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ABSTRACT

Large music collections often contain several recordings of the
same piece of music, which are interpreted by various musicians
and possibly arranged in different instrumentations. Given a short
query audio clip, an important task in audio retrieval is to automati-
cally and efficiently identify all corresponding audio clips irrespec-
tive of the specific interpretation or instrumentation. In view of this
problem, which is also referred to as audio matching, the main con-
tribution of this paper is to introduce a new type of audio feature
that strongly correlates to the harmonic progression of the audio
signal. In addition, our feature shows a high degree of robustness
to variations in parameters such as dynamics, timbre, articulation,
and local tempo deviations. The feature design is carried out in
two stages basically taking short-time statistics over chroma-based
energy distributions. Here, the chroma correspond to the12 tradi-
tional pitch classes of the equal-tempered scale. Applied to audio
matching on a large audio database consisting of a wide range of
classical music (112 hours of audio material), our features proved
to be a powerful tool providing accurate matchings in an efficient
way concerning time as well as memory requirements.

1. INTRODUCTION

Content-based document analysis and efficient audio browsing in
large music databases has become an important issue in music in-
formation retrieval. Here, the automatic annotation of audio data
by descriptive high-level features as well as the automatic gen-
eration of cross-links between audio excerpts of similar musical
content are of major concern. In this paper, we address the sub-
problem ofaudio matching. To illustrate this problem, we con-
sider an audio database containing several CD recordings for one
and the same piece of music, which is interpreted by various mu-
sicians. For example, Vivaldi’s “Four Seasons” may be available
in the interpretation by Pinchas Zukerman, Itzhak Perlman, and
Vanessa Mae. Then, given a twenty-second excerpt of Zukerman’s
interpretation of the violin solo in the “Spring”, the goal is to au-
tomatically retrieve the corresponding excerpts in the other inter-
pretations. It is even more challenging to also include different
arrangements of the same piece such as a piano transcription or
a synthesized MIDI version. Obviously, the degree of difficulty
increases with the degree of variations one wants to permit in the
audio matching.

In our matching scenario the goal is, given a query audio clip
of between 10 and 30 seconds of duration, to find all corresponding
audio clips regardless of the specific interpretation and instrumen-
tation as described in the above Vivaldi example. In other words,
the retrieval process has to be robust to parameters such as timbre,
dynamics, articulation, and tempo. The main contribution of this

paper is to introduce a new type of audio feature that takes short-
time statistics over chroma-based energy distributions, see Sect. 2.
It turns out that such features are capable of absorbing variations
in the aforementioned parameters but are still valuable to distin-
guish musically unrelated audio clips. The crucial point is that
incorporating a large degree of robustness into the audio features
allows us to use a relatively rigid distance measure to compare the
resulting feature sequences, see Sect. 3. This not only allows us to
design very efficient matching algorithms but also to incorporate
further degrees of freedom concerning the global tempo and global
pitch transpositions. Our experimental results show the match-
ing accuracy of our features, see Sect. 3 andwww-mmdb.iai.
uni-bonn.de/projects/audiomatching.

The problem of audio matching can be regarded as an ex-
tension of theaudio identificationproblem. Here, given a query
consisting of short audio clip, the goal is to identify the original
recording hidden in some large audio database. The identifica-
tion problem can be regarded as a largely solved problem, which
even works in the presence of noise and slight temporal distortions
of the query, see, e.g., [1, 2] and the references therein. Current
identification systems, however, are not suitable for a less strict
notion of similarity. The goal ofmusic synchronizationin the au-
dio domain, sometimes also referred to as audio matching, is to
time-align two given versions of the same underlying piece of mu-
sic, see, e.g., [3, 4]. In contrast, the goal in our audio matching
scenario is to identify short audio fragments similar to the query
hidden in the database.

Finally, we mention two general approaches for feature design
relevant to this paper. Thechroma-based approachas suggested
by [5] represents the spectral energy contained in each of the12
traditional pitch classes of the equal-tempered scale. Such features
strongly correlate to the harmonic progression of the audio sig-
nal, which is often prominent in Western music. Another general
strategy is to consider certainstatisticssuch as pitch histograms
for audio signals, which may suffice to distinguish different music
genre, see, e.g., [6]. In the next section, we will explain in de-
tail how we combine both approaches by evaluating chroma-based
audio features by means of short-time statistics.

2. AUDIO FEATURES

In the design of audio features one often has to deal with the prob-
lem of satisfying two conflicting goals at the same time: robust-
ness to admissible variations on the one hand and accuracy with
respect to the relevant characteristics on the other hand. Further-
more, the features should support an efficient algorithmic solution
of the problem they are designed for. In our audio matching sce-
nario, we consider audio clips as similar if they represent the same
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Figure 1:Two-stage CENS feature design (wl= window length, ov= overlap, sr= sampling rate, ds= downsampling factor).

musical content regardless of the specific interpretation and instru-
mentation. In other words, the audio matching procedure has to
be invariant under parameters such as timbre, dynamics, articula-
tion, and local tempo deviations as well as under slight variations
in note groups such as trills or grace notes. Furthermore, global
tempo and global pitch transpositions should be accounted for. It
turns out that the rough harmonic progression over some period of
time (10 to 30 seconds, as our experiments show) often character-
izes a piece of music to a high degree, while still being invariant
under the above parameters. This motivates the two-stage feature
design as described in this section, see also Fig. 1.

In the first stage, we use a small analysis window to inves-
tigate how the signal’s energy locally distributes among the 12
chroma classes (Sect. 2.1). Using chroma distributions not only
takes into account the close octave relationship in both melody
and harmony as typical for Western music, see also [5], but also
introduces a high degree of robustness to variations in dynamics,
timbre, and articulation. In the second stage, we use a much larger
statistics window to compute thresholded short-time statistics over
these chroma energy distributions in order to introduce robustness
to local time deviations and additional notes (Sect. 2.2). In the
following, we identify the musical notes A0 to C8 (the range of a
standard piano) with the MIDI pitchesp = 21 to p = 108.

2.1. First stage: local chroma energy distribution features

First, we decompose the audio signal into88 frequency bands with
center frequencies corresponding to the MIDI pitchesp = 21 to
p = 108. To properly separate adjacent pitches, we need filters
with narrow passbands, high rejection in the stopbands, and sharp
cutoffs. In order to design a set of filters satisfying these strin-
gent requirements for all MIDI notes in question, we work with
three different sampling rates:22050 Hz for high frequencies (p =
96, . . . , 108), 4410 Hz for medium frequencies (p = 60, . . . , 95),
and882 Hz for low frequencies (p = 21, . . . , 59). Each of the
88 filters is realized as eighth-order elliptic filter with1 dB pass-
band ripple and50 dB rejection in the stopband. To separate the
notes we use aQ factor (ratio of center frequency to bandwidth) of
Q = 25 and a transition band of half the width of the passband. To
compensate the large phase distortions inherent to the elliptic fil-
ters, we use the standard technique of forward-backward filtering
resulting in a zero phase distortion, see, e.g., [7].

Afterwards, we compute the short-time mean-square power
(STMSP) for each of the 88 subbands by convolving the squared
subband signals by a 200 ms rectangular window with an overlap
of half the window size. Note that the actual window size depends
on the respective sampling rate of22050, 4410, and882 Hz, which
is compensated in the energy computation by introducing an addi-
tional factor of1, 5, and25, respectively. Then, we compute STM-
SPs of all chroma classesC, C#, . . . , B by adding up the corre-

sponding STMSPs of all pitches belonging to the respective class.
For example, to compute the STMSP of the chroma A, we add up
the STMSPs of the pitches A0,A1,. . .,A7. This yields for every
100 ms a real 12-dimensional vector~v = (v1, v2 . . . , v12) ∈ R

12,
v1 corresponding to chromaC, v2 to chromaC#, and so on. Fi-
nally, we compute the energy distribution relative to the 12 chroma
classes by replacing~v by ~v/(

∑12

i=1
vi).

In summary, in the first stage the audio signal is converted
into a sequence(~v1, ~v2, . . . , ~vN ) of 12-dimensional chroma dis-
tribution vectors~vn ∈ [0, 1]12 for 1 ≤ n ≤ N . For the Vivaldi
example given in the introduction, the resulting sequence is shown
in Fig. 2 (light curve). Furthermore, to avoid random-like energy
distributions occurring during passages of very low energy, (e.g.,
passages of silence before the actual start of the recording or dur-
ing long pauses), we assign an equally distributed chroma energy
to such passages. We also tested the short time Fourier transform
(STFT) to compute the chroma features by pooling the spectral co-
efficients as suggested in [5]. Even though obtaining similar fea-
tures, our filter bank approach, while having a comparable com-
putational cost and allowing a better control over the frequency
bands, produced slightly better results. This particularly holds for
the low frequencies which is due to the more adequate resolution
in time and frequency.

2.2. Second stage: normalized short-time statistics

In view of our audio matching application, the local chroma en-
ergy distribution features are still too sensitive, particularly when
looking at variations in the articulation and local tempo deviations.
Therefore, we further process the chroma features by taking a kind
of thresholded short-time statistics. To quantize the chroma energy
distribution vectors~vn = (vn

1 , . . . , vn

12) ∈ [0, 1]12, we introduce
a quantization functionQ : [0 : 1] → {0, 1, 2, 3, 4} by letting

Q(a) :=



















4 for 0.4 ≤ a ≤ 1,
3 for 0.2 ≤ a < 0.4,
2 for 0.1 ≤ a < 0.2,
1 for 0.05 ≤ a < 0.1,
0 for 0 ≤ a < 0.05.

Then, we defineQ(~vn) := (Q(vn

1 ), . . . , Q(vn

12)) by applyingQ
to each component of~vn. Intuitively, this quantization assigns the
value4 to a chroma componentvn

i if the corresponding chroma
class contains more than40 percent of the signal’s total energy
within the respective analysis window, and so on. The thresh-
olds are chosen in a logarithmic fashion. Furthermore, chroma
components below a5 percent threshold are excluded from further
considerations. In a subsequent step, we convolve the sequence
(Q(~v1), . . . , Q(~vN )) component-wise using a Hann window of
length 41. This again results in a sequence of12-dimensional
vectors with non-negative entries, representing a kind of weighted
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Figure 2: Zukerman’s interpretation of Vivaldi’s Spring RV269,
No. 1. The shown excerpt corresponds to measures 44–55, which
correspond to28 seconds in the recording (seconds 112–140). The
light curves represent the local chroma energy distributions (10
features per second). The dark bars represent the CENS feature
sequence (1 feature vector per second).

statistics of the energy distribution over a window of41 consec-
utive vectors. In a last step, this sequence is downsampled by a
factor of10. The resulting vectors are normalized with respect to
the Euclidean norm. Altogether, one obtains one vector per sec-
ond corresponding to roughly 4100 ms of audio. For short, these
features vectors are simply referred to asCENS(ChromaEnergy
distributionNormalizedStatistics). Fig. 2 shows the resulting se-
quence of CENS feature vectors for our Vivaldi example.

In summary, the small analysis window in the first stage is
used to pick up local information, which is then statistically evalu-
ated in the second stage with respect to a much larger (concerning
the actual time span) statistics window. Note that simply enlarg-
ing the analysis window in the first stage omitting the second stage
averages out valuable local harmonic information leading to less
meaningful features. Taking local statistics in the second stage not
only smooths out local time deviations as may occur for articula-
tory reasons but also compensates for different realizations of note
groups such as trills or arpeggios. Here our two stage approach ad-
mits a high degree of flexibility in the feature design to find a good
compromise between the two conflicting goals mentioned above.

2.3. Global tempo variations and global pitch transpositions

Various interpretations of the same underlying piece of music may
differ considerably in the global tempo. For example, Mae’s in-
terpretation of Vivaldi’s first movement of the Spring is14 percent
faster than the Zukerman interpretation. To account for such global
tempo variations in the audio matching scenario, we create several
versions of the query audio clip corresponding to different tem-
pos and then process all these query versions independently. Here,
our two-stage approach exhibits another benefit, since such tempo
changes can be simulated by changing the size of the satistics win-
dow as well as the downsampling factor in the second stage. For
example, using a window size of53 (instead of41) and a down-
sampling factor of13 (instead of10) simulates a tempo change by
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Figure 3: CENS feature sequence for seconds 102-128 of Perl-
man’s audio recording corresponding to measures 44–55 of the
same Vivaldi example as in Fig. 2.

a factor of10/13 ≈ 0.77 relative to the original tempo. In our ex-
periments, we used8 different query versions corresponding to the
downsampling factors7, . . . , 14 covering global tempo variations
of roughly−40 to +40 percent. Actually, one can employ a simi-
lar strategy to retrieve audio clips which are transposed versions of
the query. The idea is to create different versions of the query by
transposing it into all of the12 existing keys. This is simulated by
cyclically shifting the components of all CENS vectors extracted
from the query and then again processing all these query versions
independently.

3. AN APPLICATION TO AUDIO MATCHING

The CENS features were designed for robust and efficient audio
matching and audio synchronization tasks. The goal of this section
is to summarize the main ideas of our audio matching procedure
and to report on some of our experiments illustrating the power of
the CENS features. The details of our audio matching procedure
will be published elsewhere. Further experimental material, visu-
alizations as well as audio examples can be found atwww-mmdb.
iai.uni-bonn.de/projects/audiomatching.

Our test database contains112 hours of audio material (mono,
22050 Hz) requiring16.5 GB of disk space. It comprises1167 au-
dio files reflecting a wide range of classical music including pieces
by Bach, Bartok, Bernstein, Beethoven, Chopin, Dvorak, Elgar,
Mozart, Orff, Ravel, Schubert, Shostakovich, Vivaldi, and Wag-
ner. The collection was set up to contain several different versions
of most of the included pieces. Some of the orchestral pieces ex-
ists also as piano arrangements or synthesized MIDI-versions. In
a preprocessing step, we compute the CENS feature sequences of
all audio recordings contained in the database. By concatenating
the individual sequences (keeping track of recording boundaries in
a supplemental data structure) this results in a CENS feature se-
quence denoted asD := (~v1, ~v2, . . . , ~vN ). Storing the featuresD
requires only40.3 MB (opposed to16.5 GB for the original data)
amounting in a data reduction of a factor of more than400. Note
that the feature sequenceD is all we need during the matching
procedure.



2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2005, New Paltz, NY

0

1
1 / 0.012

C
 

0

1

C
#

0

1

D
 

0

1

D
#

0

1

E
 

0

1

F
 

0

1

F
#

0

1

G
 

0

1

G
#

0

1

A
 

0

1

A
#

0

1

112 − 140

B
 

2 / 0.068

108 − 136

3 / 0.069

104 − 129

4 / 0.077

101 − 129

5 / 0.105

108 − 136

6 / 0.108

108 − 136

7 / 0.177

93 − 118

8 / 0.220

36 − 56

9 / 0.235

38 − 61

10 / 0.238

23 − 43

Figure 4:The CENS feature sequences of the first ten matches for
the Vivaldi query corresponding to Fig. 2.

In our audio matching scenario, a typical query consists of a
short audio clip of duration between10 to 30 seconds. We first
convert the query into a CENS feature sequence, in the follow-
ing denoted byQ := (~w1, ~w2, . . . , ~wM ). Then, we compare the
sequenceQ to any subsequence(~vi, ~vi+1 . . . , ~vi+M−1) of D con-
sisting ofM consecutive vectors, where1 ≤ i ≤ N − M + 1.
More specific, we define∆(i) := 1 − 1

M

∑

M

m=1
〈~vi+m−1, ~wm〉,

taking the difference of one and the averaged inner product of cor-
responding CENS vectors in the sequences. Recall that the CENS
vectors are normalized with respect to the Euclidean norm, i.e., the
inner products〈~vi+m−1, ~wm〉 are equal to the cosine of the angle
between~vi+m−1 and~wm. From this we obtain a distance function
∆ : [1 : N −M + 1] → [0, 1], where∆(i) describes the distance
of Q and the subsequence ofD starting at positioni and consisting
of M consecutive vectors. To simulate global tempo variations as
well as global pitch transformations, we produce additional query
sequences as described in Sect. 2.3. For each of these sequences
we compute a separate distance function, from which we then take
at all time stamps the point-wise minimum. The resulting overall
minimum distance function is again denoted by∆.

To determine the best match betweenQ andD, we simply
look for the indeximin ∈ [1 : N − M + 1] minimizing ∆. Then
the best match is given by the audio clip corresponding to the fea-
ture sequence(~vimin

, ~vimin+1 . . . , ~vimin+M−1). To look for the
second best match, we exclude a neighborhood around the index
imin from further consideration to avoid “collisions” with the best
match. To find subsequent matches, the latter procedure is re-
peated until a certain number of matches is obtained or a specified
distance threshold is exceeded.

As example, we consider the query consisting of the Vivaldi
audio clip shown in Fig. 2 (Zukermans’s interpretation of Vivaldi’s
Spring RV269, No. 1, measures 44-55). Our database contains
seven different interpretations of this piece (Abbado, Carmirelli,
Lizzio, Mae, Nishizaki, Perlman, Zukerman). Using our match-
ing procedure, we successively determined the best matches. As
a remarkable result, the seven best matches exactly coincide with
the audio excerpts in the seven interpretations corresponding to
the measures of the query. Fig. 4 illustrates the CENS feature se-

quences of the best ten matches. Here, the best match (coinciding
with the query) is shown on the leftmost side, where the matching
rank and the respective∆-distance (1/0.011) are indicated above
the feature sequence and the position (112−140, measured in sec-
onds) within the audio file is indicated below the feature sequence.
Corresponding parameters for the other nine matches are given in
the same fashion. Note that the distance0.011 for the best match is
not exactly zero, since the query has been cut from the original au-
dio file resulting in a slight shift in the CENS features. The second
best match has a∆-distance of0.068 and corresponds to seconds
108-136 of the Lizzio interpretation. Even the excerpt of the Mae
interpretation, which significantly differs from the query in articu-
lation and global tempo and which includes additional notes, was
retrieved as seventh and last “correct” match with a∆-distance
of 0.177. The eighth best match, already having a∆-distance of
0.220, is the first “false” match corresponding to some seemingly
unrelated segment (seconds 36–56) of the Zukerman interpretation
of the third movement of Vivaldi’s “Spring”. The10th match even
corresponds to some segment of Bach’s Sinfonia No. 12, BWV798
for piano. All of these “false” matches, however, still reveal a har-
monic progression similar to the query.

4. RESULTS, CONCLUSIONS, FUTURE WORK

Further matching results of our extensive experiments are available
atwww-mmdb.iai.uni-bonn.de/projects/audiomatching.
As it turns out, our audio matching procedure performs well for
most of query examples within a wide range of classical music
proving the usefulness of our CESN features. The top matches
almost always included the “correct” ones, even in case of synthe-
sized MIDI versions and interpretations in other instrumentations.
Among the top matches, however, there generally is also a small
number of “false” matches, which may differ considerably from
the query (accidentally having a similar harmonic progression).
Here, one has to revert to other methods to automatically separate
the “correct” from the ”false” matches. This kind of postprocess-
ing, however, can then be done on a significantly reduced data set.
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