Automatic Synchronization of Music Data in Score-,
MIDI- and PCM-Format

Abstract

In this paper we present algorithms for the automatic time-synchronization of score-, MIDI- or PCM-
data streams which represent the same polyphonic piano piece. Since the waveform-based PCM-data
streams do not contain any information on the notes we extract in a preprocessing step note parameters
such as onset times and pitches in order to make the PCM-data comparable to symbolic score-like
representations. In the extraction step we use novelity curves for onset detection and filter bank tree
techniques in combination with note templates for pitch extraction. To handle ambiguities such as
trills or arpeggios in the score data-stream we introduce the concept of fuzzy-notes. Further suitable
normalization and quantization of the involved data streams are necessary to generate the input data of
our synchronization algorithms which are based on the technique of dynamic programming. The decisive
ingredient for our approach are carefully designed cost functions which will be explained in detail. Our
synchronization algorithms have been tested on a variety of classical polyphonic piano pieces recorded
by MIDI- and standard acoustic pianos or taken from CD-recordings.
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1 Introduction

Modern digital music libraries consist of large collections of documents containing music data of diverse
characteristics and formats. For example, for one and the same piece of music, the library may contain
the corresponding score in Capella or Score format, some MIDI-files, and several interpretations by various
musicians in form of CD recordings. Inhomogeneity and complexity of such music data make content-based
browsing and retrieval in digital music libraries a difficult task with many yet unsolved problems. One
important step towards a solution are synchronization algorithms which automatically link data streams of
different data formats representing a similar kind of information. In particular, in the framework of audio by
synchronization we mean some procedure which, for a given position in some representation of a given piece
of music (e.g., given in score format), determines the corresponding position within some other representation
(e.g., given in PCM-format).

Such synchronization algorithms have applications in many different scenarios: following some score-
based music retrieval, linking structures can be used to access some suitable audio CD accurately to listen
to the desired part of the interpretation. A further future application is the automatic annotation of a piece
of music in different data formats as basis for content-based retrieval. As another example, musicologists
can use synchronizations for the investigation of agogic and tempo studies. Furthermore, temporal linking
of score and audio data can be useful for a reading aid of scores.

In this paper we concentrate on three representative data formats used for music data: the symbolic
score format contains information on the notes such as musical onset time, pitch, duration, and further hints
concerning the agogic and dynamics. The purely physical PCM-format encodes the waveform of some audio
signal as used for CD-recordings. The MIDI-format may be thought of as a hybrid of the last two data
formats containing content-based information on the notes as well as agogic and dynamic niceties of some
specific interpretation. We have developed synchronization algorithms for two data streams in any of these
three data formats which will be referred to as Score-to-MIDI (SM) synchronization, Score-to-PCM (SP)
synchronization, and MIDI-to-PCM (MP) synchronization.

Especially, SP- and MP-synchronization constitute a difficult problem since the waveform-based PCM-
format does not contain any explicit information on the notes. Here, in a preprocessing step, one first
has to extract from the PCM-recording information such as note onsets and pitches in order to make it
comparable to other symbolic score-like representations and hence algorithmically useable for the actual
synchronization. However, as will be summarized in Section 2, the extraction of note information from
the waveform of polyphonic music constitutes an extremely difficult problem which is solved only for a few



special cases. Especially, in the most general case of orchestral music the extraction problem not to mention
the transcription problem is a largely open problem which seems to be unfeasible. In our research, we have
concentrated on polyphonic piano music. In contrast to many other research projects we do not restrict
ourselves to PCM-data generated by MIDI-pianos. Instead we allow PCM-data generated by any acoustic
piano, e.g., music data from a piano CD. This in general extremely complex data leads to many erroneous
extraction results which would not be acceptable when treated as a transcription into some score-like format
of the original piece of music. However, the extracted data — even from very complex piano pieces — is
good enough to ensure success in view of the synchronization problem.

The rest of this paper is organized as follows. After some review of related problems and links to
the relevant literature in Section 2, we summarize in Section 3 our system for the extraction of musically
relevant parameters from PCM-data streams. The actual synchronization algorithms are described in Section
4. Crucial for the algorithms is further preprocessing of the Score-, MIDI-, and extracted data used as the
input data of the matching algorithm, which is based on carefully designed cost functions and which uses
the technique of dynamic programming. Finally, Section 5 contains some examples and a summary of our
experiments and Section 6 closes with concluding remarks.

2 Background and Related Work

There are a number of synchronization problems in music which have been the focus of various research
activities, but which differ to a greater or lesser extent to the one discussed in this paper. In this section, we
give references to some papers which address related problems and which, in part, apply similar approaches
for their solution. Due to space limitation we are only able to give a small choice of the relevant literature.

Dannenberg et. al. describe in [3] and [4] one of the first algorithms for automatic music accompaniment
reducing the synchronization problem to an LCS (longest common subsequence) problem which is solved
using dynamic programming. Raphael [12] has developed a system for automatic musical accompaniment
of an oboe based on Hidden Markov Models. Desain et. al. describe in [5] some general sequential and
tree-based score-performance matching algorithms. A similar problem addresses Large in [9] using dynamic
programming to study music production errors. In all of those approaches the data streams involved in the
synchronization problem either explicitly contain score-like note parameters or only consist of monophonic
music so that the note parameters are comparatively clean and error free. In our scenario, however, we also
allow PCM-data of complex polyphonic piano music where there are no such explicit and clean parameters.

The extraction itself of such score-like note parameters from waveform-based PCM-data constitutes an
active research area with many unsolved problems. As an example, we mention the approach of Raphael
[13] who uses Hidden Markov Models to transcribe polyphonic piano music. Klapuri et. al. [10] use
moving-average techniques to extract note pitches in polyphonic musical signals. As is also mentioned by
the authors, the extraction of such parameters in polyphonic music still leaves a lot of work to do. Foote [7]
uses the concept of the so-called novelity score to automatically segment audio recordings. In Section 3 we
use a similar technique to extract candidates of onset times. Bobrek et. al. [2] use filter bank techniques in
combination with note templates for the transcription of polyphonic piano music. We have modified their
approach to extract the pitches of the previously determined onset candidates.

Finally, we want to mention the comprehensive book [11] by Mazzola who gives, among many related
topics, a detailed account on local tempo variations resulting from expressiveness in performances.

3 Feature Extraction

In this section we summarize our system for extracting note parameters from the PCM-data stream. Using
several established tools from audio signal processing, our main contributions are a refined template matching
algorithm for polyphonic pitch extraction and a two-step algorithm for note onset detection.

Figure 1 shows the overall feature extraction algorithm. An input PCM-signal is transformed to a
subband representation using a multirate filterbank. Simultaneously, a two-stage peak-picking algorithm
detects probable note onset positions. According to those onset positions, the subband representation is
split into time intervals. For each interval, we calculate an energy vector with components corresponding
to the subbands: each component contains the total energy within the interval of the respective subband.
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Figure 1: Diagram of the feature extraction algorithm.

Then, for each energy vector a pitch extraction based on a template matching algorithm is performed. The
pitch extraction yields a set of notes for the corresponding time interval. The feature extraction algorithm
outputs a note object for each note in each time interval, where a note object consists of an onset time and
a pitch information.

We now briefly discuss the components of our algorithm. For onset detection, we first calculate a novelity
curve (similarly to [6]) of the input signal. This step basically consists of a short time Fourier transform
with a step size of 23 ms, where for each step a novelity value is calculated by summing over the absolute
changes of the last two steps’ magnitude spectra. Peaks in the resulting novelty curve constitute candidate
onset times. As the time-resolution of 23 ms is very rough, a postprocessing of all candidate onset-times
is performed based on linear prediction. In linear predictive coding (LPC), the harmonic parts of a signal
segment are summarized in a few prediction coefficients which may in turn be used to predict the short-time
signal behavior. A method proposed in [8] compares ratios of prediction errors resulting from crossover
predictions of neighboring signal segments to detect significant signal changes. We adopt this method to
increase the time resolution of our candidate onset times to about 10 ms.

The simultaneously applied subband filterbank transforms the input signal into M = 224 subband signals.
The filterbank is realized by a tree structured cascade of orthogonal 2-band filterbanks. The tree structure
of the filterbank — and hence the frequency ranges of the subbands — are chosen such that the fundamental
frequency of at most one piano note (well-tempered tuning) falls into one subband. This guarantees that
in the subsequent template matching algorithm templates can be uniquely assigned to energy vectors. For
further details on the filter bank tree structure we refer to [2].

For pitch detection, template matching is performed w.r.t. a template data base (TDB) cousisting of one
template for each musical note. A template is an M-point vector representing the energy distribution of a
certain note over the above subbands. The templates were recorded using a Yamaha GranTouch E-Piano.
We furthermore evaluated templates generated by two acoustic pianos (Steinway and Schimmel). However,
the E-Piano’s templates turned out to be the most robust for our purposes.

Starting with an initial energy vector, our template matching algorithm roughly tries to select a template
from the TDB which optimally fits the energy vector w.r.t. a certain criterion. If successful, a corresponding
energy fraction is subtracted from the energy vector to yield a modified vector, which is used to recurse the
procedure until the remaining residual energy falls under some lower bound. We used the following criterion
for selecting a template which optimally fits an energy vector E € RM: find the lowest subband index k such
that E(k) > (¢/M) Zf\il |E(4)| (for some suitable prior constant ¢). If such a k exists, search the TDB for
a template Sy with fundamental frequency in this subband. If E contains Sy to a significant extent, select
Sk as a matching template. In [2] the authors, instead of using the lowest significant subband, choose the
subband containing the highest energy component for selecting the template. However, in our experiments
this criterion turned out to yield several octave interval errors in pitch detection, especially when applied to
recordings from acoustic pianos.

To conclude this section we note that our algorithms require a careful choice of parameters (e.g., thresholds
for template extraction, peak picking, or the minimum inter-onset interval). A detailed discussion is beyond
the scope of this paper. For further details, we refer to [1].



4 Synchronization Algorithms

In this section we describe the actual synchronization algorithms. Due to space limitation, we only consider
the case of a score- and a PCM-data stream (SP-synchronization). The other cases such as SM- or MP-
synchronization are even easier or can be done in a similar fashion (see [1]).

First, we discuss how to preprocess the score data which is assumed to exist in electronic form (e.g., as a
file in the Capella format). We distinguish between two kinds of note objects: exzplicit and implicit ones. For
explicit objects all note parameters such as measure, beat, duration, and pitch are given explicitly. In view
of the synchronization algorithm we only use the musical onset time and pitch. We represent each explicit
note object by a tuple (e,p) € Q x [0 : 127], where [a : b] := {a,a + 1,...,b} for integers a and b. Here, we
identify a pitch with the corresponding MIDI pitch given by an integer between 0 and 127. Furthermore,
the musical onset time e € Q is computed by e = r - (m — 1) 4+ b if the piece of music has r beats per
measure, where m € N and b € Q denote the measure and beat respectively of the explicit note object. For
example, the first and fourth explicit note object in the right hand of the Aria (Fig. 2) are given by (0, 79)
and (2.75,83) respectively.
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Figure 2: First four measures of the Aria con Variazioni by J.S. Bach, BWV 988.

By an implicit note object we understand notes or a group of notes with some additional specification
such as a trill, an arpeggio or grace notes. Implicit objects allow different realizations, depending on the
epoch and the actual interpretation. To get this ambiguity under control we introduce the concept of a
fuzzy note. A fuzzy note is defined to be a tuple (e, H) consisting of some onset time e € Q and some set of
alternative pitches H C [0 : 127]. Then an implicit note object, such as a trill, is represented by the musical
onset time of a certain main note and the set of all pitches appearing in a possible realization of this object
(see Fig. 3 for an illustration). For example, the third note object of the first measure in the right hand of
the Aria (Fig. 2) is given by (3,{79,81}).
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Figure 3: Appoggiatura and trill, (a) notation, (b) possible realization, (¢) fuzzy note, (d) encoding.

Using this encoding we may assume that a score is given by some subset S C Q x 2[0:127] » 2[0:127] " where
2[0127] denotes the set of all subsets of [0 : 127]. Here, in a triple (e, Hy, H;) € S the subset Hy C 2[0:127]
consists of all pitches of explicit note objects having musical onset time e and similarly the subset H; c 2[0:127]
consists of all pitches of implicit note objects having musical onset time e.

We now turn to the data stream given in PCM-format. As described in Section 3, we extract a set
of possible candidates of note objects given by their physical onset times and pitches (including in general
erroneous objects). In view of the synchronization it is useful to further process this extracted data by
quantizing the onset times. Simply speaking, we pool all note objects by suitably adjusting those physical
onset times which only differ by some small value — e.g., smaller than some suitably chosen A > 0 — since
these note objects are likely to have the same musical onset time in the corresponding score format. After
quantization we also may assume that the extracted PCM-data is given by some subset Pa C Q x 2[0:127],



Note that in the PCM-case there are only explicit note objects.
Altogether, we may assume that the score and the A-quantized extracted PCM-data are given by the
sets
S:[(5175017511),...7(53,5037515)} and PA:[(phPOl);---a(ppyPOp)]-

Here, the s;, 1 < ¢ < s, denote the musical onset times and the p;, 1 < j < p, denote quantized physical
onset times. Furthermore, Sy;, S1;, Po; C [0 : 127] are the respective sets of pitches for the explicit and
implicit objects.

On the basis of S and Pa we now accomplish the SP-synchronization. Since the score and the PCM-data
represent the same piece of music, it is reasonable to assume s; = p; = 0 by possibly shifting the onset
times. Now, the goal is to partially link the onset times sq,...,ss to p1,...,p, by maximizing the matches
of the corresponding pitch sets. In the following, we formalize this approach.

Definition 4.1. A score-PCM-match (SP-match) of S and Pa is defined to be a partial map p: [1: s] —
[1 : p], which is strictly monotonously increasing on its domain satisfying (So; U S15) N Popy # 0 for all
i € Domain(u).

This definition needs some explanations. The fact that objects in S or Pn may not have a counterpart
in the other data stream is modeled by the requirement that p is only a partial function and not a total one.
The monotony of p reflects the requirement of faithful timing: if a note in S precedes a second one this also
should hold for the p-images of these notes. Finally, the requirement (So; U S1:) N P,y # () prevents that
onset times are linked which are completely unrelated with respect to their pitches.

Obviously, there are many possible SP-matches between S and Pan. By means of some suitable cost
function we can compare different matches. The goal is then to compute an SP-match minimizing the
cost function. To simplify the notation we identify the partial function p with its graph Graph(u) :=
{(i1,41)s++ , (ig,je)}, where {iy < -+ < i} C[1:s]and {j1 = p(i1) < -+ < je = ulig)} €1 :p]. In
the following definition we assign costs to each SP-match p. In this, we make use of a parameter vector
7= (a,,7,0,(,A) € RY, consisting of six real parameters which will be specified later.

Definition 4.2. With respect to the parameter vector 7 := (a, 3,7,0,(,A) € Rﬁzo the SP-cost of an SP-
match p between some score S and some A-quantized set Pa of the corresponding PCM-document is defined
as

O (ulS, Pa) = a2 (1S0s\ Posl + AG6d)) + 8- 3 (1Poy \ (Soe US| + (i) +

(i,5)€Ep (i,4)€p
v Y (ISl to®) Fae D Pl Y Jsi—py - 6S)/0(P)|.
kZDomain () tZImage(p) (i,7)ep

This definition also requires some explanations. The sum corresponding to the factor a represents the
cost of the non-matched explicit and implicit note objects of the score S. To be more accurate, the cardinality
|Soi \ Po;| measures the cost arising from the difference of the set of explicit note objects at the ith onset
time of S and the set of explicit quantized note objects at the jth onset time of Pa. Furthermore, A(3, j) is
defined to be 1 if and only if the score S has an implicit note object at the ith onset time and Pa has no
counterpart at the jth onset time, i.e., S1; # 0 and S1; N Py; = 0. In all other cases A(4, j) is defined to be
0. Next, we consider the sum corresponding to the factor 3. The first summand in the brackets measures
the cost of (possibly erroneously) extracted notes at the jth physical onset time whose pitches do not lie in
Soi U S1;. Furthermore, p(4,j) is defined to be |Py; N S1;| — 1 if Py; N S1; # 0. Otherwise p(4, ) is defined
to be 0. In other words, for the implicit note objects only one match is free of cost whereas each additional
match is penalized. (This is motivated by the idea that all notes belonging to some realization of a fuzzy
note are expected to have pairwise distinct physical onset times.) The sum corresponding to v accounts for
all onset times of the score which do not belong to the match pu. The first term within the brackets counts
the number of explicit note objects at the kth onset time, k ¢ Domain(u). Furthermore, o(k) is defined to
be 1 if there is a non-matched implicit note object and 0 if there is no implicit note object at the kth onset
time. (The idea is that a non-matched fuzzy note should only be penalized by 1 since it only represents a set
of alternatives.) The sum corresponding to ¢ accounts for the cost of those notes in Pn which do not have a
counterpart in S. Finally, the last sum corresponding to ¢ measures some kind of adjusted ¢!-distance (also



known as Manhattan-distance) of the vector pairs (s;,p;) i, j)eu, where £(S) and £(P) denote the differences
of the last and the first musical respectively physical onset times (a kind of musical and physical duration).
By this sum one penalizes matches with large relative time deviations thus preventing large global deviations
in the synchronization.

In the following we fix some parameter vector 7, a preprocessed score S, and quantized extracted PCM-
data Pa. Note that if p is an SP-match then also p := p\ {(¢,7)} for some (,j) € p. An easy computation
shows

CSP(ulS, Pa) = CSF (18, Pa) = o+ ( 180: \ Pol + M) + 8- (1P \ (S5 U S10)] + ()

1
—y - (1S0il + 7(0)) = 8+ [Posl = ¢ |3 = pj - £05)/(P)| W

Now, one can determine a cost-minimizing SP-match by means of dynamic programming. We recursively
define a matrix C = (¢;;) with i € [0 : s] and j € [0 : p]. First, initialize co; := cio := CSF (]S, Pa) for all
i€[0:s],7 €[0:p]. Note that this accounts for the costs that there is no match at all between S and Pa.
At position (i,7) € [1 : s] x [1 : p] the value ¢;; expresses the cost for a cost-minimizing SP-match within
the subset [1:4] x [1:j] C [1:s] x [1:p]. Hence, cs), expresses the minimal cost of a global SP-match. For
(1,7) € [1 : s] x [1: p], the value ¢;; is defined as

o SP
cij = min{c; j_1,¢i-1,5,Cim1,j-1 + djj },

where
JSP right hand side of Eq. (1), if  (Soi US1:) N Poj #90,
i 0, otherwise.

Using the resulting matrix C, the following procedure computes a cost-minimizing SP-match:

SCORE-PCM-SYNCHRONIZATION(C,s,p)
i:=s, j:=p, SP-Match :={
while (¢ >0) and (j > 0)
do if cl[i,j] = c[i,j — 1]
then j:=75—1
else if c[i,j] = c[i — 1, ]
then i:=1¢—1
else SP-Match := SP-Match U {(4,j)}, i:=i—1, j:=j—1
return SP-Match

0 N O O WN -

In the next section we give an example to illustrate this procedure and report some of our experiments.
As we mentioned before, SM- and MP-synchronization can be done similarly to the SP-case. Further-
more, other synchronization problems such as synchronization of two PCM-data streams P; and Py (P1Po-
synchronization) may be achieved by using a score S as a reference and carrying out both an SP;- and an
SP-synchronization.

We conclude this section with some comments on the parameter vector = := (a, 8,7, 9,(,A). In most
of our experiments we set the quantization constant to A = 50 ms. This threshold was chosen since it
represents a good compromise between psychoacoustically distinguishable asynchronisms of chords and the
shortest possible musical note durations. By the parameters o and ( one can weight the cost for the
symmetric difference of pitch sets corresponding to matched onset times, whereas by the parameters v and
0 one can weight the cost of those note objects which do not have a counterpart in the other data stream.
One meaningful standard choice of the parameters is a« = § =y = § = 1. However, if one wants to penalize
non-matched onset times, for example, one may increase v and 4. In the case ( = 0 the last sum of the cost
function remains unconsidered. Increasing ¢ will hamper matches (¢, j) whose onset times s; and p; differ
too much with respect to their relative positions in their respective data stream. In other words, excessive
global time divergence in the synchronization of the two data streams can be controlled.



5 Examples and Experiments

We illustrate the SP-synchronization by means of the example from Fig. 2. The score S represents the first
four measures of the Aria. The PCM-version P represents a recording of the same measures performed on
a Steinway grand piano. The physical length is £(P) = 13 sec. The quantization constant is set to A = 50
ms. In the following, we restrict ourselves to the second measure, where two appoggiaturas appear in the
right hand of the score. Those are modeled by fuzzy notes. The following table shows the note objects of
the score S and the A-quantized extracted PCM-data Pa.

| S I Pa |
Lill silS:  [Su [ J]l pi[Ry |
5 3] {54,81} |0 7] 3.86 | {54, 81}
6350 (78,79} || 8 || 4.47 | {79}
9 | 4.75 | {66, 78}
T 4| {57} {74, 76} || 10 || 5.06 | {57, 66, 76}
11 |[ 5.71 | {57, 74}
8 5 {62} ] 12 [ 6.39 | {57, 62}

This example also illustrates two typical phenomena appearing in the extracted PCM-data. Firstly, in
position j = 10 the extracted note of pitch 57 also appears in positions 11 and 12. This can be explained as
follows: this note continues to sound and, at every new note attack (e.g., note of pitch 74 at position 11 or
note of pitch 62 at position 12), the extraction algorithm again interprets the note of pitch 57 as a “new”
note. Secondly, in position 9 appears an “erroneously” extracted note of pitch 66 which differs from the
expected note of pitch 78 by an octave. This might be caused by the harmonics of the still sounding note of
pitch 54 at position 7 and the new note of pitch 78 at position 9. Actually, these “octave errors” are typical
for the extraction algorithm. To tackle this problem one can restrict oneself to only considering pitches
which are reduced modulo 12 when using the note parameters as input for the synchronization algorithm.
In spite of this reduction one is still left with sufficient information for a successful synchronization. The
following table shows the part of the cost matrix C' = (¢;;) corresponding to the second movement using the
parameter vector m = (1,1,1,1,22,50) and a modulo 12 reduction of the pitches:

I |6 7 8 9 10 11 12

114.8476 114.8476 114.8476 114.8476 114.8476 114.8476  114.8476
114.8476 111.8700 111.8700 111.8700 111.8700 111.8700 111.8700
114.8476 111.8700 110.8132 110.8132 110.8132 110.8132 110.8132
114.8476 111.8700 110.8132 110.8132 107.4704 107.4704 107.4704
8 || 114.8476 111.8700 110.8132 110.8132 107.4704 107.4704 106.7956

~N O O =~

From C' one can compute the global SP-match p. For the second measure this gives the matches
{(5,7),(6,8),(7,10),(8,12)} which are also printed in bold face in the above table. Note that the SP-
algorithm has matched for both appoggiaturas of the score S the corresponding fuzzy notes at position i = 6
and ¢ = 7 respectively with the corresponding first notes of the appoggiaturas of Pa at position j = 8 and
j = 10 respectively.

We have implemented a prototype of the extraction algorithms from Section 3 and the synchronization
algorithms in the MATLAB programming language and tested our algorithms for SM-; SP-, and MP-
synchronization on a variety of classical polyphonic piano pieces of different complexity and length (ranging
from 10 to 60 seconds) played on various instruments. Furthermore, we have systematically generated a
library of more than one hundred test pieces both in MIDI- and PCM-format played on a MIDI-piano, a
Steinway grand piano, and a Schimmel piano. In some of those pieces our player has deliberately built in
excessive accelerandi, ritartandi, rhythmic distortions, and wrong notes. Even in these extreme situation,
where one unsurprisingly has many “erroneously” extracted note objects which considerably differ from the
score-data, our SP-synchronization algorithm resulted in good overall global matches which are sufficient
for the applications mentioned in the introduction. Even more, in case of rather accurate extracted note
parameters our synchronization algorithms could resolve subtle local time variations in some interpreted
version of the piano piece. For further details and results of our experiments we refer to [1].



We close this section by describing one of our experiments where we started with an uninterpreted
score-like MIDI-version and an interpreted PCM-version of some piano piece. Using the results of our
MP-synchronization, we automatically modified the onset times of the MIDI-stream to correspond to the
PCM-stream in view of the global tempo and the local tempo variations. This resulted in some “expressive”
MIDI-version which represented a sonification of our synchronization results. In case of good extraction
parameters the so modified MIDI-version sounded rhythmically like a real interpretation of the underlying
piano piece.

6 Conclusions

In this paper we have discussed algorithms for the automatic synchronization of different versions of some
polyphonic piano piece given in different data formats (score, MIDI, PCM). Our implementation yields good
synchronization results even for complex PCM-based polyphonic piano CD-recordings. One of the decisive
features is a carefully designed cost function which not only penalizes non- or partially matched note objects
but also large relative global time deviations. The parameter vector 7w allows to weight different aspects in
the matching process and leaves room for experiments.

Our system works off-line, where the bottle-neck lies in the preprocessing step needed to extract note-
parameters from the PCM-files (where we up to now did not use any score information). An ongoing
research project is to exploit the score information already in the extraction step. (See also [14] for a similar
approach.) This prior knowledge allows to use prediction methods (in particular Kalman-filtering) which in
connection with time-varying comb filters may result in extraction algorithms running in real-time. Such
fast algorithms may be at the expense of the quality of the extraction parameters. However, even low quality
and coarse parameters may be sufficient for a successful synchronization when using a suitably designed cost
function which is robust under erroneous parameters.
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