and Williad895;
Witkin and Popovic 1995] or for the synthesis of new, realisto-
tions from example motions [Giese and Poggio 2000; Pulleh an
Bregler 2002; Kovar and Gleicher 2003] have been developed i
the last few years. Prior to reusing and processing motiptuca
material, one has to solve the fundamental problerdentifying
andextractingsuitable motion clips from the database on hand. In
doing so, a user may describe the motion clips to be retriaved
various ways at different semantic levels. One possibleifipa-
tion could be a rough textual description such as “a kick efrtght
foot followed by a punch.” Another query mode would involve a
hort query motion clip, the task being to retrieve all clipghe
database containing parts or aspects similar to the quéig.Kihd

of problem is commonly referred to asntent-based retrievalin
this paper, we present a prototypical system for contes¢dbano-
tion retrieval, where the query consists of a motion clip afi as a
user-specified selection of motion aspects to be considlethd re-
trieval process. Unlike the work of Kovar and Gleicher [2D@ur
technique does not support fully automatic “query-by-epbai
since the user has to supply additional query-dependent.ie-

ing able to choose certain motion aspects, however, preide
user with a high degree of flexibility, cf. the subsequentraiesv.

The crucial point in content-based motion retrieval is tbéan of
“similarity” used to compare different motions. Intuitiyetwo mo-
tions may be regarded as similar if they represent variatadrthe
same action or sequence of actions, see Kovar and Gleicb@4]2
Here the variations may concern the spatial as well as thpdeah
domain. For example, the two walking motions shown in Figa® a

Keywords: motion capture, geometric feature, adaptive segmen- Fig. 6, respectively, may be perceived as similar even thahgy

tation, indexing, retrieval, time alignment

1 Introduction

The generation of human motion capture data as used in datd
computer animations is a time-consuming and expensiveepsoc

*e-mail: {meinard, roedert, clausg@cs.uni-bonn.de

differ considerably in their respective speeds. In otherdsdog-
ically similar motions need not baumerically similar as is also
pointed out by Kovar and Gleicher [2004]. This may lead to in-
complete and dissatisfying retrieval results when usimgjlarity
measures based on numerical comparison of spatial cotedina
Furthermore, the necessary warping of the time axis to ksiab
frame correspondences is computationally expensive, ngakiis
kind of technique infeasible for large data sets, see alst 3¢

To bridge the semantic gap between logical similarity as per
ceived by humans and computable numerical similarity measu
we introduce new types of qualitative geometric features ian
duced motion segmentations, yielding spatio-temporeadriance
as needed to compare logically similar motions. This sgsate
has far-reaching consequences regarding efficiency, fligxiand
automation in view of indexing, content-based retrievad ime
alignment of motion capture data. The following overviewnsoa-
rizes the main contributions of this paper.



1.1 Overview handling such low-level descriptive queries in an automati
way without using manually generated annotations.

1. Geometric Features: We introduce a class of boolean fea- 5. Time Alignment: Matching two feature progressions ob-
tures expressing geometric relations between certain body tained from similar motions can be regarded as a time align-
points of a pose. As an example of this kind of features, con- ment of the underlying motion data streams. This fact can
sider the test whether the right foot lies in front of or behin be used to significantly accelerate classical DTW-based-ali
the plane spanned by the left foot, the left hip joint and the ment procedures by first computing (in linear time) a coarse
center of the hip (the root), cf. Fig. 1 (a). Such geometric fe match based on geometric features and then refining this
tures are very robust to spatial variations and allow thatide alignment with classical DTW techniques.

fication of logically corresponding events in similar moiso

In particular, (user-specified) combinations of such datiie

features become a powerful tool in describing and spedfyin 1.2 Notations
motions at a high semantic level, see also Fig. 2.

2. Adaptive Segmentation: In conventional approaches, fea- FOr the sake of clarity, we quickly introduce some notionsdis
ture extraction is often performed in two steps: first, theada  the rest of this paper. Human motion is commonly modeledgusin
stream is segmented along the time axis, then a featurervecto &kinematic chainwhich may be thought of as a simplified copy of
is computed for each of the resulting segments. We suggest the human skeleton. A kinematic chain consistbadly segments
a different approach: for a fixed combination of pose-based (€ bones) that are connected jojnts of various types. In the
geometric features, consider consecutive frames yieldiag ~ [0llowing, let J denote the set of joints, where each joint is refer-
same feature vectors, in the following simply reférred to as ©€Nced by an intuitive term such as ‘root', ‘lankle’ (for ‘teinkle’),
runs The segment®f a given motion data stream are then r_ankl_e_(for right ankle’), ‘lknee’ (for Ieft'knee), am so on. For
defined to be runs of maximal length. Such segments not only SIMPlicity, end effectors such as toes or fingers are alsardegl as
inherit the semantic qualities of the underlying featuras b 10iNts. Using motion capture techniques, one can deriven fem
are also robust to the local time variations that are typigal ~ 2ctor's motion a time-dependent sequence of 3D joint coatds
logically related motions. Furthermore, changing the cemb @S Well as joint angles with respect to some fixed kinematzgrch
nation of features will automatically lead to an adaptaten !N the following, amotion capture data streaia thought of as a se-
the induced segmentation. As an example, see Figs. 3 and 5. duénce oframes each frame specifying the 3D coordinates of the

joints at a certain point in time. Moving from the technicalck-

3. Similarity and Indexing: In plain words, our method ground to an abstract geometric context, we also speakposea
coarsens each motion data stream by transforming it into a instead of a frame. Mathematically, a pose can be regarded as
sequence of geometric configurations. Two motion clips are matrixP € R3*1I, where|J| denotes the number of joints. Theh
then considered as similar if they possess (more or less) the column of P, denoted byP!, corresponds to the 3D coordinates of
same progression of geometric features. Opposed to recentjoint j € J. A motion capture data stream (in information retrieval
approaches that involve dynamic time warping (DTW) to es- terminology also referred to asdbcumenjtcan be modeled as a
tablish correspondence of related events, our approac-inc  fynctionD : [1:T] — 2 c R¥Nl, whereT denotes the number
porates spatio-temporal invariance in the geometric featu  of poses[1:T] := {1,2,...,T} corresponds to the time axis (for
and induced segments. This allows us to employ standard in- 3 fixed sampling rate), ané? denotes the set of poses. A subse-
formation retrieval techniques for fast content-basedfani guence of consecutive frames is also referred to amton clip

simply use the feature vectors as index words, and indexing point is termedrajectory.

is carried out at the segment level rather than at the frame
level. This leads to significant savings in memory and run-
ning time. In particular, the time and space required todouil
and store our index structurelisear, O(n), in the numben

of database frames opposed to DTW-based strategies, which

arequadratic O(n?), in n, see Sect. 6.1. In view of massively growing multimedia databases of vasiou
4 . d Retrieval: | " ists of types and formats, efficient methods for indexing and cdrtbesed
- Queries and Retrieval: In our system, a query CONsists of & - retrieval have become an important issue. Vast literatisisson

short motion clip and a query-dependent specification of mo- jjeying and retrieval in text, image, and video data, sep, Wit-
tion aspects that determines the desired notion of simylari o, ot 41, and Bakker et al. [1999; 2003] and referencesithefer
For the latter, the user selects relevant features fromengiv. yho mysic scenario, Clausen and Kurth [2004] give a unified ap
set of intuitive, programmer-defined geometric featuresiie . ,ac1 to content-based retrieval; their group theoreticacepts
expressing a relation of certain body parts). On the one,hand gonerajize to other domains as well. The problem of indeldnge
this does not allow for fully automatic (query-independent e series databases has also attracted great interbstdatabase
motion retrieval, as would be necessary to process a whole community, see, e.g., Last et al. and Keogh [2004; 2002] afed-r
batch of motion queries. On the c_)ther hand, feature sefectio ences therein. Here, possible distortions of the time axistitute
enables the user to incorporate his previous knowledgeeof th  aior problem in comparing related time series, usualiyesiby
query motion into the retrieval process. Thus, the userr@ay s eang of dynamic time warping. DTW, however, is cost-iritans
!ect or mask out certain aspects such as restricted bodyg area computing time and memory. Keogh [2002] describes an in-
in the query, so that, for example, all instances of “clagpin  yeying method based on lower bounding techniques that nekes

ones hands” can be found irrespective of any concurrent [0~ oo "of time-warped time series feasible even for largdets.
comotion. Furthermore, many movements such as “kicking

with subsequent punch” or “standing up and clapping ones Only recently, motion capture data has become publiclylavis
hands” can be specified by a short sequence of key poses,on a larger scale (e.g., CMU [2003]), reinforcing the deméord
which translate into a typical progression of geometric-con efficient indexing and retrieval methods. Such methods are n
stellations. Therefore, our approach is a major step tasvard essary to efficiently retrieve logically related motionshigh can

2 Related Work



then be processed via editing and morphing techniques fBlind
and Williams 1995; Witkin and Popovic 1995; Giese and Poggio
2000; Pullen and Bregler 2002; Kovar and Gleicher 2003; Kova
and Gleicher 2004]. So far, only little work has been puldision
motion capture indexing and content-based motion retrieVée
give a short overview of the relevant literature: to idgntifotions
similar to a given query motion, Wu et al. [2003] proceed im tw
stages: they first identify start and end frames of possiateie
date clips utilizing a pose-based index and then computeadthe
tual distance from the query via DTW. Cardle et al. [2003]tske
how to use DTW-based indexing techniques to accomplishethe r
trieval task. Adapting techniques from Keogh [2002], Keagh
al. [2004] describe how to efficiently identify similar moii frag-
ments that differ by some uniform scaling factor with respgec
the time axis. In the approach of Kovar and Gleicher [2004}, n
merically similar motions are identified by means of a DTVgdxh
index structure termethatch web A multi-step search spawning
new queries from previously retrieved motions allows ferithenti-
fication of logically similar motions using numerically siar mo-
tions as intermediaries. The authors report good retriegllts,
which are particularly suitable for their blending apptioa. Our
approach to indexing and content-based retrieval of matagoture
data differs fundamentally from previous approaches: epgdo
DTW-based techniques that rely on suitable numerical looat-
measures to compare individual frames of data streams, aspgr
spatio-temporal invariance in our features and inducednsets,
allowing for exact matchings at the segment level.

The idea of considering geometric (combinatorial, retsipquali-
tative) features instead of numerical (metrical, quatited features
is not new and has already been applied by, e.g., Carlss@&;19
1999] as well as Sullivan and Carlsson [2002] in other dosairch
as visual object recognition in 2D and 3D, or action recagniand
tracking. The following observations are of fundamentapam
tance, see Carlsson [1996]: firstly, relational structaresnot only
interesting for general recognition problems (due to tieiariance
properties) but also ideally suited for indexing (due tdrtbescrete
nature). Secondlyelational similarity of shapes correlates quite
well with perceptual (logical)similarity. These principles moti-
vate the usage of progressions of geometric constellativosler
to identify logically similar movements. Analogously, @reand
Guan [2004] use progressions of kinematic features suchcas m
tion vectors of selected joints, so-calldgnemesas basic building
blocks of their HMM-based motion models.

3 Geometric Features

In this section, we define various kinds géometric featuresle-
scribing geometric relations between specified points efkine-
matic chain for some fixed, isolated pose. To this end, we tteed
notion of aboolean featurewhich we describe mathematically as
a boolean functiorF : &2 — {0,1}. Obviously, any boolean ex-
pression of boolean functions (evaluated pose-wise) iscéeba
function itself, examples being the conjunctiepA F, and the dis-
junctionF; vV F, of boolean function&, andF,. Forming a vector of

f boolean functions for some> 1, one obtains a combined func-
tion F : & — {0,1}f. From this point forwardf will be referred
to as afeature functiorand the vectoF (P) as afeature vectoror
simply afeatureof the poseP € &2. Any feature function can be
applied to a motion capture data streBm[1:T] — £ in a pose-
wise fashion, which is expressed by the composikarD.

We now consider a special class of geometrically meanirfgfaH
ture functions. As an example, a geometric feature may egpre
whether the right toes lie in front of the plane spanned bylé¢fte
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Figure 2:Boolean features", F', and the conjunctiof" A F' applied to the 100-
frame walking motiorD = Dy of Fig. 3.

ankle, the left hip and the root for a fixed pose. More gengrkt

pi € RS, 1<i < 4, be four 3D points, the first three of which are in
general position. Letps, pz, ps) denote the oriented plane spanned
by the first three points, where the orientation is detershibg
point order. Then define

1, if pgliesin front of or on
B(PL, P2, P3i P4) == { o, if Eﬁi lies behind(py, pz, pi?.l’ P2:Pa):
o @
From this we obtain a feature functid?#iﬁ{j"““ . 2 —{0,1}
for any four distinct jointgj; € J, 1 <i < 4, by defining

F(il-iz-is?h)(p) := B(Pl1, pi2 pis; pia),

plane (2)
The concept of such geometric features is simple but poWerfu
as we will illustrate by continuing the above example. Setti
j1 =‘root’, jo ='lankle’, j3 ='lhip’, and j4 ='rtoes’, we denote

the resulting feature bff" := Fé&ﬁ{j’jym, The plane determined

by j1, j2, and js is indicated in Fig. 1 (a) as a green disc. Obvi-
ously, the featur&" (P) is 1 for a posé® corresponding to a person
standing upright. It assumes the value 0 when the right fante®s

to the back or the left foot to the front, which is typical focbmo-
tion such as walking or running. Interchanging correspogdift
and right joints in the definition df" and flipping the orientation of
the resulting plane, we obtain another feature functiorotighby
F!. Let us have a closer look at the feature function= F" A F!,
which is 1 if and only if both, the right as well as the left tpase

in front of the respective planes. It turns out tfkais very well
suited to characterize any kind of walking or running movetné

a data streand : [1: T] — & describes such a locomotion, then
F o D exhibits exactly two peaks for any locomotion cycle, from
which one can easily read off the speed of the motion (see2lrig.
On the other hand, the featufeis invariant under global orienta-
tion and position, the size of the skeleton, and variousl Ispatial
deviations such as sideways and vertical movements of gise (@f
courseF leaves any upper body movements unconsidered.

In general, feature functions defined purely in terms of getoim
entities that are expressible by joint coordinates areiiamaunder
global transforms such as Euclidean motions and scaling=m- G
metric features are very coarse in the sense that they expnig
a single geometric aspect, masking out all other aspectseofet-
spective pose. This makes such features robust to varsaitictne
motion capture data stream that are not correlated withspec
of interest. Using suitable boolean expressions and caatibims
of several geometric features then allows to focus on or tkmat
certain aspects of the respective motion, see Sect. 5.

The four joints inFsl{;r']Jg'”'“) can be picked in various meaning-
ful ways. For example, in the cage =‘root’, j, =‘Ishoulder’,

j3 =‘rshoulder’, andj4 ='lwrist’, the feature expresses whether the
left hand is in front of or behind the body. Introducing shltaoff-
sets, one can make the feature more robust. For the previaus e
ple, we moved the planéP't P2 P!3) to the front by one length
of the skeleton’s humerus. One thus obtains a more robusiréea



Feature sef Features and corresponding abbreviations

right/left foot in front }/F2), right/left foot raised E3/F/*), right/left
foot fast E%/F?), right/left knee bentR,/F?), right/left leg sideways
(FIF10), legs crossedd?)

right/left hand in front E}/F2), right/left hand raised FE/F),
right/left arm sideways R3/FS), right/left elbow bent E//FS),
right/left hand fasti$/F1%), arms crossed*), hands touching®}?)
right/left hand touching any legr¢/F2), right/left hand touching head
or neck E/F2), right/left hand touching hip are&§/F8), torso bent
(R, root fast &)

F

Fu

Fm

Table 1: The three sets of features used in our experimeRtscharacterizes the
lower body,F, the upper body anB, the interaction of upper and lower body.

that can distinguish between a pose with a hand reaching d¢het
front and a pose with a hand kept close to the body, see Fig. 1 (b

We sketch some other kinds of geometric features that tuonéd
to be useful in our experiments. Instead of specifying tlaaelby
three joints, one can define the plane by a normal vector diven
two joints. For example, using the plane that is normal tovéne

tor from the joint ‘chest’ to the joint ‘neck’, one can easikieck
whether a hand is raised above neck height or not, cf. Fig).1 (c
Another type of expressive geometric features checks vehétio
joints, two body segments, or a joint and a body segment ahénwi
an e-distance of each other or not. Here one may think of situa-
tions such as two hands touching each other, or a hand tautien
head or a leg, see Fig. 1 (d)—(f). In our experiments, we chaosé
atively large threshol@, opting for possible false positives rather
than having false dismissals. We also use geometric featore
check whether certain parts of the body such as the armsegise |
or the torso are bent or stretched. This is done by measuning t

take place exclusively within a single space octant), threysaif-
ficient for our prototypical retrieval system. Here, our bizato
retrieve motions based on their rough outlines. To handézigs at
a higher level of detail, more refined sets of features areired,.

4 Adaptive Segmentation

As mentioned in the introduction, two logically similar nais

may exhibit considerable spatial as well as temporal dieviat

The pose-based geometric features defined in the last seanto
invariant under such spatial variations. Introducing tbeoept of
adaptive segmentation, we show in this section how to aelirev
variance under local time deformations.

Let F be a feature function. We say that two pofes?, € & are
F-equivalentf the corresponding feature vectdf¢P;) andF (P,)
coincide, i.e.F(P) = F(P,). Then, arF-run of D is defined to be
a subsequence @ consisting of consecutivE-equivalent poses,
and theF-segment®f D are defined to be thE-runs of maximal
length. We illustrate these definitions by continuing tharagle
from Sect. 3. LeF?:= (F",F!): 22 — {0,1}? be the combined
feature formed bf" andF' so that the pose se? is partitioned
into four F2-equivalence classes. Applyifi? to the walking mo-
tion Dyaik (See also Fig. 2) results in the segmentation shown in
Fig. 3, where the trajectories of selected joints have béetteg.
F2-equivalent poses are indicated by the same trajectory:cible
colorred represents the feature vectdr 1), bluethe vector(1,0),
andgreenthe vector(0,1). Note that no pose with feature vector
(0,0) appears iDyak. Altogether, there are ten runs of maximal
length constituting th&2-segmentation oDy k.

anglea between suitable body segments such as the thigh and theyt js this feature-dependent segmentation that accountiiéopos-

lower leg (corresponding to the knee angle), the upper axdrtlan
forearm (corresponding to the elbow angle), or the spinefaateft

and right thigh (taking the maximum of the two angles). Our ex
periments showed that an angle of 120 degrees is a good tfdesh
to classify the respective body part as bemt< 120) or stretched

(o > 120), see Fig. 1 (g). Finally, we complemented our set of ge-
ometric features with a couple of non-geometric booleatufea
accounting for parameters such as absolute speed of cmritatis),

or relative speed of certain joints with respect to othantmi

In our retrieval scenario, we supply a fixed set of semanyicaih
features from which the user may select relevant featunethéo
query specification. Concerning feature design, one has#b d
with the problem that the feature set should be extensiveigno
to characterize a broad spectrum of different motion typ&s.
multaneously, the features should be pairwise orthogoiithlowt
over-specializing on certain types of motions, as well aalkin
number in view of efficiency. For the time being, we chose our
features manually, possibly yielding boolean features itenage
to capture important motion characteristics. An automatay of
composing a high-quality standard feature set backed uphpsip
ological studies of human motions would be an importantdgsu
be considered in the future.

In particular, we designed 31 boolean features divided ihtee
setsF,, Fy, andFy, see Table 1. The features ki and F, ex-
press properties of the lower/upper part of the body (madhithe
legs/arms, respectively), whereas the featurésimainly express
interactions of the upper and lower part. Here, the idea was t
subdivide the space of possible end effector locationsargmall
set of pose-dependent space “octants” defined by threeséuter
ing planes each (above/below, left/right, in front of/rel)i Even
though these 31 features are not capable of covering alttspé

all kinds of motions (e.g., motions that are small-scaleaugh to

tulated temporal invariance, the main idea being that matapture
data streams can now be compared at the segment level fizdiner t
at the frame level. To be more precise, let us start with theesece
of F-segments of a motion capture data strdanBince each seg-
ment corresponds to a unique feature vector, the segmehisen
a sequence of feature vectors, which we simply refer to a§the
feature sequencef D and denote by [D]. If K is the number of
F-segments ob and ifD(tk) forty € [1: T], 1< k<K, is a pose of
thek-th segment, theR [D] = (F(D(t1)),F(D(t2)),...,F(D(tk)))-
For example, for the data stredy,, and the feature functiofi2
from Fig. 3, we obtain

F2Dwaid = ((D:0-0:0)-0.0.0-0.0.0).-

Obviously, any two adjacent vectors of the sequefi®] are dis-
tinct. The crucial point is that time invariance is incorgiad into
the F-segments: two motions that differ by some deformation of
the time axis will yield the samE-feature sequences. This fact is
illustrated by Figs. 5 and 6. Another property is that thersegta-
tion automatically adapts to the selected features, as paoson

of Fig. 3 and Fig. 5 shows. In general, fine features, i.etufea
functions with many components, induce segmentationsmwihy
short segments, whereas coarse features lead to a smatiéenu
of long segments.

The main idea is that two motion capture data stre@msand
D, can now be compared via thdirfeature sequencds[D4] and
F[Dy] instead of comparing the data streams on a frame-to-frame
basis. This has several consequences: first, since spadidém-
poral invariance are incorporated in the features and segnene
can use efficient methods from (fault-tolerant) text retxl¢o com-
pare the data streams instead of applying cost-intensiveigues
such as DTW at the frame level. Second, the nunkbef segments



Figure 3: F2-segmentation oDyak, Where F2-equivalent poses are indicated
by uniformly colored trajectory segments. The trajecwri the joints ‘head-
top’,'rankle’,'lankle’,rfingers’, and ‘lfingers’ are shan.
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Figure 4: Right foot kick followed by a left hand punch. The segments iar
duced by a 4-component feature function comprising thesttoteled angles for ‘rknee’
(Fig. 1 (g)) and ‘lelbow’ as well as features describing thkations “right foot raised”
and “left hand in front” (Fig. 1 (b)).

is generally much smaller than the numBeof frames, which ac-
counts for very efficient computations. Finally, the useessfied
selection of motion aspects can be realized by consideengia
components oF [D1] andF [D;] in the comparison, see Sect. 5.

5 Indexing and Retrieval

In the following, we think of a database as a collectigh=
(D1,D5,...,Dn) of motion capture data streams (documeifits)

n e [1:N]. To simplify things, we may assume th@t consists of
one large documer by concatenating the documeis, ...,Dy,
keeping track of document boundaries in a supplementalstiate-
ture. Furthermore, we fix a feature functiBncomprising as com-
ponents all the features from which the user may select {stimg,
e.g., of the 31 features of Table 1). In Sect. 5.1, we predent t
basic idea of an exact hit with respectfoformalizing the notion
of similarity between motion clips. To account for the usdga-
ture selection as well as uncertainties in the query, wedlice
the concept of a fuzzy hit, softening the notion of an exagtdge
Sect. 5.2. To afford an efficient retrieval, exact as welllezy, we
once and for all perform a preprocessing step, in which wetcoct
a query-independent index structure fobased on inverted lists.
In Sect. 5.3, we explain how to control the number of indexdsor
by accepting a small computational and storage overheazlcdin
cepts introduced in this section are well known in other dosyaf.
Clausen and Kurth [2004].

5.1 Hits and Index-Based Search

Intuitively, we want to consider two motion clips as simitathey
exhibit the same progression of geometric constellatioris other
words, if they have the same feature sequenceex@aut F-hitis de-
fined to be a segment numbee N such thaF [Q] is a subsequence
of consecutive feature vectors in thesequencé D] starting from
thek-th segment. For short, we then wrigQ] Cx F[D]. In other

Figure 5: RestrictingF2 = (F',F') to its first component results in af'-
segmentation, which is coarser than Bfesegmentation shown in Fig. 3.

Figure 6: The left part shows five steps of a slow walking motion perfedniby

an elderly person resulting in exactly the saiiefeature sequence as the much faster
motion of Fig. 5. The right part shows a possible query motisulting in theF2-
feature sequence of the example given in (8).

words, ifF [Q] = (vi,Va, ...,V ) withv, € {0,1}f for 1 < ¢ < L and

Note that even though this concept of a hit is exact at theifeand
segment level, it still permits a lot of spatial and tempaeaiation
at the frame level. The set of all exd€thits in the databas& is
given by

Hy (FIQ]) = {ke [1:M]|F[Q Ck F[D]}. (®)

The important point is that the s, (F[Q]) can be evaluated very
efficiently usinginverted lists To this end, we store a list

L(v) :=Hg((v)) = {k€ [1:M] | (v) Ck F[D]} (6)
for each feature vectare {0,1} . An elemenk € L(v) tells us that

thek-th feature vector oF [D] equalsv. Let F[Q] = (v1,Va,...,V)
as before; then it is easily verified that

(1 (L(v) —0+1), @)

le1iL]

Hy(F[Q]) =

where we set (v) —¢+1:={k—¢+1| ke L(v)}. In other words,
H4(F[Q]) can be obtained by intersecting suitably shifted inverted
lists corresponding to the feature vectorskdf)]. This suggests
to build an index in the following manner: compute and starne f
each feature vectore {0,1} the inverted list.(v), which can be
done in a preprocessing step, independently of any quergp Ke
the entriesk within each listL(v) sorted according to the canonical
ordering ofZ. Then the computation of unions and intersections
of the inverted lists can be processed efficiently using mepgera-
tions or binary search. The resulting index consisting ldhaerted
lists L(v) will be denoted byZ.

As an example, considéD = Dy, and F = F2 from Fig. 3.
ThenL(()) = {1,3,5,7,9}, L((})) = {2,6,10}, L((5) = {4.8},



andL((3)) = 0. Now, assume that for a que€y one obtains the
F-feature sequende[Q] = ((5),(1),(3)), then

Hz (FQ]) L(@) N (L) -1 n(L(D) -2)
{4,8)n{0,2,4,6,8}n{0,4,8}
{4.8}.

In other words, there are twe-hits for Q starting with the fourth
and eighth segment &f[D], respectively.

(8)

5.2 Fuzzy Search with Adaptive Segmentation

The feature functiorr is chosen to cover a broad spectrum of as-
pects appearing in all types of motions. Therefore, comsigea
specific motion class, many of the features are irrelevantde
trieval and should be masked out to avoid a large number sé fal
negatives due to over-specification. For example, corigigléo-
comotion, the user may not be interested in any movementeof th
arms. Furthermore, the user may be unsure about certas qfart
the query and may want to leave them unspecified. To handke suc
situations, we introduce the concepfofzy searchinstead of con-
sidering a feature sequenE¢Q] = (v1,Vo,...,Vv. ) of a queryQ, we
now allow for eachy; a finite setv, C {0, 1}f with vy € Vy, which
can be thought of as a set aternativesto v,. Then afuzzy query

is defined to be a sequenEgQ]s,; := (V1,Vo,..., VL) of fuzzy sets
such that, NV, 1 =0 for 1< ¢ < L. (In case the latter intersec-
tion condition—introduced for technical reasons—is ndfilfad,

we iteratively conjoin adjacent sets with nonempty intetiss un-

til we end up with a sequence having the desired property.e Not
that this procedure corresponds to coarsening the seghoentd
the query.) Extending the definition of (4)fazy hitis an element

k € [1:M] such thaF [Qlsy, Ck F[D], where we set

F[Qltuz Ck F[D] & Wk € Vi, Wiki1 € Vo, .. Wk -1 €V (9)

with F[D] = (w1, Ws,...,Wy) as above. Obviously, the casge=
{v;} for 1< ¢ <L reduces to the case of an exact hit, cf. (4). Similar
to (5), the set of all fuzzy hits is defined to be

H@(F[Q]fuz) = {k € [1 : M} ‘ F[Q}fuz Ck F[D}}‘
In analogy to (7), the séd,(F[Qlsz) can be computed via

Ho(F[Qluz) == [ (L(Ve) —£+1) with L(Vy) == [ L(v).
Le(1iL] vev,

(10

(11)
Obviously, the admission of alternatives can be realizagt eé&
ficiently in terms of unions of inverted lists, thus avoiditige
|‘|€L:1 |V;| individual queries for all combinations of fuzzy features
that (9) might suggest to be necessary.

The fuzzy concept introduced above is not yet exactly what we
want: so far, the fuzziness only refers to the spatial donfain
lowing alternative choices for the pose-based featuresighores

the temporal domain. More precisely, the segmentatiol a$
only determined by the feature function, disregarding thezif
ness of the fuzzy querl[QJs,z. To adjust the temporal segmen-
tation to the fuzziness of the query, we proceed as folloves: |
F[D] = (w1,Wo,...,wy) be theF-feature sequence &. Suppos-

ing wi € V1 with wy_1 ¢ Vj for some indexk; :=k € [1: M], we
determine the maximal indeb > k; with wy, € Vy for all m=
ki,ki+1,...,ko — 1 and concatenate all segments corresponding to
thesew into one large segment. By constructiov, ¢ Vq. Only

if wy, € V>, we proceed in the same way, determining some maxi-
mal indexks > ko with wy, € V, for all m= ko, ko +1,..., k3 — 1,

and so on. In case we find a sequence of indiges ko < ... < k_

constructed iteratively in this fashion, we say that [1 : M] is an
adaptive fuzzy hit

In other words, when comparing the fuzzy quétiQls,, with a
documenD, theF-segmentation oD is coarsened to obtain maxi-
mal runs of frames with respect to a $gtof feature vectors rather
than to a single feature vectay. The above procedure not only
checks for the existence of such adaptive fuzzy hits but edsn
structs the respective adaptive segmentation correspgridithe
fuzzy query. Again, one can efficiently compute the set ohdHp-
tive fuzzy hits, denoted bM@(F[Q]?udZ), based on the inverted lists
of our index. The details are of rather technical nature aiidoe
published elsewhere.

We illustrate the above procedure by continuing our exarbpte
Dyak and F = F2 from Fig. 3. Let's start with a fuzzy query
F[QJfuz = (V1,V2,V3) with V1 = V3 = {(5),(9)} andVz = {(3),(1) }-
Looking at the feature sequenEgD] shown in (3), one easily de-
rives thatH@(F[Q]ﬁJdZ) = {2,6}, i.e., there are exactly two adap-
tive fuzzy hits inD (opposed toH4(F[Qlsz) = 0). We have
ky =2, ko = 3, kg = 6 for the first hit anck; = 6, ko = 7, k3 = 10 for
the second hit. In the case of the first hit, for example, thésns
thatV; corresponds to segment 2BfD], V» to segments 3-5, and
V3 to segment 6, amounting to a coarsened segmentatibn of

The fuzzy query in the previous example was chosen in suclya wa
that the adaptive fuzzy hits with respecf6= (F', F! ) correspond

to the exact hits with respect to the feature functidn which is

the first component df2. More generally, it is easily verified that
restricting the feature functioR : % — {0,1}" to some of itsf
components can be simulated by a special choice of fuzzyirsets
adaptive fuzzy searching.

Fuzzy search can be complemented by the concepi-ofismatch
search introducing another degree of inexactness.mmismatch

hit permits up tom < |F[Q]| feature segments withiR[Q] to dis-
agree with the database, i.e., it permits upnt@f the demanded
equalities in (4) to be unsatisfied. To prevent arbitraryanes,

it is possible to restrict the positions withfF{Q] where such mis-
matches may occurm-mismatch hits allow for spatial variations
via deviating feature values, whereas the temporal streictd
the query must be matched exactly. Efficient dynamic program
ming algorithms form-mismatch queries exist, see Clausen and
Kurth [2004] for further details.

5.3 Indexing

Recall that the indexZ as introduced in Sect. 5.1 consists df 2
inverted listsL(v), each of which corresponds to the feature vec-
tor ve {0,1}f. The lists contain segment positions of the
segmentation (rather than frame positions), and each sggrusi-
tion appears in exactly one list. As a consequence, the index

is roughly proportional to the number of segments of all doents

in the database’ (in practice, we also store the segment lengths
so the frame positions can be recovered). In view of effigiewe
have to deal with the problem that the numbéra® inverted lists

is far too large in practice. For example, for our casef f 31

we obtain 21 lists. Typically, the segment positions distribute over
a large number of different lists, which makes the retrigwal-
cess computationally expensive due to the large numbenafned
merging and intersecting operations. To cope with this lerab
we proceed as follows: we divide the set of our 31 boolean fea-
tures into the three sets (11 features)F, (12 features), anéy

(8 features) as indicated by Table 1. Identifying the seth Wie
corresponding feature function, we then construct sepamdexes
17,17, andly. Then, retrieval amounts to querying the individual



Index| f 2 #(lists) #(frames) #(segs)MB bsy—ézs oty Yt
180 |11 2048 409 425294 21,108.72 35.8|26 10 6 42
1180 |11 2048 550 1,288,846 41,5872.41 35.5|71 26 13 110
I8 |12 4096 642 425294 53,036.71 33.8/26 13 10 49
1180 |12 4096 877 1,288,846 135,742.33 33.4|71 33 25 129
1€ | 8 256 55 425,294 19,0670.60 33.0{26 20 3 49
1380 | 8 256 75 1,288,846 55,5261.80 34.0{71 54 12 137

Table 2:Feature computation and index construction. Running tinesn seconds.

Type, #(segs) 1-9 hits 10-99 hits > 100 hits

HBh  On He(ms)| pn On  pe(Ms)|  pn Oh M (ms)
exact|Q =5 [3.0 24 16| 44 28 20| 649 567 144
exact|Q =10]1.7 1.6 17]34 22 26| 239 147 71
exact|Q=20]1.1 0.6 19]32 26 36| 130 5 52
fuzzy,|Q =5 |36 25 23] 44 27 29)1,878 1,101 291
fuzzy,|Q=10{2.4 2.1 28] 40 26 35[1,814 1,149 281
fuzzy,|Q[=20{2.0 1.9 42136 24 35[1,908 1,152 294

Table 3: statistics on 1000 random queries it using different query modes
and query sizes, grouped by the number of titg, anday, are the average/standard
deviation ofh for the respective groupy is the average query time in milliseconds.

indexes and post-processing the resulting hits by additiorerg-
ing and/or intersecting operations. However, the numbesuch
additional operations is by far outweighed by the savingsiting
from the significantly reduced overall numbeilj(ar 2124 28 of in-
verted lists. Furthermore, list lengths are in practicel\valanced
and medium-sized, allowing for fast merging and intersectiper-
ations. A minor drawback is that the indexgs |7, andl; require
an amount of memory linear in the overall numbefsf, F,-, and
Fn-segments i, respectively. This effect, however, is attenuated
by the fact that segment lengths with respedtto Fy-, andFy, are
generally larger compared E-segment lengths, resulting in fewer
segments.

6 Experiments and Results

6.1 Indexing

We implemented our indexing and retrieval algorithms in listat
and tested them on a databag&° containing more than one mil-
lion frames of motion capture data (180 minutes sampled @t 12
Hz). The experiments were run on &3GHz Pentium 4 with

1 GB of main memory. The resulting indexes are denotet{BY
1380, and 1380, In its columns, Table 2 shows the numbkrof
feature components, the numbeér @f inverted lists, the number
of nonempty inverted lists, the overall number of framesha t
database, the overall number of segments of the corresmpado-
mentation, the index size in MB, the number of bytes per segme
and four running timeg, t, tj, andy t, measured in seconds.is

the portion of running time spent on data readtinis the feature
extraction timef; is the inverted list build-up time, angt is the
total running time. To demonstrate the scalability of owute we
quote analogous numbers for the indek&s 180 andI§? built from

a subsetz®0 of 2180 corresponding to 60 minutes of motion cap-
ture data. The total size &89 represented in the text-based AMC
motion capture file format was 600 MB, a more compact binary
double precision representation required about 370 MBic&jn-
dex sizes ranged between 0.7 and 4.3 MB, documenting théadras
amount of data reduction our scheme achieves.

Figure 7:Selected frames from 16 query-by-example hits for a lefdhmmch. The
query clip is highlighted. Query featureg?, F2, F/, FS; see Table 1.

Figure 8:Selected frames from 9 query-by-example hits for a squattiation. The
query clip is highlighted. Query featureB?, F8, F/, F1°, F}?; see Table 1.

Table 2 shows that the number of segments (with respdgt, e,

and Fy,) was only about 3 to 12 percent of the number of frames
contained in the database. Observe that index sizes arerficoal

to the number of segments: the average number of bytes per seg
ment is constant for all indexes. The total indexing timkrisar in

the number of frames. This fact is very well reflected in tHaeaa

for example, it took 42 seconds to bullﬁo, which is roughly one

third of the 110 seconds that were needed to biff. Note that
more than half of the total indexing time was spent on reafiige
data, e.g., 71 seconds for the 180-minute index. The stifadii

our algorithms’ running time and memory requirements ptsms

to use much larger databases than those treated by Kovarland G
icher [2004], where the preprocessing step to build a matn i
quadratic in the number of frames (leading, e.g., to a runtime

of roughly 3000 seconds for a database containing only0O8@
frames).

6.2 Retrieval

The running time to process a query very much depends on the
size of the database, the query length (the number of segjnent
the user-specified fuzziness of the query, as well as the eunfb
resulting hits. In an experiment, we posed 10,000 randomiegie
(guaranteed to yield at least one hit) for each of six queenac

ios to the index 8 see Table 3. For example, finding all exact
Fu-hits for a query consisting of/40/20 segments takes on aver-
age 16-144/17-71/19-52 milliseconds, depending on thébeum

of hits. Finding all adaptive fuzz,-hits for a query consisting of
5/10/20 segments, where each fuzzy set of alternatives has a size
of 64 elements, takes on average 23-291/28-281/42—-294 ms.

Fig. 7 depicts all resulting 16 hits from a query for a puner{eval
time: 12.5 ms), where only the four featurigs/F? (right/left hand
in front) andF /F$ (right/left elbow bent) have been selected, see
Table 1. These four features induce an adaptive segmeantzttbe
query consisting of six segments, which suffice to grasp isteod
the punching motion. Further reducing the number of feattne
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Figure 9:Selected frames from 19 query-by-example hits for a rigbt kick. The
query clip is highlighted. Query features?, F*, F/, F8; see Table 1.

selecting onIyFu2 andFl? induces a 4-segment query sequence and
results in 264 hits, comprising various kinds of punch-liketions
involving both arms. Finally, increasing the number of stdd
features by adding}/F? induces an 8-segment query sequence
resulting in a single hit.

Fig. 8 shows 9 hits out of the resulting 33 hits for a "squz;?.’timo-

tion (retrieval time: 18 ms) using the five featufed F2, F/, F1°,

and Féll. The induced 5-segment query sequence is characteristic

enough to retrieve 7 of the 11 “real” squatting motions ciorad

in the database. Using a simple ranking strategy (e.g., pdeah
heuristic comparing the sum of frame length differencesvben
query and hit segments), these 7 hits appear as the top Hits. T
remaining 26 retrieved hits are false positives, two of \whéce
shown to the right of Fig. 8 as the skeletons “sitting down”an
virtual table edge. One reason for this kind of false pos#iis
that the relevant feature used in the query for the squattiotion
thresholds the knee angle against a relatively high detigidue

of 12(°. Hence, the knees of the sitting skeletons are just barely
classified as “bent,” leading to the confusion with a sqogttno-
tion. Omitting the velocity featureEl5 and FZ6 again results in an
induced 5-segment query, this time, however, yielding &3 (cion-
taining the previous 33 hits with the same top 7 hits). Amdmg t
additional hits, one now also finds jumping and sneaking onati

Finally, Fig. 9 shows all 19 query results for a “kicking” nmn (re-
trieval time: 5 ms) using?, F*, F/, andF2. Out of these, 13 hits
are actual martial arts kicks. The remaining six motionsksie
let moves containing a kicking component. A manual inspecti
of 2180 showed that there are no more than the 13 reported kicks
in the database, demonstrating the high recall percentagech-
nigue can achieve. Again, reducing the number of selecegdres
leads to an increased number of hits. In general, a typicatcso
of false positive hits is the choice of fuzzy alternativesiiquery.
For example, the ballet jumps in Fig. 9 were found as mataobies f
a kicking motion because only the right leg was constrainethb
query, leaving the left leg free to be stretched behind titybo

In conclusion, our technique can efficiently retrieve higlality
hits with good precision/recall percentages provided thatuser
adequately selects a small number of features reflectingrtper-
tant aspects of the query motion. This, in general, requioese
experience as well as parameter tuning. However, mostrisatu
have strong semantics, which makes feature selection ainery
tuitive process, see Sect. 6.3. To automate feature smiectie
propose a hierarchical approach: starting with a family refde-
fined feature sets, systematically reduce the number dfifesin
these sets and pose a query with respect to each resultingefea
combination. This process is repeated until a sufficient remof
hits has been retrieved. Since this approach will genepatiduce
a large percentage of false positives—often exceeding 80%e—

rfoot’ |

* |
* |

lowered | raised I Ioweredl

‘rknee’ |straigh| bent |straighl bent Istraighl

‘lhand’ | * I back I front I back |
\ \
"lelbow’ | * I bent I straight I bent |

Figure 10:Scene description for the movement “right foot kick follaiey a left
hand punch” as shown in Fig. 4. The symbol * indicates thatrestlation is unspec-
ified. Arrows indicate which constellations are to occurdianeously.

1 2 3 4 5 6
Figure 11:The segment-wise time alignment of the two walking moticmsven in
Fig. 5 (corresponding to the vertical axis) and Fig 6 (cqroesling to the horizontal
axis) can be refined via DTW-based methods restricted tortheayea.
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needs suitable ranking strategies. Here, one could refmeeth
trieval results by applying more involved DTW-based tedaess,
see Sect. 7.

6.3 Towards Scene Descriptions

Often, the user will only have a sketchy idea of which kind of
movement to look for in the motion capture database, for exam
ple a “right foot kick followed by a left hand punch.” That ife
qguery may not be given as an example motion but only be spec-
ified by a vague textual description. In processing suchigser
one so far has to revert to annotations such as manually afeder
descriptive labels attached to the motion data. Our indgstrat-
egy, on the other hand, is purely content-based and thugdtes
fully automated preprocessing. Furthermore, it providesfi-
cient way of focusing on different aspects of the motion aed s
lecting the desired search granularitiyer the preprocessing stage
(and notbeforeas for manual annotations). First experiments to
implement sketchy queries such as the one above with oigvaitr
technique are based on the following observation: vagustgis
fied motions such as kicking, punching, or clapping can often
specified by a very small set of basic geometric consteliatiéor
example, as depicted in Fig. 10, a kick of the right foot canite
well characterized by the concurrent progression of thestebn
lations “rknee straight/bent/straight/bent/straightitle'rfoot low-
ered/raised/lowered.” In addition, the intermediary tehations
“rknee bent” and “rfoot raised” should overlap at some pamt
time. Similarly, Fig. 10 shows geometric scene descriptidor
the motion “right foot kick followed by a left hand punch,” wfe
overlapping constellations are indicated by an arrow arspeaci-
fied constellations, realizable by our fuzzy concept, adécated by
the symbol *. Now, such kinds of geometric scene descrigtizan

be efficiently processed by first querying for each progogssep-
arately and then suitably intersecting the retrieved hitadcount
for cooccurrence conditions. In our future work, we plan to-e
ploy statistical methods to learn such geometric sceneigésas
from example motions to fully automate queries at higherasgino
levels, see also Sect. 8.



7 Time Alignment

Recall that two motion clips are considered as similar if/thes-
sess (more or less) the same progression of geometric ésatur
Matching two such progressions obtained from similar m#tican

be regarded as a time alignment of the underlying motion data
streams. Even though such alignments may be too coarseniroVie
applications such as morphing or blending, they are quiterate
with respect to the overall course of motion. For the timgratient

of motion data streams we therefore suggest the followingr tw
stage procedure: first compute (in linear time) a coarse eegm
wise alignment based on our index. Then refine this alignment
resorting to classical DTW techniques, as, e.g., desciilyeKo-

var and Gleicher [2004]. The important point is that once arse
alignment is known, the DTW step can be done very efficiently
since the underlying cost matrix need only be computed witini
area corresponding to the frames of the matched segmerisisTh
also illustrated by Fig. 11, where the two walking motions-f. 5

and Fig 6 are aligned. In order to avoid alignment artifanfsrced

by segment boundaries, the restricted area is slightlyrgetbas
indicated by the gray area. For more details on acceler&ify
computations we refer to, e.g., Keogh [2002].

8 Conclusions and Future Work

This paper has presented automated methods for efficiesximgl
and content-based retrieval of motion capture data. Ona ouai-
tribution of this work is the introduction of qualitativeegmetric
features—opposed to quantitative, numerical featured irspre-
vious approaches. A second contribution is the conceptaybtack
temporal segmentation, by which segment lengths are ngtaahl
justed to the granularity of the feature function but alsthfuzzi-
ness of the query. Itis the combination of geometric featara in-
duced segmentations that accounts for spatio-temporatiamce,
which is crucial for the identification of logically relatedotions.
Thirdly, we have adapted the notion of fault-tolerant eatal based
on fuzzy hits and mismatches that can be efficiently comphied
means of inverted lists. One decisive advantage of our istfex-
ture is that the time as well as the space to construct and ster
index is linear in the size of the database. This solves tbblem

of scalability emerging in DTW-based approaches. We hase al
sketched how our methods can be applied in a preprocesspg st
to accelerate DTW-based time alignment of motion captuta da
streams.

Future Work: One major drawback in our query scenario is that
for each query the user has to select suitable features &r ¢od
obtain high-quality retrieval results. This is not feasildth case
one wants to batch process many different motion clips, assie
sary in morphing and blending applications. However, ag.Sec
showed, our technique should not be seen as a mere alterbativ
rather as a complement to previous DTW-based techniquésg Us
simple geometric relations avoiding false dismissalsroftelps to
cut down the search space significantly without loss of tyialh
that more involved cost-intensive methods may be appliegdet-
processing the restricted data set. Furthermore, as fipstiexents
showed, geometric features also seem to be a promisingtbah-
dling low-level descriptive queries automatically. Hettee idea is
that movements can often be characterized by a typical pssgm
of geometric constellations corresponding to key poses.plale
to employ statistical methods to learn such progressiongetisas
to automatically identify expressive geometric featumesnf typi-
cal example motions. Conversely, such progressions candioe

in automatically annotating newly generated motion captiata.

In view of such applications, one first has to build a highiya
manually annotated database comprising various kindsarhpie
motions. It would be extremely valuable to the research camm
nity if publicly available motion databases such as CMU [Z00
were extended in that way, making experimental results esmp
rable. For example, lacking such a common database, it was no
possible for us to objectively compare and combine oureedti
results with those of related techniques such as that of Kand
Gleicher [2004].
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