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Abstract

Colbourn (1999) developed some strategy for nonadaptive group test-
ing when the items are linearly ordered and the positives items form a
consecutive subset of all items. We improve his strategy by introducing
the concept of 2-consecutive positive detectable matrices (2CPD-matrix)
requiring that all columns and bitwise OR-sum of each two consecutive
columns are pairwise distinct. Such a matrix is called maximal if it has
a maximal possible number of columns with respect to some obvious con-
straints. Using a recursive construction we prove the existence of maximal
2CPD-matrices for any column size m ∈ N except for the case m = 3.
Furthermore, we construct maximal 2CPD-matrices where each column is
of some fixed constant weight. This leads to pooling designs, where each
item appears in the same number of pools and all pools are of the same
size.

1 Introduction

Let C = {c1, . . . , cn} a set of items and σ : C → {0, 1} a map indicating the state
of each item. An item ci is said to be positive if σ(ci) = 1, otherwise negative. In
applications such as DNA library screening (in this case, the items are clones)
one has the goal to determine the set of all positive items in C, where a method
is given to test the state of each item (e.g., by some chemical analysis). To reduce
the number of tests, one chooses a subset P ⊂ C, also denoted as group or pool,
and tests all items of P in one stroke. The state of a pool is positive if it contains
at least one positive item, otherwise negative. This strategy is known as group
testing which can be defined as the process of selecting pools and testing them
to determine exactly which items are positive [1]. A group testing procedure is
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called nonadaptive if all pools are specified a priori without knowing the state
of other pools. In this case, the complexity of the group testing algorithm is
given by the number of its pools. Note that it must be ensured by the group
testing procedure that every possible set of positive items is distinguished. Each
nonadaptive group test with n items and m pools can be represented by some
m × n-matrix H = (hji) over GF(2), which we will refer to as incidence matrix
of the group test. Here, the columns of H correspond to the items, the rows of
H correspond to the pools, and hji = 1 means that the jth pool contains the ith
item ci, 1 ≤ j ≤ m, 1 ≤ i ≤ n.

For an overview of different group testing methods and some of their applica-
tions we refer to [2]. Colbourn [1] considers the setting were the set C is equipped
with a linear order ci≺ ci+1, 1 ≤ i < n, and has the d-consecutive positive prop-
erty, i.e., the set of positive items is a consecutive set with respect to the ordering
≺ and contains at most d items. His main result can be summarized as follows.

Theorem 1.1 The complexity of nonadaptive group testing for a set C of n items
having the d-consecutive positive property is Θ(d + log2 n).

To prove the upper bound Colbourn designs a group testing algorithm which
proceeds in two steps. In the first step, he considers the general case d ≥ 2.
The n items of C are partitioned into dn/(d − 1)e linearly ordered subpools of
(d− 1) consecutive items respectively (except of the last subpool having possibly
a smaller size). By assumption, at most two of these pools, which are then con-
secutive, are positive. The items of these positive pools can be tested individually
in O(d). Treating these subpools as items the general case can thus be reduced
to the case d = 2 which is dealt with in the second step. To this means, Colbourn
constructs an m× n-matrix H = (hji) over GF(2) by adding three suitable rows
to an incidence matrix of some Gray code and possibly deleting some columns.
From this matrix H he gets a group test with m = dlog2 ne + 3 pools which
accomplishes the task for the case d = 2.

In this paper we improve the group testing method of Colbourn [1] described
above. The main idea of our construction is that in the case d = 2 one can
distinguish up to any two consecutive positive items if all columns of H as well
as all vectors arising as bitwise OR-sum of two consecutive columns of H are
pairwise distinct. We will denote such matrices as 2-consecutive positive detectable
matrices or, for short, as 2CPD-matrices. In Section 2 we prove by some recursive
construction the existence of such matrices having a maximal number of columns
for any column size m ∈ N except for the case m = 3 (Theorem 2.4). Based on
these maximal 2CPD-matrices one gets a group testing procedure for the case
d = 2 which needs m = dlog2 ne + 1 pools to test n items. If the number m of
pools is fixed, this allows a group test of up to n = 2m−1 items. This improves
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Colbourn’s construction by a factor of four with respect to the number of items
and is optimal under all possible group testing algorithms for a set C having the
2-consecutive positive property.

In view of the application it is desirable that each item has the same replication
number, i.e., it appears the same number of times in the pools. In other words,
all columns of the incidence matrix H should have some fixed constant weight.
In Section 3, we investigate 2CPD-matrices of some constant column weight r ∈
N. We give some recursive construction of such matrices having the maximal
possible number of columns for any given column size m ∈ N and weight r with
1 ≤ r ≤ bm

2
c (Theorem 3.6). We conclude with some final remarks and further

references of related problems in Section 4.

2 Construction of Maximal 2CPD-Matrices

We start with a formal definition of 2-consecutive positive detectable matrices
mentioned in the introduction. In the following, ∨ will denote the OR operation
of two bits in GF(2), i.e., 0 ∨ 0 = 0 and 0 ∨ 1 = 1 ∨ 0 = 1 ∨ 1 = 1. For vectors
over GF(2) this operation is understood componentwise.

Definition 2.1 Let H = [x1, x2, . . . , xn] be an m × n-matrix over GF(2) with
column vectors xi, 1 ≤ i ≤ n. Define yi := xi ∨ xi+1, 1 ≤ i ≤ n − 1. Then H
is called a 2-consecutive positive detectable matrix or, for short, a 2CPD-matrix
iff the list

x1, x2, . . . , xn, y1, y2, . . . , yn−1

consists of pairwise distinct vectors. Define yn := xn∨x1. Then we say a 2CPD-
matrix H is cyclic iff

x1, x2, . . . , xn, y1, y2, . . . , yn

consists of pairwise distinct vectors.

Let H be a 2CPD-matrix as in Defintion 2.1. Then, we denote by H∨ the
m× (2n−1)-matrix H∨ := [x1, y1, x2, y2, x3, . . . , xn−1, yn−1, xn]. In the cyclic case
we similarly define H ∨© := [x1, y1, x2, y2, x3, . . . , xn−1, yn−1, xn, yn]. Obviously,
from the definition follows that all vectors xi and yi are nonzero. Furthermore,
since there are 2m vectors in GF(2)m one gets 2n− 1 ≤ 2m− 1, i.e., n ≤ 2m−1. A
2CPD-matrix H is called maximal, or simply an M2CPD-matrix, iff n = 2m−1.
In this case any nonzero vector of GF(2)m appears exactly once as a column of
H∨. Therefore, any M2CPD-matrix cannot by cyclic at the same time. However,
cyclic 2CPD-matrices will play a crucial role in Section 3. In the following, let
M2CPDM(m) denote the class of M2CPD-matrices of column size m. We will
give some examples in the next lemma.
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Lemma 2.2 For convenience, we write the OR-sums in H∨ in italics.

(i) The following matrix is an M2CPD-matrix of column size m = 2:

H =

[
0 1
1 0

]
, H∨ =

[
0 1 1
1 1 0

]
.

(ii) There is no M2CPD-matrix of column size m = 3.

(iii) The following matrix is an M2CPD-matrix of column size m = 4:

H =




1 0 1 0 0 0 1 0
1 0 0 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 1 0 1 0 0 0




H∨ =




1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
1 1 0 0 0 1 1 1 0 1 1 1 0 0 0
0 1 1 1 0 0 0 0 0 1 1 1 0 1 1
0 1 1 1 1 1 0 1 1 1 0 0 0 0 0




(iv) The following matrix is an M2CPD-matrix of column size m = 5:

H =




0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1
0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0
1 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1
1 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0




Proof: One directly checks that the matrices in (i), (iii) and (iv) meet the
conditions of the definition. To show (ii), note that if there were an M2CPD-
matrix of column size m = 3 the columns x1, . . . , x4 must contain the three
vectors of weight 1 and one vector of weight 2. Then, one easily checks that any
such combination does not lead to an M2CPD-matrix. ¤

To find the M2CPD-matrices in the cases m = 4 and m = 5 we first reduced
the number of possible candidates by utilizing necessary conditions on the weight
distribution of the column vectors xi, 1 ≤ i ≤ n. (For example, all vectors
of weight 1 must obviously be among the xi’s.) Then, the M2CPD-matrices
were constructed by assembling “locally defined building blocks”. For higher
dimensions, the following theorem gives some recursive construction for M2CPD-
matrices.

Proposition 2.3 The existence of some H ∈ M2CPDM(m), m > 2, implies the
existence of some G ∈ M2CPDM(m + 2).
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Proof: Let H = [x1, x2, . . . , xn] be an M2CPD-matrix, m > 2, n = 2m−1, and
let yi = xi ∨ xi+1, 1 ≤ i ≤ n− 1. Then, we define the (m + 2)× 4n-matrix G as
follows:

G =




0 0 xn xn−1 . . . x2 x1 x1 x2 . . .
0 1 0 0 . . . 0 0 1 1 . . .
1 0 1 1 . . . 1 1 0 0 . . .

. . . xn−1 xn xn−1 . . . x2 x1 x2 . . . xn−1 xn

. . . 1 1 1 . . . 1 0 0 . . . 0 0

. . . 0 0 1 . . . 1 0 0 . . . 0 0




Since H ∈ M2CPDM(m), the 8n− 1 nonzero vectors of GF(2)m+2 can be repre-
sented by

[
0
0
1

]
,

[
0
1
0

]
,

[
0
1
1

]
,

[
xi

a
b

]
,

[
yj

a
b

]
, 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1, a, b ∈ {0, 1}.

Since G has 4n columns, it suffices to show that all of these 8n−1 vectors appear
either as a column of G or as the OR-sum of two consecutive columns of G. This
follows immediately for the vectors [xi, a, b]T , 2 ≤ i ≤ n − 1, a, b ∈ {0, 1}, and
[yj, a, b]T , 2 ≤ j ≤ n−2, a, b ∈ {0, 1}. For the remaining vectors this follows from
the following representation of the matrix G∨:

G∨ =

[
0 0 0 xn xn yn−1 xn−1 . . . x2 y1 x1 x1 x1 y1 x2 . . .
0 1 1 1 0 0 0 . . . 0 0 0 1 1 1 1 . . .
1 1 0 1 1 1 1 . . . 1 1 1 1 0 0 0 . . .

. . . xn−1 yn−1 xn yn−1 xn−1 . . . x2 y1 x1 y1 x2 . . . xn−1 yn−1 xn

. . . 1 1 1 1 1 . . . 1 1 0 0 0 . . . 0 0 0

. . . 0 0 0 1 1 . . . 1 1 0 0 0 . . . 0 0 0




¤

Note that in the case m = 2, i.e., n = 2, the columns of the matrix G∨ are
not any longer pairwise distinct. For example, the vector [yn−1, 1, 0]T appears in
this case more than once as OR-sum. Therefore, the condition m > 2 is needed
in the construction of Proposition 2.3. From Lemma 2.2 and Proposition 2.3 we
get the following result.

Theorem 2.4 There exists a maximal 2-consecutive positive detectable matrix
of any column size m ∈ N except for m = 3.
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3 2CPD-Matrices of Constant Column Weight

As mentioned in the introduction any M2CPD-matrix H of column size m de-
fines an optimal nonadaptive group testing procedure with m pools and n = 2m−1

items having the 2-consecutive positive property. In view of applications, how-
ever, M2CPD-matrices have the following two drawbacks. Firstly, the pool sizes
(weight of the rows of H) are roughly between n

3
and n

2
which is too big for most

applications. Secondly, the replication numbers of the items (weight of the cor-
responding columns of H) differ considerable among each other. For example,
in the matrix H of Lemma 2.2, (iv), the first item appears in two pools, the
second one in one pool, and the third one in three pools. This is not acceptable
for many applications where one demands some constant replication number in-
dependent of the respective item. To this means, we investigate in this section
2CPD-matrices with some constant column weight.

Let H = [x1, x2, . . . , xn] be a 2CPD-matrix of column size m where each
column xi is of weight r for some fixed 1 ≤ r ≤ m, 1 ≤ i ≤ n. In this case,
the number n of columns is obviously bounded by

(
m
r

)
. Let M2CPDM(m, r)

denote the class of 2-consecutive positive detectable matrices of column size m
and of constant column weight r having the maximal possible number of columns
n =

(
m
r

)
. The subclass of cyclic (see Definition 2.1) matrices in M2CPDM(m, r)

will be denoted by CM2CPDM(m, r). Let yi := xi ∨ xi+1, 1 ≤ i ≤ n − 1, be
defined as in Definition 2.1 and, in the cyclic case, yn := xn ∨ x1. Since the
weight of each yi is at least r + 1, one gets the following necessary condition.

Lemma 3.1 Let H ∈ M2CPDM(m, r) and n :=
(

m
r

)
be the number of columns of

H. Then n ≤ ∑m
`=r+1

(
m
`

)
+ 1. If, in addition, H is cyclic then n ≤ ∑m

`=r+1

(
m
`

)
.

The following examples will illustrate the definitions and also constitute the
starting matrices for the recursive constructions described below.

Example 3.2 We use the notation H, H∨ and H ∨© introduced in Section 2 and
write, for convenience, the OR-sums in italics.

(i) The identity matrix Idm of dimension m ∈ N is in M2CPDM(m, 1). Fur-
thermore, one has Idm ∈ CM2CPDM(m, 1) for m > 2.

(ii) The following matrix H, given in the form H∨, is in M2CPDM(4, 2):

H∨ =




1 1 1 1 0 1 1 1 0 0 0
0 1 1 1 0 0 0 1 1 1 1
1 1 0 1 1 1 0 0 0 1 1
0 0 0 1 1 1 1 1 1 1 0
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Note that there is no cyclic matrix in M2CPDM(4, 2). This follows directly
from Lemma 3.1, since n =

(
4
2

)
= 6 > 5 =

(
4
3

)
+

(
4
4

)
.

(iii) The following matrix H, given in the form H ∨©, is in CM2CPDM(5, 2):

H ∨© =




1 1 0 0 0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1
0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1
0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 1 1
0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1




(iv) The following matrix H is in CM2CPDM(6, 3):

H =




1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 0 0
1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0 1
0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1
1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 1 1 0
0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 1
0 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0




Obviously, any permutation of the row vectors of a PD-matrix leads again
to a PD-matrix. Furthermore, any cyclic shift of the column vectors of a cyclic
PD-matrix will again define a cyclic PD-matrix. Since these observations will be
useful in the later constructions, we note them down in the next lemma.

Lemma 3.3 The class CM2CPDM(m, r) is invariant under row permutations
and cyclic shifts of the column vectors. In other words, if H = [x1, x2, . . . , xn] is
in CM2CPDM(m, r), then

P · [xi, xi+1, . . . , xn, x1, . . . , xi−1]

is also in CM2CPDM(m, r) for any m ×m-permutation matrix P and any 1 ≤
i ≤ n.

It is easy to check that the necessary condition of Lemma 3.1 is fulfilled for
any r satisfying 1 ≤ r ≤ bm

2
c, m ∈ N. In the following, our goal is to give

some systematic construction of matrices in M2CPDM(m, r) for all m ∈ N and
1 ≤ r ≤ bm

2
c. We start with some simple recursive construction.

Lemma 3.4 Let A = [a1, a2, . . . , ak] ∈ M2CPDM(m, r − 1), k =
(

m
r−1

)
, and

B = [b1, b2, . . . , b`] ∈ M2CPDM(m, r), ` =
(

m
r

)
. If ak ∨ b1 6= ai ∨ ai+1 for all

1 ≤ i < k then

C :=

[
a1 a2 . . . ak−1 ak b1 b2 . . . b`−1 b`

1 1 . . . 1 1 0 0 . . . 0 0

]
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defines a matrix in M2CPDM(m+1, r). If, in addition, b`∨a1 6= ai∨ai+1 for all
1 ≤ i < k and b` ∨ a1 6= ak ∨ b1, then C is cyclic, i.e., C ∈ CM2CPDM(m + 1, r).

Proof: By the assumptions on A and B the columns of C are precisely the
vectors of weight r of GF (2)m+1. Observing the last component it follows imme-
diately that all columns of C and all OR-sums of any two consecutive columns
of C are pairwise different. In particular, for [ak ∨ b1, 1]T this follows from the
condition posed on ak ∨ b1. The additional assumption on b` ∨ a1 assures that
[b` ∨ a1, 1]T also differs from all other vectors in question. ¤

For example, the matrix (iii) of Example 3.2 has been obtained by this con-
struction using Id4 as matrix A and the matrix (ii) of Example 3.2 as matrix B.
Lemma 3.4 gives some recursive construction where the column size m increases.
However, the weight r of the columns is kept fixed. The next proposition gives
some recursive construction where r increases as well.

Proposition 3.5 Let m ∈ N be even. If there is an H ∈ M2CPDM(m, m
2
) then

there is also some G ∈ M2CPDM(m + 2, m
2

+ 1). Furthermore, if there is an
H ∈ CM2CPDM(m, m

2
) then there is also some G ∈ CM2CPDM(m + 2, m

2
+ 1).

Proof: We just consider the construction for the cyclic case which handles the
noncyclic case as well. Let H = [x1, x2, . . . , xn] ∈ CM2CPDM(m, m

2
), yi :=

xi ∨ xi+1, 1 ≤ i ≤ n − 1, and yn := xn ∨ x1. Furthermore, let a1, . . . , a` and
b1, . . . , b` the vectors in GF(2)m of weight m

2
− 1 and m

2
+ 1 respectively, where

` :=
(

m
m/2−1

)
=

(
m

m/2+1

)
. By Corollary A.2 of the appendix and by relabelling

the vectors bj suitably, we may assume that there is some permutation π ∈
Sym({1, . . . , n}) such that aj ⊂ xπ(j) ⊂ bj for 1 ≤ j ≤ `. Here, by u ⊂ v for two
vectors u, v ∈ GF(2)m we mean that the support of u is contained in the one of
v, i.e., u ∨ v = v. Note that all vectors of GF(2)m+2 of weight m

2
+ 1 appear in

the following list exactly once:



xi

1
0


 ,




xi

0
1


 , 1 ≤ i ≤ n,




aj

1
1


 ,




bj

0
0


 , 1 ≤ j ≤ `. (1)

First, we define an (m + 2)× 2n-matrix F consisting of the first 2n vectors given
in the list (1). Here, we use the fact that n =

(
m

m/2

)
is even for even m. Let

F :=




x1 x1 x2 x2 x3 x3 x4 . . . xn−2 xn−1 xn−1 xn xn

0 1 1 0 0 1 1 . . . 0 0 1 1 0
1 0 0 1 1 0 0 . . . 1 1 0 0 1


 .

Then F is obviously a cyclic 2CPD-matrix. Note that for even i the vectors
[yi, 1, 0]T and for odd i the vectors [yi, 0, 1]T do not appear as OR-sum of two

8



consecutive columns of F or the last and first column of F , 1 ≤ i ≤ n. We
now extend the matrix F by inserting the remaining column vectors of the list
(1). For any j, 1 ≤ j ≤ `, we insert the vectors [aj, 1, 1]T and [bj, 0, 0]T between
[xπ(j), 0, 1]T and [xπ(j), 1, 0]T . The vector bj might appear among the vectors yi,
1 ≤ i ≤ n. However, from the note above it follows that either [bj, 1, 0]T (Case 1)
or [bj, 0, 1]T (Case 2) does not appear as OR-sum of any two consecutive columns
of F or the last and first column of F . Suppose π(j) is even. Then we insert the
columns as follows:

Case 1:
xπ(j) bj aj xπ(j)

1 0 1 0
0 0 1 1

Case 2:
xπ(j) aj bj xπ(j)

1 1 0 0
0 1 0 1

If π(j) is odd then we proceed in a similar way. (Just reverse the order of the
columns in the above submatrices.) This defines an (m + 2) × (2n + 2`)-matrix
G consisting precisely of the vectors given in the list (1). Then the submatrix for
Case 1 together with the OR-sums of two consecutive columns are given by

Case 1:
xπ(j) bj bj bj aj xπ(j ) xπ(j)

1 1 0 1 1 1 0
0 0 0 1 1 1 1

and similarly for Case 2. From this it is not hard to show that G indeed defines
a matrix in CM2CPDM(m + 2, m

2
+ 1). ¤

From the last two recursive constructions we get the following main result of
this section.

Theorem 3.6 For any m ∈ N and any r, 1 ≤ r ≤ bm
2
c, there exists a matrix

in M2CPDM(m, r). There is also a matrix in CM2CPDM(m, r) except for the
parameters m = 2, r = 1 and m = 4, r = 2.

Proof: In the case r = 1 one has Idm ∈ M2CPDM(m, 1) for m ∈ N and
Idm ∈ CM2CPDM(m, 1) for m > 2. The matrices (ii) and (iii) of Example
3.2 settle the cases M2CPDM(4, 2) and CM2CPDM(5, 2) respectively. Thus the
claim of Theorem 3.6 is shown for m ≤ 5. The matrix (iv) of Example 3.2
settles the case CM2CPDM(6, 3). Now, using Proposition 3.5, we get matrices
in CM2CPDM(m, m

2
) for all even m ∈ N.

It remains to show the claim for all m > 5 and 1 < r < bm
2
c which will be done

by induction on m using the above cases as starting matrices. Fix such an m and
r and assume that the claim has already shown for m − 1, i.e., we may assume
the existence of some matrix A = [a1, a2, . . . , ak] ∈ CM2CPDM(m − 1, r − 1)
and B = [b1, b2, . . . , b`] ∈ CM2CPDM(m − 1, r). In case A and B satisfy the
conditions
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(i) {ak ∨ b1, b` ∨ a1} ∩ {ai ∨ ai+1 | 1 ≤ i < k} = ∅ and

(ii) b` ∨ a1 6= ak ∨ b1,

then Lemma 3.4 guarantees the existence of some matrix in CM2CPDM(m, r)
which completes the proof of Theorem 3.6 in this case.

In general, however, conditions (i) and (ii) are not fulfilled. In the following
we show that one can modify A and B so that these conditions are satisfied.
This then finishes the proof. First, we assume that A contains two consecutive
columns ai and ai+1 such that ai ∨ ai+1 has weight r, 1 ≤ i < k, or ak ∨ a1 has
weight r. Similarly, we assume that B contains two consecutive columns bj and
bj+1 such that bj ∨ bj+1 has weight r +1, 1 ≤ i < `, or b`∨ b1 has weight r +1. By
Lemma 3.3 we may permute the rows and cyclically shift the columns of A and
B to get matrices of the same classes, respectively. Therefore, we may assume
that A and B are of the following form where only the first and last columns are
indicated:

a1 ak b1 b`

A =




1
...
1



 r − 1

0
0
0
...

. . .

0

r − 1





1
...
1
0
0
...




B =




...
0
0
0
1
...
1



 r

. . .

...
0
0

r





1
...
1
0




From r < bm
2
c we get 2r ≤ m− 1. Therefore, the vectors ak ∨ b1 and b` ∨ a1 have

weight 2r − 1. Since the weights of the vectors ai ∨ ai+1, 1 ≤ i < k, are at most
2r− 2, condition (i) is fulfilled. Furthermore, ak ∨ b1 6= b` ∨ a1 and condition (ii)
holds as well.

Now, to finish the proof it suffices to show that any matrix H = [x1, . . . , xn] ∈
CM2CPDM(m, r), m ≥ 5, 1 ≤ r ≤ bm

2
c, constructed in the recursive process

described above contains at least one pair of two consecutive columns xi, xi+1,
1 ≤ i < n, or the pair xn, x1, such that the OR-sum xi ∨ xi+1 or xn ∨ x1 has
weight r + 1. We denote the number of such pairs in H by µ(H). This number
is clearly invariant under row permutations and cyclic shifts of columns of H.
For m = 5 we gave an explicit matrix in Example 3.2 (iii), for which obviously
µ(H) ≥ 2 holds. (The lower bound 2 suffices for our proof.) Furthermore, one
clearly has µ(Idm) ≥ 2 for all m > 2 and also µ(H) ≥ 2 for all matrices H in
CM2CPDM(m, m

2
), m even, m ≥ 6, constructed as described in Proposition 3.5.

Finally, it is easy to see that the matrix C constructed from A and B as described

10



in Lemma 3.4 satisfies µ(C) ≥ µ(A) + µ(B)− 2. From this follows µ(H) ≥ 2 for
all H constructed in the recursive process. ¤

Finally, note that since any matrix H ∈ M2CPDM(m, r) contains each vector
of weight r of GF(2)m exactly once, it follows that each row of H has weight
r
m
·(m

r

)
. In other words, the pool sizes of the corresponding group test all coincide.

From Theorem 3.6 we get the following corollary.

Corollary 3.7 For any m ∈ N and any r, 1 ≤ r ≤ bm
2
c, there is an optimal

group testing procedure for items having the 2-consecutive positive property with
m pools of size r

m
· (m

r

)
and n =

(
m
r

)
items, where each item appears in exactly r

pools.

4 Final Remarks

Nonadaptive group testing has motivated many problems in combinatorial design
theory. In this paper we have introduced and constructed certain classes of
2CPD-matrices which can be used in group testing procedures for items having
the d-consecutive positive property (which can be reduced, as mentioned in the
introduction, to the case d = 2). We want to emphasize that the problem, where
one does not require the positives to be consecutive, is essentially different to the
one discussed in this paper. The case, where one just assumes that the positive
items are bounded by some number d, requires that the OR-sums of any d (not
necessarily distinct) columns of the group testing incidence matrix are pairwise
distinct. This problem has lead to the concept of d-disjunctive matrices. For an
overview and further references concerning these matrices we refer the reader to
[2, 4].

As is also pointed out in [1] or [4], error correction capability of group testing
procedures is essential in view of applications such as DNA library screening.
Therefore, extending the concept of 2CPD-matrices to error correcting codes is
an ongoing research project of the authors. In general, it seems to be difficult to
find maximal 2CPD-matrices, where the columns xi and the OR-sums yi cover
all vectors of some error correcting code. For example, if one considers the code
consisting of all even weighted vectors (which is a one-error decting code) non-
existence of maximal 2CPD-matrices can be shown for all columns sizes m ≤ 8.
We note that any maximal 2CPD-matrix over such a code would also give a
solution to the dominance code problem (i.e., ordering codewords so that every
two consecutive codewords have one dominating the other) which was solved by
Sagols et. al. in [3] for m ≥ 10. It would be interesting to know whether in this
case there even exists a maximal 2CPD-matrix or not.
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Appendix

In this appendix we give some recursive construction to partition the vectors of
GF(2)m into dominating sequences of increasing weight for any m ∈ N. This
result is needed in form of Corollary A.2 in the proof of Proposition 3.5.

Let u, v ∈ GF(2)m, then we say that the vector v dominates the vector u if the
support of u is contained in the one of v, i.e., u∨v = v. In this case we also write
u ⊂ v. A sequence of pairwise different vectors S = (s1, s2, . . . , sk), si ∈ GF(2)m,
1 ≤ i ≤ k, is called an increasing dominating sequences if s1 ⊂ s2 ⊂ . . . ⊂ sk.
Obviously, the maximal length of such a sequence is k = m + 1, which contains
the vector of weight 0 as first and the vector of weight m as last element. In
the following, we identify a sequence with its underlying set of vectors. If we
remove a maximal increasing dominating sequence S from GF(2)m, any increasing
dominating sequences consisting of vectors in GF(2)m \ S has length at most
m− 1 and there are at most

(
m
1

)− (
m
0

)
= m− 1 such pairwise disjoint sequences.

Continuing the same way, one arrives at the problem if there is a partition of
GF(2)m into increasing dominating sequences such that among these sequences
there are

• one sequence of length m + 1,

• (
m
1

)− (
m
0

)
sequences of length m− 1,

• (
m
2

)− (
m
1

)
sequences of length m− 3, and, in general,

• (
m
i

)− (
m

i−1

)
sequences of length m + 1− 2i for 0 ≤ i ≤ bm

2
c.

In the following we show that there is such a partition of GF(2)m for any m ∈ N,
which will be refered to as optimal partition and denoted by Sm. Furthermore,
the subset of sequences of Sm having length m + 1 − 2i will be denoted by Sm

i ,
0 ≤ i ≤ bm

2
c. For convenience, we also set Sm

i := ∅ for all i < 0 or i > bm
2
c, i ∈ Z.

Let S = (s1, s2, . . . , sk) be an increasing dominating sequences in GF(2)m. For
notational reasons we identifiy S with an m× k-matrix having si as ith column,
1 ≤ i ≤ k. Then, we define the sequences

S− :=

[
s1 s2 . . . sk−1

1 1 . . . 1

]
and S+ :=

[
s1 s2 . . . sk−1 sk sk

0 0 . . . 0 0 1

]
.

Clearly, S− and S+ define increasing dominating sequences in GF(2)m+1. Now,
we construct an optimal partition Sm by induction on m, m ∈ N. For m = 1
an optimal partition is defined by S1 := {[01]}. Suppose we have constructed an
optimal partition Sm, then define

Sm+1
i := {S− | S ∈ Sm

i−1} ∪ {S+ | S ∈ Sm
i } for i ∈ Z.
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Note that one has Sm+1
i = ∅ for i < 0 and i > bm+1

2
c. Now, we set Sm+1 :=⋃

i∈Z Sm+1
i . It is straightforward to show that Sm+1 indeed defines an optimal

partition of GF(2)m+1 into increasing dominating sequences. One just has to
observe that in the construction of Sm+1 each vector of Sm is extended exactly
two times – one time by 0 and one time by 1. We leave the details to the reader
and give some examples instead.

m = 1 : S1
0 =

{[
01

]}

m = 2 : S2
0 =

{[
011
001

]}
S2

1 =

{[
0
1

]}

m = 3 : S3
0 =







0111
0011
0001






 S3

1 =







01
00
11


,



00
11
01








m = 4 : S4
0 =








01111
00111
00011
00001








S4
1 =








011
001
000
111


,




011
000
111
001


,




000
111
011
001








S4
2 =








0
0
1
1


,




0
1
0
1








We summarize the result in the following Theorem.

Theorem A.1 There is an optimal partition of GF(2)m into increasing domi-
nating sequences for any m ∈ N.

From Theorem A.1 we immediately obtain the following corollary, which is
used in the proof of Proposition 3.5.

Corollary A.2 Let m ∈ N be an even number. Let x1, . . . , xn denote the vec-
tors of weight m

2
in GF(2)m, n :=

(
m

m/2

)
. Similarly, let a1, . . . , a` and b1, . . . , b`

denote the vectors in GF(2)m having weight m
2
− 1 and m

2
+ 1 respectively, where

` :=
(

m
m/2−1

)
=

(
m

m/2+1

)
. Then, ` < n and there is some permutation π ∈

Sym({1, . . . , n}) and some permutation τ ∈ Sym({1, . . . , `}) such that aj ⊂
xπ(j) ⊂ bτ(j) for 1 ≤ j ≤ `.
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