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Abstract. In this paper we discuss the word normalization problem in pc pre-
sented finite supersolvable groups: given two group elements a and b in normal
form the normal form of the product a ·b is to be computed. As an alternative to
classical collection strategies we present a new DFT-based strategy, which uses
fragments of certain irreducible representations of the underlying group. This
strategy allows an explicit running time analysis. For example, in the special
case of a pc presented p-groupG of order pn one needs at most 5 ·p · n2 addi-
tions in Ze := Z/eZ for the computation of the normal form, where e denotes
the exponent ofG. Interpreting pc presentations as polynomials in multivariate
non-commutative polynomial rings we derive an algorithm for fast polynomial
division.

Keywords: Discrete Fourier transform, Word normalization, Power-commuta-
tor presentation, Supersolvable groups

1 Introduction

In this paper we are going to study word normalization problems in finite
supersolvable groups. Recall that a finite group G is said to be supersolvable
if it has a chain of subgroups

C = (G = Gn ⊃ Gn−1 ⊃ . . . ⊃ G1 ⊃ G0 = {1}), (1)

where each subgroupGi−1 is normal inG, denoted byGi−1 �G, and each fac-
torGi/Gi−1 is of prime order pi , 1 ≤ i ≤ n. Such a series is also called a chief
series of G. (Note that for solvable groups there exists a series as in (1) with
the weaker condition Gi �Gi+1, 0 ≤ i < n. Hence, each supersolvable group
is solvable. On the other hand, all abelian groups, all p-groups and all nilpotent
groups of finite order are supersolvable.) For each i ∈ [1 : n] := {1, 2, . . . , n}
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let gi be an element in Gi \ Gi−1, then G is generated by g1, . . . , gn. Even
more, each element g ∈ G has the unique expression

g = genn · gen−1
n−1 · . . . · ge1

1 (0 ≤ ei < pi), (2)

which is also referred to as the normal form of g. The multiplication in G is
completely described, if the normal forms of all powers gpii and all commutators
[gi, gj ] := g−1

i g
−1
j gigj are known. More formally, every supersolvable group

has a power-commutator presentation (pc presentation) of the form

G = 〈g1, . . . , gn | gpii = ui (1 ≤ i ≤ n), [gi, gj ] = wij (1 ≤ i < j ≤ n)〉,
(3)

with generators gi ∈ Gi \Gi−1 and words ui ∈ Gi−1 and wij ∈ Gi , all given
in normal form:

ui = g
ai,i−1

i−1 · . . . · gai,11 and wij = g
bij,i
i · . . . · gbij,11 . (4)

Conversely, every pc presentation of the form (3) defines a supersolvable group.
The pc presentation is called consistent if the resulting group has
order p1p2 . . . pn. We refer to [12] for further details.

A classical word normalization problem is the task to compute for two ele-
ments gα := gαnn · . . . · gα1

1 and gβ , both in normal form, the normal form of
their product: gγ = gα · gβ . More generally, if φ : [1 : L] → [1 : n] and
ψ : [1 : L] → Z \ {0}, then one could ask for a fast algorithm that on input
(φ, ψ) outputs the normal form of the word

gψϕ := gϕ(1)
ψ(1) · gϕ(2) ψ(2) · . . . · gϕ(L) ψ(L). (5)

Even more general is the task to compute the normal form of a regular expres-
sion in the generators like ((g23

1 ·g5
6 ·g9

3)
−35 ·((g12

4 ·g2
6)

42 ·(g4
3 ·g5

4)
19)−33)14 or of

a group element defined by a straightline program, see, e.g., [3]. There are also
word normalization problems in disguise. One example, studied in Section 3,
is the computation of the orders of the generators.

Classical strategies for solving word normalization problems of the form
gγ = gα · gβ involve various kinds of collection processes (see, e.g., [12]) or
Hall polynomials combined with interpolation techniques (see, e.g., [13]). To
the best of our knowledge, there is no strategy that is always superior to all
other strategies. Furthermore, the only known upper bounds for the number of
arithmetic operations needed to compute the normal form are exponential in
the input size.

For the class of pc presented finite supersolvable groups, we propose a new
DFT-based word normalization strategy, which principally differs from classical
collection strategies used in computer algebra system such as GAP or MAGMA.
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To determine the normal form, we use certain fragments of irreducible repre-
sentations of the underlying group which are computed in a preprocessing step.
Our DFT-based strategy has the following advantages over classical strategies:

• It allows an explicit running time analysis. The upper bound for the number
of operations needed in the normal form computation is roughly linear in
the length of the word to be normalized, and quadratic in the length n of the
chief series C of G.

• It works efficiently even in the case of normalizing regular expressions. The
crucial point is that such a regular expression has not to be resolved in order
to compute the normal form.

Before we explain the basic idea of our approach, we briefly recall some
facts from representation theory (see [4, 11]). Let G denote a finite group of
order N . The vector space CG := {a|a : G → C} of all complex valued func-
tions on G with multiplication (ab)(x) := ∑

g∈G a(g)b(g
−1x) for a, b ∈ CG

and all x ∈ G defines an associative algebra, the so-called group algebra of
G. By Wedderburn’s Theorem, the group algebra CG (the signal domain) is
isomorphic to an algebra of block diagonal matrices (the spectral domain):

D = ⊕h
k=1Dk : CG −→ ⊕h

k=1C
dk×dk . (6)

Here, the number h of blocks equals the number of conjugacy classes ofG and
the projectionsD1, . . . , Dh, also denoted by Irr(G), form a transversal of irre-
ducible matrix representations of CG. Every suchD is called a discrete Fourier
transform (DFT) ofG. One can show thatD is determined up to the ordering of
the h blocks and the choice of basis in each of these blocks. For supersolvable
groups G, Baum and Clausen [1] have designed an efficient algorithm, in the
following also denoted as BC-Algorithm, to compute a very special DFT D

of G: all representing matrices D(gi) on the generators gi , 1 ≤ i ≤ n, are
monomial having only e-th roots of unity as non-zero entries. Here e denotes
the exponent of G, which is the least common multiple of the orders of the
elements of G. This allows very efficient computations in the spectral domain.
Furthermore, since all matrix operations in the spectral domain will be multi-
plications or inversions, one can compute purely symbolically in the additive
group Ze := Z/eZ.

There are many examples, where computations can be speeded up using
DFT-based methods. The most prominent example is polynomial multiplica-
tion or cyclic convolution which amounts to multiplication in the group algebra
CCN , where CN denotes the cyclic group of order N . Here the correspond-
ing DFT can be used to transfer the problem from the signal to the spectral
domain, where convolution reduces to pointwise multiplication. Another more
algebraic example is the efficient DFT-based computation of character tables
of p-groups, see [14].

To explain the main idea of our DFT-based normalization algorithm we
consider the problem of computing the normal form of the product a · b, where



216 M. Müller, M. Clausen

a, b ∈ G. Intuitively, we translate the problem by means of a suitable DFT
D into the spectral domain: D(a · b) = D(a) · D(b). Here, the multiplica-
tion can be done efficiently. The translation of the product back into the signal
domain, which is in this case simply the group, can be done by using only frag-
ments of certain irreducible matrix representations – one for each generator gi ,
1 ≤ i ≤ n. As a special case of our normalization algorithm, we obtain the
following:

Corollary 1.1 Let G be a pc presented p-group of order pn and exponent e,
with corresponding chief series C. Then, given (suitable parts of) a C-adapted
DFT, normalization of the product of two normal words inG can be done with
at most 5 · p · n2 additions in Ze.

The rest of this paper is organized as follows. In Section 2, we introduce
some notation and sketch the main ideas of the BC-Algorithm. Section 3 dis-
cusses some basic properties of e-monomial matrices and explains how to com-
pute efficiently the orders of the generators from parts of the DFT-informa-
tion. In Section 4, we describe our DFT-based word normalization procedure,
referred to as the WN-Algorithm, and give a detailed complexity analysis. Sec-
tion 5 gives some implementation details and running times. As an application,
we discuss in Section 6 how pc presentations can be interpreted as certain
Gröbner bases in non-commutative polynomial rings. In this context, the WN-
Algorithm can be used for fast polynomial division.

2 BC-Algorithm

We assume that the reader is familiar with the basic notions and facts from rep-
resentation theory (see, e.g., [11] as a standard reference). In the following, we
briefly recall the main ideas of the BC-Algorithm thereby we fix the notation
and describe a memory efficient data structure to store the DFT data. For a more
detailed account, the reader is referred to [1, 4, 10].

For the rest of this section, let G denote a finite supersolvable group. The
BC-Algorithm, which requires as input a consistent pc presentation of G, is
based on the following version of Clifford’s Theorem:

Theorem 2.1 (Clifford’s Theorem) Let G and C be as above. Given an irre-
ducible representation F of CGi−1, 0 < i ≤ n, one of the following two cases
holds:

(1) F extends to pi pairwise inequivalent irreducible representations
D0, . . . , Dpi−1 of CGi of degree deg(F ). Moreover, if χ0, χ1, . . . , χpi−1

are the linear characters of the cyclic group Gi/Gi−1 in a suitable order,
we have Dk = χk ⊗D0.
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(2) The induction of F to CGi is an irreducible representation of degree
pi · deg(F ).

Up to equivalence, all irreducible representations of CGi can be obtained in
this way.

This allows us to construct the irreducible representations ofG iteratively in
a bottom-up fashion along the chief series C. Analogously to G, define Irr(Gi)

for the subgroupsGi . Then, at each level i, 1 ≤ i ≤ n, a set Irr(Gi) is computed
from Irr(Gi−1). In view of the efficiency the main point is that the BC-Algo-
rithm does not construct a transversal Irr(Gi) arbitrarily but a very special
set of representations with the following properties: firstly, the representations
F ∈ Irr(Gi) are “optimally” adapted to the chief series Ci := (Gi ⊃ Gi−1 ⊃
. . . ⊃ G0 = {1}) of Gi in the sense that the restriction F↓G� of F to any sub-
group G�, 1 ≤ � < i, is not only equivalent – as stated in Clifford’s Theorem
– but even equal to the direct sum of representations of Irr(G�). Furthermore,
equivalent irreducible constituents are equal. This property is referred to as
Ci-adaptivity of F and ensures that all data already computed up to level i − 1
can be used without modification for the construction in the following levels
i, . . . , n. A transversal of Ci-adapted irreducible matrix representations of CGi

will be denoted by Irr(Gi, Ci). Secondly, for the class of supersolvable groups
every Ci-adapted representation F is automatically monomial, i.e., all matrices
F(g), g ∈ Gi , are monomial having exactly one non-zero entry in each column
and row. (This gives an alternative proof of the fact that supersolvable groups
are M-groups, see, e.g., [11], Section 8.5.) Thirdly, all non-zero matrix entries of
F(g) are e-th roots of unity, where e denotes the exponent ofG (such matrices
will be called e-monomial). Since all matrix manipulations of the BC-Algo-
rithm are matrix multiplications and inversions the arithmetic operations can
be done purely symbolically in the additive group Ze, i.e., thus the algorithm
never runs into numerical problems. We summarize the result in the following
theorem, whose proof can be found in [4].

Theorem 2.2 Let G be a finite supersolvable group of order N with exponent
e and chief series C. Then the BC-Algorithm constructs from a consistent pc
presentation ofG a transversal Irr(G, C) of e-monomial C-adapted irreducible
representations with O(N logN) operations in the additive group Ze.

The output data of the BC-Algorithm can be realized by a compact data
structure denoted by DS(G). Each e-monomial matrix A ∈ C

m×m can be
written as

A = α · diag(ωa1, . . . , ωam) (7)

with a permutation α ∈ Sm and non-trivial coefficients ωa1, . . . , ωam , where
ω := exp(2π

√−1/e). (Actually, the BC-Algorithm works with any primitive
e-th root of unity ω.) The permutation α ∈ Sm is interpreted as permutation
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F(g   )i-1 F (g   )1 i-1  p-1F   (g   )i-1 

D(g )i

i-1F(g   )

D (g )  p-1D   (g )i iD(g )= D (g )i  i 0 1

Case  1 Case  2

Fig. 1. Local structure of DS(G) around D, where p := pi

matrix, whose j -th column has entry 1 at position α(j), 1 ≤ j ≤ m. Therefore,
A can be described by the 2m positive integersα(1), . . . , α(m) and a1, . . . , am,
which are all bounded by N . In view of the implementation we assume that
these integers as well as all pointers can each be stored in a 32-bit word or
double.

The BC-Algorithm computes Irr(G, C), where each representation D ∈
Irr(G, C) is given by its representing e-monomial matrices D(g1), . . . , D(gn)

on the generators of the pc presentation ofG. Using Eq. (7) one can easily show
that this leads to a memory requirement of 2N logN doubles. Using the C-
adaptivity one can do even better. To this means we introduce the C-character
graph of G, which consists of n + 1 levels. Each node of level i, 0 ≤ i ≤ n,
corresponds uniquely to a representation D ∈ Irr(Gi, Ci) (which in turn cor-
responds to an irreducible character). Edges do exist at most between nodes
of adjacent levels. More precisely, there is an edge between D ∈ Irr(Gi, Ci)
and F ∈ Irr(Gi−1, Ci−1) iff D restricted to Gi−1 contains F as a direct sum-
mand. (As an example, Figure 2 shows the character graph of G128 given by
Eq. (9).) In order to store Irr(G, C), it suffices to store the character graph of
G, where we need a pointer for each edge, and for each node corresponding
to D ∈ Irr(Gi, Ci) we store the e-monomial matrix D(gi) given by 2deg(D)
integers. Based on Clifford’s Theorem, Figure 1 shows the local structure of
DS(G) around D.

In Case 1 it follows again by Clifford’s Theorem (using the notation of The-
orem 2.1) thatDk(gi) = χk(giGi−1)D0(gi) for 1 ≤ k < p. Therefore it suffices
to store the matrix D0(gi) and, for 1 ≤ k < p, just the integers χk(giGi−1)

and a pointer to D0(gi). A straightforward analysis of DS(G) leads to the
following result (see [10]):

Lemma 2.3 The data structure DS(G) for a finite supersolvable group G
requires at most 12N doubles for all pointers and integers.

3 e-Monomial Matrices

In this section, we summarize basic properties of e-monomial matrices which
will be needed in the analysis of the WN-Algorithm. Furthermore, we prove a
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formula for the order of an e-monomial matrix which will be exploited as an
important first step in the word normalization.

3.1 Basic Properties

As in (7), letA = α diag(ωa1, . . . , ωaN ) andB = β diag(ωb1, . . . , ωbN ) denote
e-monomial matrices of dimension N ∈ N with permutations α, β ∈ SN and
ω := exp(2π

√−1/N). Then it is easily checked that

β−1diag(a1, . . . , aN)β = diag(aβ(1), . . . , aβ(N)). (8)

From this follows the next lemma which tells us how to compute with e-mono-
mial matrices.

Lemma 3.1 Let A and B be e-monomial matrices as above and let Am :=
(α(m), am) for 1 ≤ m ≤ N . Then the following holds:

(A−1)m = (α−1(m), (−a(α−1(m))mod e),

(AB)m = (α(β(m)), (aβ(m) + bm)mod e),

(Ar)m = (αr(m), (aαr−1(m) + . . .+ aα(m) + am)mod e).

The formula for the multiplication of two matrices can easily be general-
ized toLmatrices,L ∈ N. Conducting the multiplication from right to left, one
obtains the following lemma.

Lemma 3.2 Let A1, . . . , AL ∈ GL(N,C) be e-monomial matrices and let
m ∈ {1, . . . , N}. Then (A1 · . . . · AL−1 · AL)m can be computed with L − 1
additions in Ze.

The next lemma tells us, how to compute (Ar)m efficiently for r � N

using the binary method, where only additions (and no multiplications) in Ze

are used.

Lemma 3.3 Let A = α diag(ωa1, . . . , ωaN ) and r ∈ N. Assume that m ∈
{1, . . . , N} lies in a cycle of α of length M , 1 ≤ M ≤ N . Then (Ar)m can be
computed with at most r − 1 or, if r ≥ M , with at most 2
log(r div M)� +M

additions in Ze.

Proof. The upper bound r − 1 follows from Lemma 3.2. If r ≥ M write
r = s ·M+ t with 0 ≤ t < M . Let σi := aαi(m),�k := ∑k

i=0 σi , and�−1 := 0.
As αM(m) = m, we obtain σi = σi+M and thus

(Ar)m = (αr(m),�r−1 mod e) = (αt (m),�t−1 + s ·�M−1 mod e).
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Hence �r−1 mod e can be computed with M + 2
log s� additions in Ze as
follows.

(i) Compute �t−1 mod e with t − 1 additions in Ze.
(ii) Compute �M−1 = �t−1 + (�M−1 − �t−1)mod e with M − t additions

in Ze.
(iii) Compute s · �M−1 mod e with the binary method with at most 2
log s�

additions in Ze.
(iv) Compute�r−1 mod e = (�t−1 mod e)+(s ·�M−1 mod e)mod ewith one

addition in Ze.

From this follows the other upper bound. In (iii) the product s ·�M−1 mod e in
Ze was computed by additions in Ze to avoid multiplications in Ze. ��

3.2 The Order of Generators and e-Monomial Matrices

Given a consistent pc presentation, one might ask for the orders ord(gi) of the
generators gi . (By the way, we need this information in the next section to obtain
faster algorithms.) As gi ∈ Gi \Gi−1, pi divides the order of gi . More precisely,
we have, ord(gi) = pi · ord(gpii ). Next we could look at gpii ∈ Gi−1 which is
known in normal form, gpii = ui . From this normal form we can easily com-
pute the smallest j such that gpii ∈ Gj . If j = 0, then ui = 1 and we are done.
Otherwise, we run into a word normalization problem, for we have to compute
the canonical form of u

pj
i in order to obtain ord(gi) = pi · pj · ord(u

pj
i ), and

so on.
With the help of our DFT-data, the computation of the orders of the genera-

tors becomes quite easy. From the BC-algorithm we know, for each i, the matri-
ces Di,0(gi), . . . , Di,hi−1(gi). As the DFT for Gi is an isomorphism, the order
of gi equals the order of the block diagonal matrixDi,0(gi)⊕ . . .⊕Di,hi−1(gi),
which in turn is the lowest common multiple of the orders of the e-monomial
matrices Di,s(gi), s ∈ [0 : hi − 1]. So to solve our problem, we need to deter-
mine the orders of e-monomial matrices.

We are going to compute the order of the e-monomial matrix
A = α diag(ε1, . . . , εN) setting εj := ωaj for 1 ≤ j ≤ N . Suppose α consists
of k cycles of length �1, . . . , �k and let Cκ denote the set of all elements in the
κ-th cycle ofα. E.g., ifα = (a . . . b)(c . . . d) . . . (y . . . z) thenC1 = {a, . . . , b},
C2 = {c, . . . , d} and Ck = {y, . . . , z}. It is well-known that

ord(π) = lcm(�1, . . . , �k).

For κ ∈ [1 : k] let

λκ :=



∏

j∈Cκ
εj





ord(π)/�κ

and mκ :=



∑

j∈Cκ
aj



 · (ord(π)/�κ)mod e.
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Lemma 3.4 Keeping the above notation, the following holds:

(1) ord(A) = ord(α) · lcm(ord(λ1), . . . , ord(λk)).
(2) ord(λκ) = e/ gcd(e,mκ), for each κ ∈ [1 : k].

Proof. Our claim follows immediately from the well-known fact that for a
group element g of order m and a positive integer r the order of gr equals
m/ gcd(m, r). This fact should be combined with the formula

Ar = αrdiag




r−1∏

ρ=1

εαρ−1(1), . . . ,

r−1∏

ρ=1

εαρ−1(N)





whose validity follows from Lemma 3.1. ��

4 DFT-based Word Normalization

In this section, we describe a DFT-based strategy for the word normalization
problem in a pc presentated finite supersolvable groupG of exponent e, whose
presentation defines a chief series C. We fix the primitive e-th root of unity
ω := exp(2π

√−1/e). Using the notation from Section 2, we are going to
normalize gψϕ = g

ψ(1)
ϕ(1) · . . . · gψ(L)ϕ(L) , see (5). There are two trivial preprocessing

steps: first of all, by summing up exponents one can assume ϕ(�) �= ϕ(�+ 1)
for 1 ≤ � < L. Secondly, according to the last section, we know the orders of
the generators. Thus we can replace each ψ(�) by (ψ(�)mod ord(gϕ(�))), for
1 ≤ � ≤ L.

Suppose gψϕ has normal form genn · . . . ·ge1
1 . Our task is to compute the expo-

nents en, . . . , e1. A general strategy could proceed as follows. To compute en
switch to the factor group G/Gn−1. Then

g

∑
�:ϕ(�)=n ψ(�)

n Gn−1 = gψϕ Gn−1 = genn Gn−1,

hence en = ∑
�:ϕ(�)=n ψ(�) mod pn. Next consider wn−1 := g−en

n gψϕ which is
equal togen−1

n−1·. . .·ge1
1 ∈ Gn−1.Althoughwn−1 is an element ofGn−1, it is given as

a word in possibly all generators. Taken this into account, we switch toG/Gn−2

and have to extract from the equation wn−1Gn−2 = g
en−1
n−1Gn−2 the exponent

en−1. Inductively, suppose we already know the exponents en, . . . , ei+1, for
some i ≥ 1. Then define wi := g

−ei+1
i+1 · . . . · g−en

n gψϕ = g
ei
i · . . . · ge1

1 ∈ Gi .
The task is to extract from wiGi−1 = g

ei
i Gi−1 the exponent ei . The goal of

this section is to show, how this extraction can be done efficiently using partial
information about the C-adapted DFT of G.

The BC-Algorithm enumerates the Ci-adapted irreducible representations
ofGi in a specific way. For each i,Di,0 is the trivial representation, whereasDi,1

is the one-dimensional representation with kernelGi−1 specified byDi,1(gi) =
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�i := exp(2π
√−1/pi). For each i let Dn,νi be the first irreducible representa-

tion ofGwith the property that its restriction toGi containsDi,1. From Clifford
Theory (see, e.g., [7]) we know that in this case Dn,νi↓Gi is a direct sum of
one-dimensional representations, among them alsoDi,1. Let µi be the minimal
m such that the m-th constituent of Dn,νi↓Gi equals Di,1. We remark that both
νi and µi can easily be extracted from DS(G).

Now we are prepared to present our DFT-based normalization procedure.
In a preprocessing phase, the data structure DS(G) as well as the orders of the
generators for a pc presented finite supersolvable group have been precomputed.

WN-Algorithm: Word Normalization via DFT
Input: (ϕ, ψ) /* this describes the word gψϕ = g

ψ(1)
ϕ(1) · . . . · gψ(L)ϕ(L) .

Output: (e1, . . . , en) /* genn · . . . · ge1
1 is the normal form of gψϕ */

(1) en := ∑
�:ϕ(�)=n ψ(�)mod pn

(2) for i = n− 1 downto 1 do
(3) Compute the µi-th entry �xii of the diagonal matrix

D(wi) = D(g−1
i+1)

ei+1 · . . . ·D(g−1
n )

en ·D(gϕ(1))ψ(1) · . . . ·D(gϕ(L))ψ(L),
where D := Dn,νi .

(4) ei := xi mod pi
(5) endfor

Theorem 4.1 The WN-algorithm is correct.

Proof. We have already seen that line (1) correctly computes en. Now let i ∈
[1 : n−1] and suppose that en, . . . , ei+1 have already been computed correctly
by the WN-algorithm.

By definition of νi and µi , line (3) computes Di,1(wi) = Di,1(gi)
ei · . . . ·

Di,1(g1)
e1 = Di,1(gi)

ei = �
ei
i , since all gj , j < i, are in the kernel of Di,1. ��

Example 4.2 We illustrate the WN-Algorithm by means of the group G128 of
order 128 given by the following pc presentation (trivial commutator relations
are omitted):

G128 = 〈g7, g6, g5, g4, g3, g2, g1|g2
1 = g2

2 = g2
4 = g2

5 = g2
6 = 1, g2

3 = g1, g
2
7 = g4,

[g2, g6] = [g2, g7] = [g3, g4] = [g3, g5] = [g3, g6] = g1, [g3, g7] = g2, (9)

[g4, g5] = g2 · g1, [g4, g6] = g3 · g1, [g5, g7] = g3, [g6, g7] = g5〉



DFT-based word normalization in finite supersolvable groups 223

D2,1

1111211112 4 4 4 4 4

7

6

5
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3

2

1

0

4 4

7,11

s/d
D = D

D5,9

Fig. 2. The character graph of G128

The character graph ofG128, which can be regarded as the “skeleton” of the data
structure DS(G), is shown in Figure 2. The representations Di,1, i ∈ [1 : 7],
are marked by a circle, and the corresponding representationsD7,νi ofG = G7

are marked by a square. For example, for i = 2 we obtain ν2 = 11, and the
restriction of D := D7,11 to G2 equals the 4-fold direct sum of D2,1. Hence, in
this case, µ2 = 1. Each non-trivial entry of D(w2) equals D2,1(w2).

In the analysis of the WN-Algorithm we need the following entity

C(ϕ,ψ) := L+
L∑

�=1


log(ψ(�))�. (10)

C(ϕ,ψ) describes roughly the binary description lengths of all exponents of
the word gψϕ . Then one has the following upper complexity bounds for the
WN-Algorithm.

Theorem 4.3 Let G be a finite pc presented supersolvable group with chief
series C of length n, exponent e and maximal prime factor pmax. Furthermore,
let (suitable parts) of DS(G) and all inverse matrices be given (computed in
a preprocessing step by the BC-Algorithm and stored with (O(|G|) memory
requirement). Let dmax := maxD∈Irr(G,C)(deg(D)) and let A(ϕ,ψ) denote the
number of additions in Ze needed by the WN-Algorithm to compute the nor-
mal form of a word w = gψϕ . Then one has the following worst case upper
complexity bounds:

A(ϕ,ψ) ≤ 2n ·
L∑

�=1

|ψ(�)| + n2(pmax − 1) (11)

and the in general better bound
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A(ϕ,ψ) ≤ 2n · C(ϕ,ψ)+ n2 · (log(pmax)+ min(pmax, dmax)+ 1)

+2n ·
L∑

�=1

min(|ψ(�)|, dmax). (12)

Proof. In the proof of the upper bound (11) the binary method is not applied,
whereas in the proof the upper bound (12) the binary method is used. Fur-
thermore, we only count additions in Ze and assume that table look-ups are
free of cost. (Actually, the number of table look-ups is of the same order as
the number of additions in Ze.) Using the notation as in the description of the
WN-Algorithm, in the i-th step, 1 ≤ i ≤ n, we have to compute m-th entry of
the product

D(wi) = D(g−1
i+1)

ei+1 · . . . ·D(g−1
n )

en ·D(gϕ(1))ψ(1) · . . . ·D(gϕ(L))ψ(L),
(13)

where m := µi and D := Dn,νi . Only the data from DS(G) and the inverse
matrices are available.

• Since D ↓ Gi−1 is trivial, the factors of the form D(gj )
r , r ∈ Z, 1 ≤ j < i,

are free of charge.
• The matrices D(gj ), i ≤ j < n, are not given explicitly in DS(G). D(gj )

is a block-diagonal matrix with blocks F(gj ) for suitable representations
F ∈ Irr(Gj , Cj ) of same degree deg(F ). In DS(G) the matrices F(gj ) are
given up to a constant factor c ∈ C (which is an e-th root of unity). The
computation of a non-trivial entry of a factor of the form D(gj )

r , r ∈ N,
i ≤ j < n, can be reduced without additional cost to computing a non-trivial
entry of Fk(gj )r for some suitable Fk among the representations F of the
block structure. (This Fk can be read off the character graph which is part of
DS(G) without cost.) In the data structure DS(G) the representation Fk is
given up to a constant c, which is a primitive e-th root of unity. (Fk = c ·F0;
see the discussion before Lemma 2.3.) Considering that this factor c leads to
an additional cost of min(r − 1,M) additions in Ze, it follows from Lemma
3.3 that a non-trivial entry of Fk(gj )r (and, therefore, also one of D(gj )r )
can be computed with

min
(
2r − 1, 2
log(r div M)� + 2M

)
(14)

additions in Ze with someM ≤ deg(F ). Therefore, the number of necessary
additions in Ze is also bounded by

2
log(r div M)� + min(2r − 1, 2M). (15)

• For factors of the form D(gj )
r with negative r ∈ Z<0, we use the inverse

matrices computed in the preprocessing step and proceed as above.
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Now, we prove upper bound (11) for A(ϕ,ψ). Let A(i) denote the number
of additions in Ze needed to compute the m-th entry of D(wi) in the i-th step.
The product in (13) has n− i+L factors. By Lemma 3.2 and the bound 2r − 1
in (14) one obtains

A(i) ≤ n− i + L− 1 +
n∑

�=i+1

(2e� − 1)+
L∑

�=1

(2|ψ(�)| − 1).

Setting pmax := max1≤i≤n(pi) and noting that e� ≤ pmax − 1, one obtains an
upper bound for A(ϕ,ψ) by summing over the steps i = 1, . . . , n:

A(ϕ,ψ) =
n∑

i=1

A(i)

≤ n(n− 1)

2
+ n · L− n+ n(n− 1)

2
(2(pmax − 1)− 1)

+n ·
L∑

�=1

(2|ψ(�)| − 1)

= n(n− 1)(pmax − 1)− n+ 2n ·
L∑

�=1

|ψ(�)|

≤ 2n ·
L∑

�=1

|ψ(�)| + n2(pmax − 1).

Now, we prove the upper bound (12) for A(ϕ,ψ). Noting that the cycle
length M is bounded by dmax := maxD∈Irr(G,C)(deg(D)) and log(|r| divM) is
bounded by log |r|, we obtain from Lemma 3.2 and (15)

A(i) ≤ n− i + L− 1 +
n∑

�=i+1

(
2
log e�� + min(2e� − 1, 2dmax)

)

+
L∑

�=1

(
2
log |ψ(�)|� + min(2|ψ(�)| − 1, 2dmax)

)
.

Using e� ≤ pmax−1 and
∑L

�=1
log(|ψ(�)|)� = C(ϕ,ψ)−L, which follows
from the definition (10) of C(ϕ,ψ), we obtain

A(i) ≤ n− i + L− 1 +
n∑

�=i+1

(
2
log(pmax − 1)� + min(2pmax − 3, 2dmax)

)

+2 · C(ϕ,ψ)− 2 · L+
L∑

�=1

(
min(2|ψ(�)| − 1, 2dmax)

)

= n− i + L− 1 + 2 · (n− i)
(

log(pmax − 1)�+min(pmax − 1, dmax)

)

+2 · C(ϕ,ψ)− 2 · L+ 2 ·
L∑

�=1

(
min(|ψ(�)|, dmax)

)
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≤ 2 · (n− i)
(

log(pmax)+ min(pmax, dmax)+ 1
)

+ 2 · C(ϕ,ψ)− L+ 2 ·
L∑

�=1

min(|ψ(�)|, dmax).

Altogether on gets the following bound for A(ϕ,ψ):

A(ϕ,ψ) =
n∑

i=1

A(i)

≤ 2 · n(n− 1)

2
· (

log(pmax)+ min(pmax, dmax)+ 1
)

+ 2n · C(ϕ,ψ)− n · L+ 2n ·
L∑

�=1

min(|ψ(�)|, dmax)

≤ 2n · C(ϕ,ψ)+ n2 · (
log(pmax)+ min(pmax, dmax)+ 1

)

+ 2n ·
L∑

�=1

min(|ψ(�)|, dmax).

��
For most groups these upper bounds are only very rough. For example, if the

maximal prime factor pmax and the maximal degree dmax are small compared
to |G| und C(ϕ,ψ), the running time is essentially n ·C(ϕ,ψ) up to a constant
factor. As special case of Theorem 4.3 we get Corollary 1.1 and the following
result:

Corollary 4.4 LetG be a pc presentedp-group of orderpn. Under the assump-
tions of Theorem 4.3 the following holds:

(1) The normal form of the product of elements inG given in normal form can
be computed with 5 · p · n2 additions in Ze.

(2) The normal form of the inverse of an element in G given in normal form
can be computed with 3 · p · n2 additions in Ze.

Proof. Let a, b be words in normal form, then all exponents of w = a · b are
bounded by (p−1) andL is bounded by 2 ·n. Hence, claim (1) follows directly
from the first upper bound of Theorem 4.3. Let g = genn · . . . · ge1

1 be given in
normal form, then the inverse is given by g−1 = g

−e1
1 · . . . · g−en

n . Claim (2)
follows also from the first upper bound of Theorem 4.3. ��

There is still place for improvements and generalization of the WN-Al-
gorithm. Note that not all irreducible representations of Irr(G, C) are actually
needed, so that in the preprocessing step one can restrict on the computation of
the necessary representations. Furthermore, the WN-Algorithm works in the
same way for any regular expression in the generators g1, . . . , gn of G.
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5 Implementation

The WN-Algorithm has been implemented in the programming language
C/C++. Numerous tests have been conducted using an Intel Pentium III, 700
MHz with 128 MB RAM. In the following tables all running times are measured
in milliseconds.

Table 1 illustrates the running time behaviour of the WN-Algorithm for
fixed words but various group sizes |G| with chief series C of different length n.
We used as groupsm-fold direct products of the symmetric group S3 for increas-
ingm. The forth column t(DFT) represents the running time of the preprocess-
ing step computing the DS(G) by the BC-Algorithm. Columns five to seven
show the running times t (w(j)) needed to normalize the words w(j) = g

ψ(j)

ϕ(j) ,
j = 1, 2, 3. The last row shows the entityC(ϕ(j), ψ(j)). The wordsw(j)were
generated by some random functions ϕ andψ , equally distributed in [1 : n] and
[1 : 6] respectively. (Note that e = 6 is the exponent of all groupsG = (S3)

m).)
Looking at the columns of the table, one recognizes that the running times

are roughly linear in n. From the rows of the table follows that the running times
are also about linear in C(ϕ,ψ). In other words, the running time behaviour of
the implementation of WN-Algorithm can be roughly decribed by n ·C(ϕ,ψ).
This corresponds to the second upper bound of Theorem 4.3 since the remaining
summands are neglectable for smallpmax and dmax and independent ofC(ϕ,ψ).

To test the implementation on more complex groups, we have generated a
library of several thousands of consistent pc presentations defining supersolv-
able groups of various orders up to 107 using the computer algebra system GAP
[6]. In Table 2, LibN(k) denotes the k-th pc presentation of our library defining
a groupG of orderN and Syl2(S16) is a 2-Sylow group of the symmetric group
S16. Again one recognizes that the running time of the WN-Algorithm does not
depend on the group order |G|, but on the length n of the chief series corre-
sponding to the hight of the character graph. For example, the running times for
the group G = Syl2(S16) (n = 15) are about three times the ones of the group

Table 1. Running times depending on n

G |G| n t (DFT) t (w(1)) t (w(2)) t (w(3))

(S3) 6 2 < 1 17 133 951
(S3)

2 36 4 < 1 30 218 1808
(S3)

3 216 6 < 1 55 301 2846
(S3)

4 1296 8 1 56 436 4040
(S3)

5 7776 10 17 92 558 5454
(S3)

6 46656 12 82 103 692 6897
(S3)

7 279936 14 281 128 856 8499
(S3)

8 679616 16 1370 100 1035 10283
(S3)

9 10077696 18 5124 120 1225 12183
(S3)

10 60466176 20 22186 252 1464 14386

C(ϕ,ψ) 2.2 · 104 2.2 · 105 2.2 · 106
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Table 2. Running times for different groups

G |G| n t (DFT) t (w(1)) t (w(2)) t (w(3)) t (w(4)) t (w(5))

Lib1024(1) 1024 10 4 7 76 481 4670 46690
Lib2187(1) 2187 7 2 2 46 320 3015 29065
Lib7560(1) 7560 8 119 4 50 371 3810 36336
Lib7560(54) 7560 8 6 3 54 373 3439 34420
Lib7776(1) 7776 10 21 8 72 470 4609 45380
Lib15625(35) 15625 6 6 2 31 274 2470 23411
Lib16000(1) 16000 10 77 6 69 472 4521 45229
Lib22287(1) 22287 4 96 1 25 196 1695 15905
Lib23940(1) 23940 7 113 5 41 317 2975 28340
Syl2(S16) 32768 15 146 12 120 830 8299 82611
Lib42875(1) 42875 6 55 3 38 274 2570 24335
Lib179894(3) 179894 5 260 1 31 237 2185 20380

C(ϕ,ψ) 103 104 105 106 107

G = Lib42875(1) (n = 6) and two times the ones of G = Lib7560(1) (n = 8).
The words being used in these examples have ψ(�) = 1 for all 1 ≤ � ≤ L(w),
i.e., C(ϕ,ψ) = L.

We compared the running times of the WN-Algorithm with the running
times of a GAP-routine which computes the word normalization using the col-
lection strategies described in [12]. See also [8] or [15] for further details.As for
the WN-Algorithm the running time of the GAP-routine was also about linear
in the complexity C(ϕ,ψ) and did not essentially depend on the group size
|G|. However, there was one striking qualitative difference in the running time
behaviour: in contrast to the WN-Algorithm the running time of the GAP-rou-
tine did not depend onn but on the complexity of the pc presentation defining the
group G, i.e., the number and sizes of the non-trivial coefficients ai,� und bij,�
in the pc presentation (see (3) and (4)). These experimental results reflect that
our DFT-based strategy for the word normalization and conventional collecting
strategies are based on different principles. However, recall that the WN-Algo-
rithm needs some preprocessing step to compute the irreducibe representations
and memory capacity linear in the group order |G| to store DS(G).

6 Multivariate Polynomial Division

For a finite pc presented group G the group algebra CG can be identified with
the quotient of a non-commutative polynomial ring modulo a suitable ideal
IG. Choosing a certain monomial ordering, the pc presentation of G defines a
reduced Göbner basis of IG. In this case, polynomial division modulo IG can be
done via word normlization by means of the WN-Algorithm. In the following
we go into some more detail.

The foundations of the theory of non-commutative Gröbner bases was
already laid down by Bergman [2]. For a detailed treatment of this theory
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we refer to [9]. Let C〈X〉 = C〈Xn, . . . , X1〉 denote the non-commutative poly-
nomial ring over C in the variables X := {Xn, . . . , X1}. In the following, an
ideal I ⊂ C〈X〉 is always understood to be two-sided. Let G be a finite super-
solvable group with a pc presentation as in (3). Then Xi �→ gi , i = 1, . . . , n,
extends to a surjective homomorphism ϕ : C〈Xn, . . . , X1〉 → CG with kernel
IG := ker(ϕ). The pc relations of G define polynomials in IG by

fi := X
pi
i −X

ai,i−1

i−1 · . . . ·Xai,11 , 1 ≤ i ≤ n,

fij := XiXj −XjXiX
bij,i
i · . . . ·Xbij,11 , 1 ≤ i < j ≤ n.

We fix the so called basic wreath-product ordering denoted by �w as mono-
mial ordering on C〈X〉 (see [12] for a definition). Then the leading terms of fi
and fij with respect to �w are given by lt(fi) = X

pi
i and lt(fij ) = XiXj

and the following theorem can be proved easily:

Theorem 6.1 The set Gw := {fi, 1 ≤ i ≤ n} ∪ {fij , 1 ≤ i < j ≤ n} is
the reduced Gröbner basis of IG ⊂ C〈Xn, . . . , X1〉 with respect to the basic
wreath-product ordering �w .

The reduction process or non-commutative multivariate polynomial divi-
sion is analogous to the commutative case. For example, let f ∈ C〈X〉 and
w.l.o.g. let the leading coefficient of f be one. Denote the leading term of f by
lt(f ), then f = lt(f )+f ′ with suitable f ′ ∈ C〈X〉. A monomialm contains
lt(f ) as subword, if m = m1lt(f )m2 for suitable monomials m1,m2. The
reduction of m w.r.t. f is defined as m1(−f ′)m2. In this way, the reduction of
an element in C〈X〉 w.r.t. to an arbitrary set of polynomials can be defined. As
in the commutative case the reduction process w.r.t. a Gröbner basis Gw leads to
a uniquely determined remainder (see [9]). We denote this remainder by f̄ Gw .

Let Gw be the Gröbner basis of IG with monomial ordering �w as in Theo-
rem 6.1. In this special case, we suggest to compute the unique remainder f̄ Gw

modulo IG of a given polynomial f ∈ C〈X〉 via word normalization instead of
computing it via stepwise reduction.

PD-Algorithm: Polynomial division via word normalization
Input: Polynomial f = ∑

(ϕ,ψ) c(ϕ,ψ)X
ψ
ϕ ∈ C〈X〉

Output: f̄ Gw /* reduced polynomial with respect to Gw*/

(1) Normalization step: Compute the normal form of all monomials Xψϕ
with c(ϕ,ψ) �= 0 by means of the WN-Algorithm. These computations can
be done in parallel.

(2) Summation step: Sum up the coefficients c(ϕ,ψ) �= 0, whose monomials
Xα are equivalent to the same normal form computed in (2).

(3) Define the polynomial f̄ , whose terms consist of the monomials of step
(1) with the corresponding coefficients computed in (2). Then f̄ Gw = f̄ .
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Theorem 6.2 The PD-Algorithm is correct.

Proof. f̄ is congruent to f modulo IG and f̄ is not further reducible with
respect to Gw. Therefore, one has f̄ = f̄ Gw . ��

In contrast to the standard reduction algorithm, which proceeds “horizon-
tally”, the PD-Algorithm proceeds “vertically”. In particluar, the running time
of the standard algorithm to compute f̄ Gw is in general linear in the multidegree
of f , whereas the one of the PD-Algorithm is logarithmic in the multidegree.
Hence, the PD-Algorithm is much faster in case the multidegrees are large.

For an arbitrary monomial ordering � with Gröbner basis G of IG one can
proceed as follows:

• For a given f ∈ C〈X〉 compute the normal form f̄ Gw with respect to the
wreath product ordering via the PD-Algorithm. The total degree |α| of each
monomial Xα of this polynomial is bounded by |α| = α1 + · · · + αn <

p1 + . . .+ pn.
• Then, reduce f̄ Gw w.r.t. the Gröbner basis G by the standard algorithm to get

the desired remainder f̄ G. This can be done fast since the degree of f̄ Gw is
already small.
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