
J. Symbolic Computation (2004) 11, 1–18

Generating Fast Fourier Transforms of Solvable
Groups

M. CLAUSEN AND M. MÜLLER

Department of Computer Science, University of Bonn, Germany

{clausen, meinard}@cs.uni-bonn.de

(Received 31 May 2000)

This paper presents a new algorithm for constructing a complete list of pairwise
inequivalent ordinary irreducible representations of a finite solvable group G. The input
of the algorithm is a pc-presentation corresponding to a composition series refining a

chief series of G. Modifying the Baum-Clausen-Algorithm for supersolvable groups and
combining this with an idea of Plesken for constructing intertwining spaces, we derive
a worst-case upper complexity bound O(p · |G|2 log(|G|)), where p is the largest prime

divisor of |G|. The output of the algorithm is well-suited to perform a fast Fourier
transform of G. For supersolvable groups there are composition series which are already
a chief series. In this case the generation of DFTs can be done more efficiently than in
the solvable case. We report on a recent implementation for the class of supersolvable

groups.

1. Introduction

Since its (re-)discovery by Cooley and Tukey in 1965, the classical fast Fourier trans-
form (FFT) has been successfully applied to a wide range of problems in mathematics,
computer science and engineering, see (Holmes, 1988). Cooley and Tukey proved that
the discrete Fourier transform (DFT) of a length n vector can be computed in O(n log n)
arithmetic operations compared to the naive matrix-vector multiplication that solves this
task in O(n2).

From an algebraic point of view, performing a DFT of length n amounts to evaluating
a full set of pairwise inequivalent irreducible representations of the cyclic group Cn of
order n. Wedderburn’s structure theorem for split semisimple algebras yields the right
generalization of the notion of the DFT to arbitrary finite groups G: according to this
theorem, the complex group algebra CG := {a | a : G → C} (the signal domain) is
isomorphic to an algebra of block diagonal matrices (the spectral domain),

D = ⊕h
k=1Dk : CG −→ ⊕h

k=1C
dk×dk .

Here, the number h of blocks equals the number of conjugacy classes of G and the projec-
tions D1, . . . , Dh form a complete set of pairwise inequivalent irreducible representations
of CG. (We also call D1, . . . , Dh a transversal of the irreducible representations of G and

0747–7171/90/000000 + 00 $03.00/0 c© 2009 Academic Press Limited

2 M. Clausen and M. Müller

denote such a list by Irr(G).) Every such isomorphism D is called a DFT of G. Con-
cerning these generalized DFTs for a given finite group G, there are two fundamental
computational problems:

(1) How can a DFT of G be generated efficiently? Note that if G is non-abelian, there
are infinitely many DFTs. As we are interested in a fast generation of D = ⊕Dk

we should choose the representatives Dk in the equivalence classes very carefully.

(2) Is there a suitable DFT of G which can be performed efficiently? In other words, how
must the representations Dk in (1) be chosen in order to facilitate a DFT-evaluation
faster than the obvious bound O(n2), which could then be called a fast(er) Fourier
transform (FFT)?

Symmetry adaptation is a useful concept for solving both types of computational prob-
lems. This paper is mainly concerned with the first question for the class of solvable
groups. Refining a chief series

C = (G = Gn �Gn−1 � . . .�G1 �G0 = {1})

to a composition series T of a solvable group G we construct, based on Clifford Theory,
in a bottom-up fashion along the composition series T a T -adapted DFT of G. However,
applying Clifford directly destroys the T -adaptation. In order to recover adaptation on
level i one has to know intertwining spaces between the irreducibles already computed
on level i− 1 and certain G-conjugates. As it turns out, the construction of intertwining
spaces is the most expensive part of the algorithm determining the overall complexity.
Computing intertwining spaces directly, i.e., by solving a system of linear equations, is
too expensive. For this reason, we construct them again in a bottom-up fashion, this
time, however, along the chief series C, since the normality of the subgroups in question
is crucial for our construction. We obtain an algorithm that computes a DFT of a pc-
presented solvable group G with O(p · |G|2 log(|G|)) arithmetic operations, where p is the
largest prime divisor of |G|.

Generalized FFTs (see problem (2)) have been designed for solvable groups by Beth
(1987), for general finite and symmetric groups by Clausen (1989) and by Diaconis and
Rockmore (1990), and for supersolvable groups by Baum (1991). Some recent results
and further links to the literature about generalized FFTs can be found in (Maslen
and Rockmore, 1997). The concept of symmetry adaptation has its origin in Young’s
seminormal form and orthogonal form of the irreducible representations of symmetric
groups, see, e.g., (James and Kerber, 1989), p. 124 ff., and (Bürgisser et al., 1997), p.
343. For problem (1), there is a nearly optimal solution in case of supersolvable groups due
to Baum and Clausen (1994). Püschel (1998, 1999) describes an algorithm decomposing
the regular representation of any solvable group G, which amounts to computing a DFT
of G adapted to a composition series. Unfortunately, he gives no theoretical worst-case
running time estimate. His experimental results for small group sizes (up to 500) suggest
an average running time (averaged over all isomorphism types of groups of a fixed size)
which is quadratic in the group order. As far as we know, our paper presents a first
worst-case upper complexity bound in terms of field operations for the case of solvable
groups.

The rest of this paper is organized as follows. After some preparations in Section 2, we
describe in Section 3 the general construction of T -adapted DFTs. In Section 4 we present

Generating Fast Fourier Transforms of Solvable Groups 3

our main algorithm for solvable groups (in the following also refered to as Algorithm M)
and give a rough analysis and worst case complexity bound. For supersolvable groups the
DFT-generation is much easier and can be done in a time which is - up to logarithmic
factors - proportional to the output length. The main features and an implementation of
this algorithm are described in Section 5. We conclude with some final remarks and an
outlook in Section 6.

2. Background from Representation Theory

This section briefly recalls basic notions and facts from representation theory. For a
more detailed account, the reader is referred to Serre (1986).

Let G be a finite group. An (ordinary) representation of G of degree (or dimension)
d is a group morphism D : G → GL(d,C). The corresponding character χ : G → C

is defined by χ(g) := trace(D(g)). Two representations D and D′ are called equivalent,
D ∼ D′, iff for some invertible matrix X one has D′(g) = DX(g), where DX is defined
by DX(g) := XD(g)X−1, g ∈ G. As a matter of fact, two representations are equivalent
iff their characters coincide. The direct sum D ⊕D′ of two representations D and D′ of
G is a representation as well, defined by (D ⊕D′)(g) := D(g) ⊕D′(g), for g ∈ G. With
mD, m ∈ N, we denote the m-fold direct sum of D. A representation D is irreducible iff
D is not equivalent to a direct sum of two representations. Characters corresponding to
irreducible representations are called irreducible characters. The number of irreducible
characters (which is the number of equivalence classes of irreducible representations of G)
equals the number of conjugacy classes of G. By Maschke’s Theorem, every representation
D is equivalent to a direct sum of irreducible representations: D ∼ D1 ⊕ . . . ⊕ Dr.
Moreover, if ∆ is an irreducible representation of G with character δ, then the multiplicity
〈∆|D〉 := |{i : Di ∼ ∆}| of ∆ in D, depends only on their characters. More precisely, if
χ denotes the character of D then

〈∆|D〉 = 〈δ|χ〉 := |G|−1
∑

g∈G

δ(g−1)χ(g).

Intertwining spaces are another useful concept to deal with multiplicities and, more
generally, with direct sum decompositions of representations. The intertwining space of
two representations D and D′ of G is defined by

Int(D,D′) := {X ∈ Cd′×d|XD(g) = D′(g)X for all g ∈ G},

where d and d′ denote the degrees of the representations. By Schur’s Lemma, Int(D,D)
is one-dimensional iff D is irreducible. In that case, the intertwining space consists of all
scalar multiples of the identity matrix Idd. The following statements are straightforward
consequences of Schur’s Lemma.

Lemma 2.1. Let D1, . . . , Dh be pairwise inequivalent irreducible representations of G and
let Di ∼ Fi. Then for any integers ni,mi

Int
(

⊕h
i=1miDi,⊕

h
i=1niFi

)

=

h
⊕

i=1

Int (miDi, niFi) =

h
⊕

i=1

Cni×mi ⊗ Int (Di, Fi) .

Furthermore, if D,F are representations of G and Y,X invertible matrices of dimension
deg(D), deg(F) respectively, then

Int
(

FX , DY
)

= Y Int (F,D)X−1.

4 M. Clausen and M. Müller

Let H be a subgroup of G, D a representation of G, and F a representation of H. If
the restriction D↓H of D to H equals F , then D is called an extension of F . Starting
from F of degree f and a complete set T = (g1, . . . , gt) of left coset representatives of H
in G, we obtain a representation of G of degree f · t, the induced representation F↑TG,
as follows:

(F↑TG)(g) := (Ḟ (g−1
i ggj))1≤i,j≤t,

where Ḟ equals F on H and is identically equal to the f × f zero matrix outside H.
According to the Frobenius Reciprocity Theorem, induction and restriction of represen-
tations are dual in the following sense: if D is an irreducible representation of G and F an
irreducible representation of H then the multiplicity of F in D↓H equals the multiplicity
of D in F↑TG. We abbreviate this common multiplicity by 〈D|F 〉. Analogous results are
valid for characters.

Now let C = (G = Gn > Gn−1 > . . . > G1 > G0 = {1}) be a chain of subgroups of
G. To this chain we associate a graph, the C-character graph of G. Its set of nodes is
partitioned into n+1 levels. The nodes of level i correspond to the irreducible characters
of Gi. Only the nodes of consecutive levels are linked by weighted edges. If χ and ψ are
irreducible characters of Gi and Gi−1, respectively, then the two nodes are connected
by an edge of weight 〈χ|ψ〉. This graph will serve as a fundamental data structure for
constructing and storing irreducible representations.

There is a close connection between the representations of G and those of a normal
subgroup N . This is based on the action of G on the set of irreducible characters of N
via (g ∗ ψ)(n) := ψ(g−1ng) =: ψg(n). Similarly, if F is a representation of N then for
each g ∈ G, F g(n) := F (g−1ng) defines another representation of N , a G-conjugate of
F . The following version of Clifford’s Theorem will be of importance for us.

Theorem 2.2. Let N �G and let χ be an irreducible character of G. Let ψ be an irre-
ducible constituent of χ↓N occuring with multiplicity m > 0 and suppose ψ = ψ1, . . . , ψq,
are the distinct conjugates of ψ in G. Then

χ↓N = m

q
∑

k=1

ψk.

A proof of this theorem can be found in Theorem (6.2) of (Isaacs, 1976). An analogous
result holds for the corresponding representations.

Finally, we need some notation and basic complexity bounds when dealing with a
certain kind of sparse matrices and representations. Let K be any field and d = f ·r with
f, d, r ∈ N. A matrix M is called f -block monomial iff

∃σ ∈ Sr ∃A1, . . . , Ar ∈ GL(f,K) :M = (Pσ ⊗ Idf) · (A1 ⊕ . . .⊕Ar),

where Pσ denotes the permutation matrix of σ ∈ Sr := Sym({1, . . . , r}). A representation
D of G is called f -block monomial iff D(g) is an f -block monomial matrix for every
g ∈ G. Now, suppose that an operation is either a multiplication, addition, subtraction or
inversion inK. Let in the following all matrices in question be d×dmatrices overK. Then
matrix multiplication and inversion can be done with O(d3)K-operations (asymptotically
more efficient algorithms for matrix multiplications like Strassen’s algorithm (Strassen,
1969) are not used). If f |d and all matrices in question are f -block monomial, then the

Generating Fast Fourier Transforms of Solvable Groups 5

complexity of matrix multiplication and inversion reduces to

O

(

d

f
f3
)

= O
(

d · f2
)

. (2.1)

Multiplication of an f -block monomial matrix with a full matrix can be done in

O

(

d2

f2
f3
)

= O
(

d2 · f
)

. (2.2)

3. Basics for DFT-Generation of Solvable Groups

In this section we want to summarize the general ideas for an algorithm which con-
structs for a finite solvable group G, given by a pc-presentation, a DFT adapted to a
composition series of G. A finite group G is called solvable iff there exists a composition
series T = (G = Gn � Gn−1 � . . . � G1 � G0 = {1}), in which all of its composition
factors Gi/Gi−1 are of prime order pi. For 1 ≤ i ≤ n, let gi be an element in Gi not
in Gi−1. With respect to (g1, . . . , gn) each element g ∈ G can be expressed uniquely in
normal form

g = genn · g
en−1

n−1 · . . . · ge11 (0 ≤ ei < pi).

The multiplication in G is completely described, if the normal forms of all powers gpi

i and
all commutators [gi, gj] := g−1

i g−1
j gigj are known. More formally, every solvable group

has a power-commutator presentation (pc-presentation) of the form

G = 〈g1, . . . , gn | gpi

i = ui (1 ≤ i ≤ n), [gi, gj] = wij (1 ≤ i < j ≤ n)〉,

with words ui ∈ Gi−1 and wij ∈ Gj−1, all given in normal form. Moreover, we require the
presentation to be consistent, i.e., every word in the generators has a unique normal form.
Consistent pc-presentations of this kind exactly describe the class of solvable groups.

With respect to such a pc-presentation a d-dimensional representation D of G is fully
described by the representing matrices D(g1), . . . , D(gn) on the generators. Then, for any
g ∈ G given in normal form, D(g) = D(gn)

en · . . . ·D(g1)
e1 can be computed with

O(d3 log(|G|)) (3.1)

arithmetic operations using the binary method. In case of f -block monomial representa-
tions, this complexity reduces by (2.1) to

O(d · f2 log(|G|)). (3.2)

The concept of symmetry adaptation of a representation D is crucial in view of an
efficient algorithm. D is called T -adapted iff for all 0 ≤ i ≤ n the following conditions
hold:

(1) The restriction D↓Gi is equal to the direct sum of irreducible representations of Gi,
i.e., D↓Gi = ⊕qFiq, with irreducible representations Fiq.

(2) Equivalent irreducible constituents of D↓Gi are equal, i.e., if Fiq ∼ Fit then Fiq =
Fit (but not necessarily q = t).

If D is T -adapted then, for all 0 ≤ i ≤ n, D↓Gi is Ti-adapted, where Ti denotes the chain
(Gi > . . . > G0). We also write Irr(Gi, Ti) for a transversal of Ti-adapted irreducible
representations of Gi.

6 M. Clausen and M. Müller

The central idea of the algorithm is based on Clifford’s Theorem. In our special case
it says that given an irreducible representation F of Gi−1, 0 < i ≤ n, then exactly one
of the following cases applies.

Case 1. All F gk
i , 0 ≤ k < pi =: p, are equivalent. Then F extends to p pairwise inequi-

valent irreducible representations D0, . . . , Dp−1 of Gi of the same degree deg(F).
Moreover, if χ0, . . . , χp−1 are the linear characters of the cyclic group Gi/Gi−1 in a
suitable order, we have Dk = χk ⊗D0 for all k. Finally, F↑Gi ∼ D0 ⊕ . . .⊕Dp−1.

Case 2. All F gk
i , 0 ≤ k < p, are pairwise inequivalent. Then the induction F↑Gi is an

irreducible representation of CGi of degree p ·deg(F). Moreover, all representations

F gk
i ↑Gi, 0 ≤ k < p, are equivalent and (F↑Gi)↓Gi−1 =

⊕p−1
k=0 F

gk
i .

For a proof see, e.g., Theorem (6.20) of (Clausen and Baum, 1993). Up to equivalence all
irreducible representations of Gi can be obtained this way. This allows us to construct the
irreducible representations of G iteratively in a bottom-up fashion along the composition
series T . For an efficient construction of Irr(Gi) from Irr(Gi−1) in step i of the iterative
construction one should use as much as possible the information already computed on
level i − 1. This means, one should define a D ∈ Irr(Gi) in such a way that D↓Gi−1

is not only equivalent but equal to the direct sum of irreducibles of Irr(Gi−1). This is
exactly the philosophy of symmetry adaptation defined before. As a consequence, a new
representation D ∈ Irr(Gi, Ti) in step i has just to be defined on the generator gi, the
value of D on the generators g1, . . . , gi−1 can be copied from step i − 1 without further
computations.

However, for the equivalence test and symmetry adaptation we need to know for each
F ∈ Irr(Gi−1, Ti−1) the relation between the conjugate representation F gi and the corre-
sponding F ′ ∈ Irr(Gi−1, Ti−1) with F

gi ∼ F ′. That is the reason, one needs to know the
intertwining spaces Int(F gi , F ′). It turns out that computing these spaces is the most
expensive part of a construction following these lines which determines the complexity
of the algorithm. We suppose for the moment that we can decide equivalence of two
given representations and can compute intertwining spaces. Then the construction can
be summarized as follows:

Input: A pc-presentation of a finite solvable group G corresponding to a composition
series T described as above. Note, that Irr(G0, T0) is trivial.

Step i. Irr(Gi, Ti) is computed from Irr(Gi−1, Ti−1), 1 ≤ i ≤ n. By Clifford’s Theorem,
for each F ∈ Irr(Gi−1, Ti−1) we have to consider two cases:

Case 1. F ∼ F gi . Then F has pi extensions D0, . . . , Dpi−1.

• Let ω be a primitive pith root of unity and X ∈ Int(F gi , F) \ {0}.
• Determine a solution c0 of the equation cpiXpi = F (gpi

i) in the variable c.
Note that gpi

i is a word in Gi−1 given by the pc-presentation.
• Define Dk(gi) := c0 · ω

k ·X, k = 0, . . . , pi − 1.
• With the information of step i − 1 we define Dk↓Gi−1 := F to get Ti-
adapted extensions of F .

Generating Fast Fourier Transforms of Solvable Groups 7

Case 2. F 6∼ F gi . Then F ↑ Gi is irreducible and (F ↑ Gi) ↓ Gi−1 =
⊕pi−1

k=0 F gk
i .

Now we have to adapt F ↑ Gi.

• Find Fk ∈ Irr(Gi−1, Ti−1) with Fk ∼ F gk
i for k = 0, . . . , pi − 1.

• Compute Xk ∈ Int(F gk
i , Fk) \ {0} and set X :=

⊕pi−1
k=0 Xk.

• Define D(gi) := X−1(F ↑ Gi)(gi)X.

• By setting D(gj) :=
⊕pi−1

k=0 Fk(gj) for j = 0, ..., i− 1, (already known from
step i− 1) D defines a Ti-adapted representation.

Output: A transversal of irreducible T -adapted representations Irr(G, T), where each
D ∈ Irr(G, T) is given by the matrices D(g1), . . . , D(gn).

Further details and a verification of this algorithm can be found in (Clausen and
Baum, 1993).

4. Algorithm M and Complexity Bounds

Our main algorithm presented in this paper (Algorithm M) constructs for any solvable
group G given by a pc-presentation corresponding to a composition series T refining a
chief series C of G a full set of T -adapted pairwise inequivalent irreducible representations
of G. Our algorithm works bottom-up along the chief series. Within each chief factor we
use for the construction of the representations a subalgorithm which is a relative version
of the Baum-Clausen-Algorithm for supersolvable groups (Baum and Clausen, 1994) and
will be referred to as Algorithm RBC. To lift the necessary data from one subgroup of the
chief series to the next higher subgroup, we describe an algorithm for testing equivalence
(Algorithm ET) which is based on an idea of Plesken (Plesken, 1987).

4.1. Algorithm RBC

As a subroutine for Algorithm M we need a relative version of the Baum-Clausen-
Algorithm for supersolvable groups (Algorithm RBC). Since the relative version is a
straightforward generalization of the origial algorithm and follows the lines described in
Section 3, we refer to (Baum and Clausen, 1994) for details and just state the result.

Let H be a finite solvable group with normal subgroup N such that H/N is supersol-
vable. Then we have a chain of subgroups

T = (H = Hr �Hr−1 � . . .�H1 �H0 = N),

where Hk �H and each [Hk : Hk−1] := pk is prime. By definition, a pc-presentation of
H relative N corresponding to T is of the form

H/N = 〈h1N, . . . , hrN | hpk

k N = ukN (1 ≤ k ≤ r), [hkN,hℓN] = wkℓN (1 ≤ k < ℓ ≤ r)〉,

with generators hk ∈ Hk \ Hk−1, k = 1, . . . , r. Furthermore, uk = h
ak,k−1

k−1 · . . . · h
ak,1

1

and wkℓ = h
bkℓ,k

k · . . . · h
bkℓ,1

1 with suitable exponents 0 ≤ ak,j < pj , 1 ≤ j < k, and
0 ≤ bkℓ,j < pj , 1 ≤ j ≤ k.

Suppose we have the following data:

(i) A pc-presentation of H relative N corresponding to T with generators h1, . . . , hr.

8 M. Clausen and M. Müller

(ii) A transversal Irr(N) of irreducible representations of N . Furthermore, there is an
algorithm which can evaluate any F ∈ Irr(N) of degree f = deg(F) at any n ∈ N
in O(f3 · log(|N |)) operations.

(iii) The hk-operation of the generators hk on Irr(N) given by a permutation πhk
of the

set Irr(N) such that πhk
(F) ∼ Fhk for all F ∈ Irr(N), k = 1, . . . , r.

(iv) Intertwining matrices Xhk,F ∈ Int(Fhk , πhk
(F)) \ {0}.

Then Algorithm RBC constructs a transversal Irr(H, T) of irreducible T -adapted repre-
sentations along the subgroups Hk in a bottom-up fashion. An analysis of this algorithm
along the lines of (Baum and Clausen, 1994) (see Appendix B for details) gives a com-
plexity bound of

O
(

|H| log2(|H|)
√

|N |
)

.

We note that for N = {1} Algorithm RBC reduces to the original Baum-Clausen-
Algorithm for supersolvable groups, which has the complexity bound O

(

|H| log2(|H|)
)

.
(Preparing this paper, we discovered a bug in the complexity analysis in (Baum and
Clausen, 1994), leading to an additional log(|H|) factor. See Appendix A for details.)

4.2. Algorithm ET

A second subroutine of Algorithm M tests two representations for equivalence and
constructs a non-trivial intertwining matrix in case of equivalence. The following lemma
generalizes an idea of Plesken (Plesken, 1987).

Lemma 4.1. Let G be a finite group, H a subgroup of G of index s := [G : H] and
g1, . . . , gs representatives of the right cosets of H, i.e., G = Hg1 ⊔ . . .⊔Hgs. Let K be a
field with char(K) |························s and D,∆ be K-representations of G. Then

ψ : Y 7→
1

s

s
∑

i=1

∆(g−1
i)Y D(gi)

defines a K-linear projection, mapping Int(D↓H,∆↓H) onto Int(D,∆).

Proof. Trivially, ψ is a K-linear map. Furthermore, it follows easily that Int(D,∆) ⊂
Int(D↓H,∆↓H) and ψ(Y) = Y for all Y ∈ Int(D,∆), i.e., ψ is surjective. We just need
to show ψ(Y) ∈ Int(D,∆) for any Y ∈ Int(D↓H,∆↓H). Fix such a Y , then

Y D(h) = ∆(h)Y (4.1)

for all h ∈ H. Obviously, for every g ∈ G there are h1 . . . , hs such that (as sets!)

{g1g, . . . , gsg} = {h1g1, . . . , hsgs}. (4.2)

Hence for this g we have

∆(g−1)ψ(Y)D(g) =
1

s

s
∑

i=1

∆((gig)
−1)Y D(gig)

(4.2)
=

1

s

s
∑

i=1

∆((higi)
−1)Y D(higi)

(4.1)
=

1

s

s
∑

i=1

∆(g−1
i)Y D(gi) = ψ(Y).

2

Generating Fast Fourier Transforms of Solvable Groups 9

We use this lemma to design an algorithm for testing two irreducible representations
for equivalence and constructing the intertwining space in case of equivalence. We will
refer to this equivalence test algorithm as Algorithm ET.

Let H be a finite solvable group with normal subgroup N and let

T = (H = Hr �Hr−1 � . . .�H1 �H0 = N)

be a chain of subgroups with prime indices [Hk : Hk−1] =: pk, k = 1, . . . , r. In this section
we do not assume that the Hk are normal in the whole group H. As usual, let hk ∈ H
such that hkHk−1 generates Hk/Hk−1. Define for any two representations D,∆ of H the
maps

ψk : Int(D↓Hk−1,∆↓Hk−1) → Int(D↓Hk,∆↓Hk), Y 7→
1

pk

pk−1
∑

t=0

∆(h−t
k)Y D(htk).

Then ψ := ψr ◦ ψr−1 ◦ · · · ◦ ψ1 defines a projection of Int(D↓N,∆↓N) onto Int(D,∆).
In case D,∆ are irreducible representations then by Schur’s Lemma ψ(Y) is either 0
or invertible for all Y ∈ Int(D↓N,∆↓N). Now, let B be a basis of Int(D↓N,∆↓N). We
can test two irreducible representations D,∆ for equivalence by computing all images
ψ(E), E ∈ B. If there is an ψ(E) 6= 0 then D ∼ ∆ and ψ(E) spans the one-dimensional
intertwining space Int(D,∆). Otherwise ψ(E) = 0 for all E ∈ B and Int(D,∆) = {0} by
surjectivity of ψ, which implies D 6∼ ∆.

Let d = deg(D) = deg(∆) and Y ∈ Int(D↓N,∆↓N). Using

D(htk)Y∆(h−t
k) = D(hk)

(

D(ht−1
k)Y∆(h

−(t−1)
k)

)

∆(hk)
−1

for t = 1, . . . , pk − 1, it follows that ψk(Y) can be computed with O(pkd
3) operations for

k = 1, . . . , r. Therefore, computing ψ(Y) takes

r
∑

k=1

O
(

pkd
3
)

= O

(

d3
r
∑

k=1

pk

)

operations. For the equivalence test one has to compute ψ(E) for all E ∈ B. This can be
done with O(|B|·d3

∑r
k=1 pk) operations. In case the irreducible representations D,∆ are

f -block monomial, f | d = deg(D) = deg(∆), then the computation of ψk(Y) is cheaper
(using (2.1) and (2.2)) and can be done in O(pk · (

d
f)

2 · f3) = O(pk · d
2 · f). This leads to

an overall cost of

O

(

|B| · d2 · f

r
∑

k=1

pk

)

(4.3)

operations for the equivalence test.

10 M. Clausen and M. Müller

4.3. Algorithm M

We now describe Algorithm M for constructing a T -adapted DFT for a finite solvable
group G. Let

C = (G = Gn �Gn−1 � . . .�G1 �G0 = {1})

be a chief series of G, i.e., Gi�G. Furthermore, the chief factors are elementary abelian,
i.e., there exist ri ∈ N and prime numbers pi such that Gi/Gi−1 ≃ Cri

pi
(see Theorem

(9.13) of (Huppert, 1967)). We refine this chief series to a composition series T of G with
suitable subgroups

Gi = Giri �Giri−1 � . . .�Gi1 �Gi0 = Gi−1.

Note that the Gik, 1 ≤ k < ri, are in general not normal in G. Furthermore, let G be given
by a pc-presentation with generators {gik ∈ G | 1 ≤ i ≤ n, 1 ≤ k ≤ ri} corresponding to
T such that gikGik−1 generates Gik/Gik−1 ≃ Cpi

.
Algorithm M works bottom-up along the chief series C. At level i, 1 ≤ i ≤ n, it takes

the following input:

(1) F := Irr(Gi−1, Ti−1), a full set of pairwise inequivalent Ti−1-adapted irreducible
representations of Gi−1. The corresponding character graph of Gi−1.

(2) For every i − 1 < j ≤ n and 1 ≤ k ≤ rj the g-action, g := gjk, on F given by a
permutation πg of F such that F g ∼ πgF for all F ∈ F . Furthermore, intertwining
matrices XgF ∈ Int(F g, πgF) for every F ∈ F .

and computes the following output:

(1) D := Irr(Gi, Ti), a full set of pairwise inequivalent Ti-adapted irreducible represen-
tations of Gi. The corresponding character graph of Gi.

(2) For every i < j ≤ n and 1 ≤ k ≤ rj the g-action, g := gjk, on D given by a
permutation τg of D such that Dg ∼ τgD for all D ∈ D. Furthermore, intertwining
matrices YgD ∈ Int(Dg, τgD) for every D ∈ D.

Note that the input of level 0 is trivial. Level i of the algorithm consists of two phases.
(See next section for the complexity analysis of these two phases.)

Phase 1. Let H := Gi, N := Gi−1, r := ri and p := pi. Then N is normal in H and
H/N is elementary abelian, in particular supersolvable. SetHk := Gik, k = 0, . . . , r,
and hk := gik, k = 1, . . . , r, then (i) of the Algorithm RBC holds. Condition (ii)
holds, since by induction hypothesis (1) of level i− 1, the set F := Irr(N, Ti−1) has
already been constructed, i.e., F ∈ F are given on the generators of N . Therefore,
by (3.1), F (n) can be computed in O(f3 · log |N |), f := deg(F), for any n ∈ N
given in normal form. The data (iii) and (iv) are given by induction hypothesis (2)
of level i − 1. Therefore we can use Algorithm RBC to construct D := Irr(H, Ti),
which is the output (1) of level i.
In Algorithm RBC all the data needed to extend the character graph from Gi−1 to
Gi has already been computed.

Phase 2. We fix any g := gjk, i < j ≤ n, 1 ≤ k ≤ rj , and D ∈ D, d := d(D) := deg(D).
In order to define τgD, we need to find the representation ∆ ∈ D with Dg ∼ ∆.

Generating Fast Fourier Transforms of Solvable Groups 11

We reduce the number of possible candidates in D by looking on level i−1, To this
end, we consider the information of induction hypothesis (2) of level i− 1.
Consider the restriction D↓N , whose decomposition into irreducibles of F can be
read off the character graph of Gi. Let F ∈ F , f := deg(F), with m := m(D) :=
〈D|F 〉 > 0 and {F1 = F, F2, . . . , Fq} ⊂ F , q := q(D) ∈ N, the orbit of F under the
action of H on F . Then, by Clifford’s Theorem 2.2,

D↓N ∼ m ·

q
⊕

k=1

Fk.

Since D is Ti-adapted, there is a permutation matrix P of the form P = Pσ ⊗ Idf
with a permutation σ ∈ Sd/f such that

D↓N = P

(

q
⊕

k=1

m · Fk

)

P−1.

Now, since Dg↓N ∼ m ·
⊕q

k=1 F
g
k ∼ m ·

⊕q
k=1 πgFk, we know that

∆ ∈ {∆1,∆2, . . . ,∆ℓ} ⊂ D, ℓ := ℓ(D) ∈ N,

where, by definition, this set consists precisely of those representations of D whose
restriction to N are equivalent to m ·

⊕q
k=1 πgFk. This information can be easily

computed looking at the character graph of Gi. We now use Algorithm ET to decide
which of ∆λ, 1 ≤ λ ≤ ℓ, is equivalent to Dg. To this end, we need a basis B of
Int(Dg↓N,∆λ↓N). Since ∆λ is Ti-adapted, there is a permutation matrix Qλ of
the form Qλ = σλ ⊗ Idf with a permutation σλ ∈ Sd/f such that

∆λ↓N = Qλ

(

q
⊕

k=1

m · πgFk

)

Q−1
λ .

Then it follows by Lemma 2.1 that

Int (Dg↓N,∆λ↓N) = Int

(

P

(

q
⊕

k=1

m · F g
k

)

P−1, Qλ

(

q
⊕

k=1

m · πgFk

)

Q−1
λ

)

= QλInt

(

q
⊕

k=1

m · F g
k ,

q
⊕

k=1

m · πgFk

)

P−1

= Qλ

[

q
⊕

k=1

Cm×m ⊗ Int (F g
k , πgFk)

]

P−1

Note that all the XgFk
∈ Int(F g

k , πgFk) are known by induction hypothesis (2) of
level i− 1 and therefore

B =

{

Eabc := Qλ

[

q
⊕

k=1

δkc · (Eab ⊗XgFk
)

]

P−1, 1 ≤ a, b ≤ m, 1 ≤ c ≤ q

}

is a basis of Int(Dg↓N,∆λ↓N), where Eab denotes the m×m-matrix with exactly
one non-zero entry 1 at position (a, b). Obviously,

|B| = q ·m2.

12 M. Clausen and M. Müller

The rest of Phase 2 is now a straightforward application of Algorithm ET. Us-
ing the basis B we can decide whether Dg and ∆λ are equivalent or not. In case
of equivalence, we have ∆ = ∆λ and set τgD := ∆λ. Furthermore, in this case
Algorithm ET also constructs a non-trivial YgD ∈ Int(Dg, τgD). This is exactly the
data (2) of level i we had to compute.

4.4. Analysis of Algorithm M

In this section we analyse the Algorithm M and determine its asymptotic behaviour.
In our complexity model an arithmetic operation is a basic field operation in K (multi-
plication, inversion, addition, subtraction, copy), which are assumed to cost O(1). For a
discussion arising when computing exactly over the cyclotomic field K = Q(e) (instead
over K = C) we refer to Section 6.

For our analysis we need the following estimates. With the notation of the last subsec-
tion we have

∑

D∈D deg(D)2 = |H|. Since {∆1,∆2, . . . ,∆ℓ} ⊂ D and d = deg(∆λ) for
all λ = 1, . . . , ℓ(D), we get

ℓ(D) · d2 =

ℓ(D)
∑

λ=1

deg(∆λ)
2 ≤ |H|. (4.4)

Now, let G be a finite group and D = Irr(G) be a transversal of the irreducible represen-

tations of G. Then |G| =
∑

D∈D deg(D)2 and d := maxD∈D(deg(D)) ≤ |G|
1

2 . Hence for
all real s ≥ 2, we have

ds(G) :=
∑

D∈D

deg(D)s ≤ ds−2
∑

D∈D

deg(D)2 ≤ |G|
s
2 . (4.5)

We analyse the number of operations needed for a fixed level i, 1 ≤ i ≤ n, in Phase 1
and Phase 2 of Algorithm M.

Phase 1. In step i of Algorithm M we use Algorithm RBC for H = Gi and N = Gi−1

which needs

O(|H| log2(|H|)
√

|N |) (4.6)

operations. Building up the character graph of Gi from the one of Gi−1 can be
done with few operations not effecting the asymptotic behaviour of the overall
complexity.

Phase 2. In step i we have fixed a g = gjk and a D ∈ D. Determining the numbers
m(d), q(D), ℓ(D), the representations Fk, k = 1, . . . , q(D), the representations ∆λ,
λ = 1, . . . , ℓ(D) and the permutation matrices P and Qλ are for the most part
table lookups in the character graph of Gi and copy operations which can be done
with a negligible number of operations (not increasing the overall complexity). The
expensive part is Algorithm ET. Independent of ℓ we have to build up the basis
B, which contains f -block monomial matrices with just one non-zero f -block. This
can be done in

O
(

|B| · f3
)

= O
(

m2 · q · f3
)

= O
(

d3
)

, (4.7)

using |B| = q ·m2 and d = m · q · f . Furthermore, one has to compute Dg(hk) =
D(g−1hkg) for k = 1, . . . , r. Since g−1hkg can be read off the pc-presentation with

Generating Fast Fourier Transforms of Solvable Groups 13

no cost and is a normalized word in Hk < H, using the f -block monomiality of D
we can compute all Dg(hk) by (3.2) in

O

(

r
∑

k=1

d · f2 log(|Hk|)

)

= O
(

r · d3 · log(|H|)
)

. (4.8)

For D one has to perform at most ℓ equivalence tests with ∆λ, λ = 1, . . . ℓ, respec-
tively. Since D and all ∆λ are f -block monomial, Algorithm ET for all ℓ tests can
be done by (4.3) with

O
(

ℓ · |B| · d2 · f · r · p
) (4.4)

= O (|H| · r · p · |B| · f) = O
(

|H| · r · p · d2
)

(4.9)

operations. Summing over all D ∈ D, we get from (4.7),(4.8) and (4.9) the com-
plexity bound of step i of Phase 2 for a fixed g = gjk:

∑

D∈D

(

O
(

d3
)

+O
(

r · d3 · log(|H|)
)

+O
(

|H| · r · p · d2
))

(4.5)
= O

(

|H|
3

2 + r · |H|
3

2 log(|H|) + |H|2 · r · p
)

= O
(

|H|2 · r · p
)

.

Now, there are at most log([G : H]) generators g = gjk, i < j ≤ n and 1 ≤ k ≤ rj
which leads to the following complexity bound for Phase 2 of step i:

O
(

log([G : H]) · |H|2 · r · p
)

. (4.10)

Altogether, we have proved the following:

Lemma 4.2. The number of operations of Algorithm M needed in level i to compute the
data (1) and (2) of Gi from the data (1) and (2) of Gi−1 is for Phase 1

O
(

|Gi| log
2(|Gi|)

√

|Gi−1|
)

and for Phase 2

O
(

log([G : Gi]) · |Gi|
2 · ri · pi

)

.

Summing over all levels 1 ≤ i ≤ n we obtain, up to a suitable constant γ ∈ R, the following
upper bound for the number of operations of AlgorithmM. Here we use [G : Gi]|Gi| = |G|,
|Gi| ≤ |Gn| · 2

i−n and log([G : Gi]) ≤ [G : Gi].

n
∑

i=1

γ ·
(

|Gi| log
2(|Gi|)

√

|Gi−1|+ log([G : Gi]) · |Gi|
2 · ri · pi

)

≤ γ · log2(|Gn|)
n
∑

i=1

|Gn| · 2
i−n · |Gn|

1

2 · (2i−n)
1

2 + γ
n
∑

i=1

[G : Gi]|Gi||Gn| · 2
i−n · ri · pi

≤ γ|G|
3

2 log2(|G|)

n
∑

i=1

2i−n + γ|G|2 max{ri · pi|1 ≤ i ≤ n}

n
∑

i=1

2i−n

≤ 2γ
(

|G|
3

2 log2(|G|) + |G|2 max{ri · pi|1 ≤ i ≤ n}
)

.

Note that the complexity of Phase 2 is asymptotically more expensive than the one of
Phase 1. We summarize the result in the following theorem, where an operation is a field
operation in Q(e).

14 M. Clausen and M. Müller

Theorem 4.3. The ordinary irreducible representations of a solvable group G can be
computed from a power-commutator presentation of G corresponding to a composition
series refining a chief series with

O(max{ri · pi|1 ≤ i ≤ n} · |G|2)

operations. Using ri ≤ log(|G|), 1 ≤ i ≤ n, one gets the complexity bound

O(p · |G|2 log(|G|)),

where p denotes the largest prime divisor of |G|.

We want to emphasize two important features of Algorithm M which are decisive for
its efficiency.

(1) Within two successive subgroups Gi−1 and Gi of the chief series, all occuring ma-
trices and representations are block-monomial, the block sizes determined by level
i − 1. Computing with the sparse block-monomial matrices is much cheaper than
computing with full matrices.

(2) Since the subgroups Gi of the chief series are normal in the entire group G, one has
a G-operation on the respective sets Irr(Gi). This allows a bottom-up construction
of the corresponding intertwining matrices along the Gi instead of, e.g., solving
linear equations on each level separately.

We have not yet implemented Algorithm M. However, we have implemented the Baum-
Clausen-Algorithm for supersolvable groups which shows its practicability.

5. Implementation for Supersolvable Groups

Before we give some details and running times of an implementation of the Baum-
Clausen-Algorithm for supersolvable groups, we want to mention two additional features
that hold for supersolvable groups but not in general for solvable groups.

• For supersolvable groups G every DFT adapted to a chief series of G turns out
to be automatically monomial, i.e., 1-block monomial. Processing only monomial
matrices is the main reason for the efficiency of the Baum-Clausen-Algorithm.

• Even better, it turns out that all non-zero entries of the matrices are eth roots of
unity, e denoting the exponent of G. (We also call such matrices e-monomial.) Since
all matrix manipulations are either multiplications or inversions, one can compute
symbolically in the additive group Ze := Z/eZ, i.e., one never runs into numerical
problems!

In the following we use the notation of Section 3 with G being a supersolvable group
and Di := Irr(Gi, Ti). Define d1(G) :=

∑

D∈D deg(D) and Ω :=
∑n

i=1 i ·d
1(Gi). Then Ω is

the number of all non-zero matrix coefficients of the matrices D(gk), D ∈ Di, 1 ≤ i ≤ n,
1 ≤ k ≤ i, which is the output of the algorithm on all levels i. One can show that
the number of operations of the algorithm is nearly proportional (up to a logarithmic
factor) to this magnitude Ω, which gives in general a much better complexity bound than
O(|G| log2(|G|)). In this sense the algorithm is nearly optimal.

Generating Fast Fourier Transforms of Solvable Groups 15

The Baum-Clausen-Algorithm has been implemented in the programming language
C/C++ and tests were run on an Intel Pentium II with 300 MHz. The efficiency of the
implementation is based on the fact, that e-monomial matrices of sizeN can be multiplied
or inverted with only N operations in Ze. Since any e-monomial matrix M ∈ CN×N can
be written in the form

M = Pπ · diag(ωa1 , . . . , ωaN)

with a permutation π ∈ SN and non-zero coefficients ωa1 , . . . , ωaN , just the 2N integers
π(1), . . . , π(N) and a1, . . . , aN have to be stored for M . The following table shows the
running times of the implementation of the Baum-Clausen-Algorithm for some small
supersolvable groups. Here |G| is the order of G, h the number of conjugacy classes of
G, Ω defined as above, T the running time in milliseconds (ms) and T/Ω the quotient of
the last two quantities. The groups in the first three examples are direct products of the
symmetric group S3 and the last example is concerned with a Sylow 2-subgroup of the
symmetric group S16.

G |G| h Ω T (ms) T/Ω

(S3)
5 7776 243 13235 266 0.020

(S3)
6 46656 729 63528 1125 0.018

(S3)
7 279936 2187 296464 4250 0.014

Syl2(S16) 32768 230 30960 2156 0.069

Of course, the first three groups are of a very simple nature. However, the running time
of the algorithm does not essentially depend on the complexity of the pc-presentation,
but mainly on the number and degrees of the irreducible representations constituting
the DFT. This is verified by the more complex example Syl2(S16). Therefore, the actual
running times for constructing a monomial DFT of G reflect very well the theoretical
result concerning the output length Ω.

As we have remarked in the introduction, a T -adapted DFT allows a fast Fourier
transform of complex valued signals G→ C. In this sense, the Baum-Clausen-Algorithm
is a fast program generator for FFTs of supersolvable groups. We have also implemented
(in C/C++) the O(|G| log(|G|))-FFT algorithm and its inverse (IFFT) for supersolvable
groups as described in (Baum, 1991). The input of the FFT is the output of the Baum-
Clausen-Algorithm and a complex valued signal. The output is the FFT of the signal,
which is again a complex valued signal of the same length. The following table shows
the running times of the implemented FFT and IFFT, transforming randomly generated
complex signals. As above, |G| is the order of G, which is also the length of the complex
signal. In the FFT-column and IFFT-column are the running times in milliseconds (ms)
of the FFT and IFFT, respectively.

G |G| FFT (ms) IFFT (ms)

(S3)
5 7776 250 328

(S3)
6 46656 1813 2406

(S3)
7 279936 12109 16985

Syl2(S16) 32768 1844 1827

16 M. Clausen and M. Müller

These results show that the running times do not explode, but are approximately linear in
the group size, which reflects very well the theoretical O(|G| log(|G|))-complexity bound.
Readers interested in the source code of both programs should contact one of the authors.

6. Final Remarks and Future Work

So far we have been concerned with representations over the complex field. By R.
Brauer’s theorem on splitting fields, ordinary irreducible representations of a finite group
G can be constructed over the cyclotomic field Q(e), where e denotes the exponent of
G. Even though Q(e) = Q[X]/(Φe(X)) allows exact arithmetic, Φe(X) denoting the eth
cyclotomic polynomial, computing in Q(e) can be very expensive as we have no control
over the sizes of the coefficients of the polynomials.

This problem does not occur when computing over finite fields. If K is a finite field
containing a primitive eth root of unity and char(K) |························|G|, then K is a splitting field of G
as well. Moreover, there is a close relation between ordinary irreducible representations
and irreducible K-representations. Note that Algorithm M works over any such field K.
Hence we can work over a finite field K to obtain structural information (like character
graph, equivalences, etc.) concerning ordinary representations. To obtain representations
over Q(e) from those overK, lifting techniques generalizing Hensel’s Lemma is the content
of an ongoing research project of the authors.

Appendix A

In this appendix we fix the bug in the complexity analysis in (Baum and Clausen, 1994),
leading to an additional log(|G|) factor.

We go into Section 4 of (Baum and Clausen, 1994), p. 357. In Phase 2 of the Baum-
Clausen-Algorithm the permutation τj and the intertwining matrices YjD are computed
for each i < j ≤ n. In the analysis, summation over those j has been forgotten. Taking
this into account, one gets an additional factor (n−i) in the upper bounds for the number
of operations in Case 1

(n− i) · (4f log(|Gi|) + pf + f(2i− 2) + 5)

and in Case 2

(n− i) ·

(

2f − 2
f

p
+ 5− f

5

p

)

(compare with p. 358). Following the rest of the analysis, one easily sees that an upper
bound for the number of basic operations is given by O(n|G| log(|G|)). (Compare with
Theorem 4.1 of (Baum and Clausen, 1994)). Furthermore, note that n ≤ log(|G|)).

Appendix B

In this appendix we derive the complexity bound of Algorithm RBC along the lines of
(Baum and Clausen, 1994). As mentioned in Section 4.1, Algorithm RBC is - based on the
assumptions (i) to (iv) - a straightforward generalization of the Baum-Clausen-Algorithm.
The only difference is that one starts with the subgroup N instead of the trivial group
{1}. This has consequences concerning the complexity bound, since the representations
and intertwining matrices appearing in Algorithm RBC are not anly longer monomial as

Generating Fast Fourier Transforms of Solvable Groups 17

in the Baum-Clausen-Algorithm. However, from the construction it follows easily that all
appearing representations and intertwining matrices are at least block monomial, where
the block sizes are bounded by the maximal degree over all representations in Irr(N).
For example, if F ∈ Irr(H, T) is any representation and Γ ∈ Irr(N) with 〈F |Γ〉 > 0,
γ := deg(Γ), then F is γ-block monomial. Note that γ ≤

√

|N |.
We analyze level k of Algorithm RBC. Let F ∈ F , F := Irr(Hk−1, Tk−1), and f :=

deg(F). As mentioned before, F is block monomial of some block size bs(F) with

bs(F) ≤ min(
√

|N |, f). (6.1)

Let m(F) := f · bs(F)2, then (compare (2.1)) the number of operations needed for
multiplication or inversion of matrices of this block structure is bounded by

2 ·m(F) = 2 · f · bs(F)2 ≤ 2 · f2 · bs(F) ≤ 2 · f2 ·
√

|N |. (6.2)

To obtain bounds for the number of operations in Phase 1 and Phase 2 of Algorithm RBC,
one has just to replace the groups Gi−1 by Hk−1 and the factor f by m(F) in the analysis
in Section 4 in (Baum and Clausen, 1994). Altogether one gets the following bounds
(considering also the corrections described in Appendix A):

Phase 1, Case 1: 4m(F) log(|Hk|) + pkm(F)(k + 1) + m(F)(2k − 4) + 2

Phase 1, Case 2: 4
pk
m(F) log(|Hk−1|) + m(F)(k + 5) + m(F)

pk
(2k − 9)

Phase 2, Case 1: (n− k) · (4m(F) log(|Hk|) + pkm(F) + m(F)(2k − 2) + 5)

Phase 2, Case 2: (n− k) ·
(

2m(F)− 2m(F)
pk

+ 5−m(F) 5
pk

)

As the first cases of both phases are obviously more expensive than the corresponding
second ones, our worst-case analysis will be based on Case 1. If we sum up over all
representations F ∈ F and use the fact that

∑

F∈F

m(F) =
∑

F∈F

f · bs(F)2
(6.2)

≤
∑

F∈F

f2
√

|N | = |Hk−1|
√

|N |,

we obtain the upper bound
√

|N |(4|Hk−1| log(|Hk|) + pk|Hk−1|(k + 1) + |Hk−1|(2k − 2))

+
√

|N |(n− k)(4|Hk−1| log(|Hk|) + pk|Hk−1|+ |Hk−1|(2k + 3))

≤
√

|N |(4(n− k + 1)|Hk−1| log(|Hk|) + pk|Hk−1|(n+ 1) + |Hk−1|(2k + 3)(n− k + 1))

≤
√

|N |(2(n− k + 1)|Hk| log(|Hk|) + |Hk|(n+ 1) + |Hk|(k + 1.5)(n− k + 1))

≤
√

|N |(2n|Hk| log(|Hk|) + n · k · |Hk|+ 3n|Hk|)

≤
√

|N | · 3n · (|Hk| log(|Hk|) + |Hk|)

for the number of operations in level k of Algorithm RBC. Summing up over all levels
1 ≤ k ≤ r, we obtain - analogously to p. 359 of (Baum and Clausen, 1994) - as the upper
bound

√

|N | · 6n · (|H| log(|H|) + |H|) = O
(

|H| log2(|H|)
√

|N |
)

for the total number of operations of Algorithm RBC.

18 M. Clausen and M. Müller

Acknowledgement

We would like to thank the anonymous referees for their valuable comments and sug-
gestions.

References

Baum, U. (1991). Existence and Efficient Construction of Fast Fourier Transforms of Supersolvable
Groups. Computational Complexity 1, 235–256.

Baum, U., Clausen, M. (1994). Computing irreducible representations of supersolvable groups. Mathe-
matics of Computation, Volume 63, Number 207, 351–359.

Beth, T. (1987). On the Computational Complexity of the General Discrete Fourier Transform. Theor.
Comp. Sci. 51, 331–339.

Bürgisser, P., Clausen, M., Shokrollahi, M.A. (1997). Algebraic Complexity Theory. Grundlehren der
mathematischen Wissenschaften, Volume 315, Springer Verlag, Berlin.

Clausen, M. (1989). Fast Generalized Fourier Transforms. Theor. Comp. Sci. 67, 55–63.
Clausen, M., Baum, U. (1993). Fast Fourier Transforms. BI-Wissenschaftsverlag, Mannheim.
Clausen, M., Müller, M. (1999). A Fast Program Generator of FFTs. Proceedings AAECC-13, Honolulu,

LNCS 1719, 29–42.
Diaconis, P., Rockmore, D. (1990). Efficient computation of the Fourier transform of finite groups. J. of

the A.M.S. 3(2), 297–332.
Holmes, R. (1988). Mathematics of Signal Processing I and II. MIT Lincoln Laboratory TR.
Huppert, B. (1967). Endliche Gruppen I. Grundlehren der mathematischen Wissenschaften, Volume 134,

Springer Verlag.
Isaacs, I. (1976). Character Theory of Finite Groups. Academic Press, Inc.
James, G., Kerber, A. (1989). The Representation Theory of the Symmetric Group. Cambridge University

Press.
Maslen, D., Rockmore, D. (1997). Generalized FFTs. DIMACS Series in Disc. Math. Theor. Comp. Sci.,

L. Finkelstein and W. Kantor, Eds., vol. 28, 183–237.
Plesken, W. (1987). Towards a Soluble Quotiont Algorithm. J. Symbolic Computation 4, 111–122.
Püschel, M. (1998). Konstruktive Darstellungstheorie und Algorithmengenerierung. PhD thesis, Univer-

sität Karlsruhe, Fakultät für Informatik.
Püschel, M. (1999). Decomposing Monomial Representations of Solvable Groups. Technical Report

Drexel-MCS-1999-2, Dept. of Mathematics and Computer Science, Philadelphia.
Serre, J.-P. (1986). Linear Representations of Finite Groups. Graduate Texts in Mathematics, Springer-

Verlag.
Strassen, V. (1969). Gaussian elimination is not optimal. Num. Math. 13, 354–356.

