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Abstract. Let G be a finite group of order n. By Wedderburn’s The-
orem, the complex group algebra CG is isomorphic to an algebra of
block diagonal matrices: CG ~ @®F_, €% X% Every such isomorphism
D, a so-called discrete Fourier transform of CG, consists of a full set
of pairwise inequivalent irreducible representations [y of CG. A result
of Morgenstern combined with the well-known Schur relations in rep-
resentation theory show that (under mild conditions) any straight line
program for evaluating a DFT needs at least £2(nlog n) operations. Thus
in this model, every O(nlogn) FFT of CG is optimal up to a constant
factor. For the class of supersolvable groups we will discuss a program
that from a pc-presentation of GG constructs a DFT D = @Dy of CG and
generates an O(nlogn) FFT of CG. The running time to construct D is
essentially proportional to the time to write down all the monomial (!)
twiddle factors Dy (g,) where the g; are the generators corresponding to
the pc-presentation. Finally, we sketch some applications.

1 Introduction

This paper is concerned with fast discrete Fourier transforms. From an engineer-
ing point of view, there are two types of domains: a signal domain and a spectral
domain. Algebraically, both domains are finite dimensional vector spaces (over
the complex numbers, say) and, in addition, they are equipped with a multiplica-
tion which turns both domains into associative C-algebras. The multiplication in
the signal domain, called convolution, comes from the multiplication in a finite
group, whereas the multiplication in the spectral domain is closely related to
matrix multiplication. Fourier transforms isomorphically link these two domains
and thus link convolution and matrix multiplication.

To be more specific, let G be a finite group. The set CG := {ala : G — C} of
all C-valued functions (signals) on i becomes a vector space over € by pointwise
addition and scalar multiplication. A natural basis is given by the indicator
functions (G' 5 h > dgp) of the group elements g € (. Identifying each group
element with its indicator function, CG can be viewed as the C-linear span of
G, 1.e., the span of all formal sums deG agg with complex coefficients. The
multiplication in G extends to the so-called convolution in CG:

(z;;agg) . (l;bhh) -3 (Z agbg_lk)k.

g€ keG geG



In this way, CG becomes a (-algebra, the so-called group algebra of GG over
C. For example, if G = C,, = (X | X" = 1) is the cyclic group of order n,
then CG can be identified with the polynomial ring C[X] modulo the ideal
generated by X” — 1. In this case, convolution in € means ordinary polynomial
multiplication modulo the relation X™ = 1. If w 1s a primitive nth root of unity,
then the factorization X" — 1 = H;:_Ol(X — w’) combined with the chinese
remainder theorem shows that CC), is isomorphic to the algebra @?;&@1“ of
n-square diagonal matrices. With respect to natural bases in both spaces this
isomorphism is described by the classical DFT matrix D = (wjk)0<jyk<n.
Wedderburn’s structure theorem for split semisimple algebras yields the right
generalization of the above situation: according to this theorem, the complex

group algebra CG is isomorphic to an algebra of block diagonal matrices,
D=®!_ Dy CG — @h_ @i,

Here, the number A of blocks equals the number of conjugacy classes of G and
the projections Dy, ..., Dy form a complete set of pairwise inequivalent irre-
ducible representations of CG. Recall that a representation of CG of degree f
is an algebra morphism F: CG — ©/*S Tt is irreducible iff F is surjective. Two
representations Fy, Fy of degree f are equivalent, Iy ~ Fs, if an invertible matrix
X exists such that for all a € CG : Fy(a) = X F5(a)X~L. Every isomorphism D
is called a discrete Fourier transform (DFT). If GG is non-abelian, there are in-
finitely many DFTs of CG. However, according to the Skolem-Noether theorem,
if D and A are DFTs of CG, then there are invertible matrices X such that
Ala) = @kXka(a)Xk_l for all @ € CG. In the sequel, DFT(G) denotes the set
of all DFT matrices of .

From an algebraic point of view, performing a DFT, CG 3> a¢ — D(a),
amounts to evaluating a full set of pairwise inequivalent irreducible representa-
tions. In matrix terminology this amounts to multiplying the corresponding DFT
matrix D by an input vector a := (a4)geq. The linear complexity L(D) of the
DFT matrix is the minimum number of additions, subtractions, and scalar mul-
tiplications! to compute the matrix-vector product D - a for arbitrary a € ¢!l
If the program constants are restricted to be of absolute value < 2, then the
corresponding minimum number Ly (D) is called the 2-linear complexity of D.
The linear complexity L(G) of the finite group G is defined by

L(G) := min{L(D) | D € DFT(G)}.

Similarly, one defines L2(G). Trivially, |G| — 1 < L(G) < 2|G|- (]G] = 1), and
L(G) < Ly(G). A theorem by Morgenstern [7] combined with the classical Schur
relations yield [2]: Ly(G) > 1|G|log|G|. Thus performing a DFT with only
O(|G|log|G|) additions, subtractions, and scalar multiplications by small pro-
gram constants 1s almost optimal in the Ls-model. This justifies the name Fast
Fourier Transform. (For more details on lower complexity bounds, see Chapter

! In the classical FFT algorithms these program constants are the so-called twiddle
factors.



13 of [4].) As an example, the Cooley-Tukey FFT of CG, G a cyclic 2-group,
uses only roots of unity as program constants and is thus essentially 2-optimal
in the Ls-model.

Prior to performing a DFT one has to solve a fundamental problem in rep-
resentation theory: up to equivalence, all irreducible representations of CG have
to be generated. In general not an easy task! Even worse: as we are interested
in a fast evaluation of D = @Dy we should choose the representatives Dy in the
equivalence classes very carefully. In other words, we have to choose the right
X} above.

At least for the class of supersolvable groups, it turns out that choosing the
right bases is quite easy. Moreover both problems (generating a DFT, performing
a DFT) can be solved in an essentially optimal way. Furthermore, the results
lead to fast algorithms not only in theory but also in a practical sense. The aim
of this paper is to present these results and some of its consequences without
giving too much technical details. For more information we refer to [1,2,4,5,8,
12].

The rest of this paper is organized as follows. After some preparations, we
describe in Section 2 geometrically a monomial DFT for supersolvable groups
and indicate how this yields FFTs for supersolvable groups. Section 3 presents
the main ideas of the algorithm that constructs monomial DFTs. Furthermore,
some implementation details and running times are shown. Section 4 sketches
some applications.

2 Monomial DFTs for Supersolvable Groups

A finite group G is called supersolvable iff there exists a chain
T:(G:Gn ODG,_1D...DG, DGOZ{l})

such that each G is a normal subgroup in G and all indices [G; : G;_1] =: p; are
prime. Thus 7 is a chief series of G with chief factors G;/G;—; of prime order.
For example, all nilpotent groups (especially all groups of prime power order)
are supersolvable.

In this section we are going to describe the irreducible representations of
supersolvable groups in a geometric way. This approach will be the theoretical
basis of the algorithmic approach shown in the next section. We need some
preparations.

2.1 Basic Definitions and Tools

The character y of a representation D of €CG is defined by x(g) := Trace(D(g)),
for ¢ € (. Characters are constant on conjugacy classes and two represen-
tations are equivalent iff their characters are equal. Characters correspond-
ing to irreducible representations are called irreducible characters. A charac-
ter is called linear iff it corresponds to a representation of degree 1. By Irr(G)



we denote the set of all irreducible characters of GG. The space C'F(G,C) of
all complex-valued class functions on (G becomes an inner product space by
{x|v) = |G|t deG x(g)¥(g). For a proof of the following facts we refer to [9]:

Theorem 1. For a finite group G with h conjugacy classes the following is true:

(1) Trr(G) = {x1, .-, xn} is an orthonormal basis of CF (G, C).

(2) Let F' and Dy be representations of CG with characters x and xyi, respec-
tively. If Dy is irreducible, then the multiplicity { Dy |F) with which Dy, occurs
in F equals {xx|x).

(3) Ifer :=ey, := X|kT(|1) deG k(g7 1)y, then ey, ..., e, are a basis of the center
of CG. Moreover, 1 = e1 + ...+ e; and exe; = Opjep. (The ep are called
central primitive idempotents in CG.)

(4) If M is a left CG-module affording the representation F with character x,
then M = @Zz1ekM (isotypic decomposition). If My is a simple module
affording the character xyi, then ex M, the isotypic component of type Y, 18
isomorphic to the direct sum of {xi|x) copies of My,. Every simple submodule
of M affording the character x ts contained in ex M.

Let H be a subgroup of GG. Then CH can be viewed as a subalgebra of CG.
If D is a representation of CG, then its restriction to CH is a representation of
CH denoted by D | H =: F. In turn, D is called an extension of F. Similarly,
¥ | H denotes the restriction of the character x.

One important tool in constructing representations is the process of induc-
tion, where a representation of a group ' is constructed from a representation of
a subgroup H. In terms of modules, the construction is straightforward: let L be
a left ideal in CH. Then CGL is a left ideal in CG and with G = U{_;¢; H one
obtains the decomposition CGL = ®i_,¢;L as a C-space. In particular, CGL
has dimension [G : H] -dim L. The left CG-module CGL is said to be induced
by L. A look at the corresponding matrix representations leads to the following
definition. Let H be a subgroup of the group G, T := (g1, ..., gr) a transversal
of the left cosets of H in G and let F' be a representation of CH of degree f.
The induced representation F'tpG of CG of degree f - r is defined for x € G by

F1pG(z) = (F(g7 " 2g5))1<i.j<r € (CF¥1)7,

where F(y) = F(y) ify € H, and F(y) is the f-square all zero matrix, if
y € G\ H. Tt is easily checked that this defines a representation of CG. Tak-
ing different transversals gives possibly different, but equivalent representations.
Thus in non-critical situations we sometimes write F'1( instead of F'1,G. Note
that FtpG(z), for © € G, is a block matrix, with exactly one non-zero block
in each block row and in each block column. In particular, if F' is of degree 1,
then, for all # € GG, the matrix F1pG(x) is monomial. (Recall that a matrix is
called monomial iff it has exactly one non-zero entry in each row and in each
column. A representation D of CG is said to be monomial iff D(g) is monomial,
for all ¢ € G.) A group G is called an M-group if every irreducible represen-
tation is equivalent to a monomial one. Below we will give an alternative proof



to the well-known fact that supersolvable groups are M-groups. There is a close
connection between restriction and induction. A more precise statement reads
as follows.

Theorem 2 (Frobenius Reciprocity Theorem). Let H be a subgroup of
G. Furthermore, let F' and D be irreducible representations of CH and CG,
respectively. Then the multiplicity (F|DLH) of F' in DL H equals the multiplicity
(D|F1G) of D in FAG: (F|DLH)Y = (D|F1G).

If N is a normal subgroup of G and F' a representation of CN, then for g € G
we define a new representation F'9 of CN by F9(n) := F(g~'ng) foralln € N. F
and F9 are called conjugate representations. As {f(n)|n € N} = {F9(n)|n € N},
F is irreducible iff F'9 is irreducible, and G acts on Irr(N) by conjugation via
gx = (N > n x(97tng)). The last tool needed for our geometric approach is
the following special case of Clifford theory.

Theorem 3 (Clifford’s Theorem). Let N be a normal subgroup in G of prime
index p, and let F be an irreducible representation of CN. For a fired g € G\ N,
let T' denote the transversal (1,g,9% ...,9°~ ') of the cosets of N in G. Then
exactly one of the following two cases applies.

(1) Al F9" are equivalent. Then there are exactly p irreducible representations
Do,...,Dp_1 of CG extending F. The Dy are parwise inequivalent and
satisfy F'1G ~ Dy @ ... ® Dyp_1. Moreover, if X%, xt, .., xP7 Y are the linear
characters of the cyclic group G/N in a suitable order, we have Dy = x*® Dy
for all k, i.e., Dy(z) = x*(zN)Dy(z), for all z € G.

(2) The representations F9" are pairwise inequivalent. In this case, the induced
representation F1G s irreducible.

To decide which case in Clifford’s Theorem applies, we work with intertwining
spaces. Recall that for two representations D and A of CG, both of degree d,
the intertwining space is defined by

Int(D,A):={X € @dXd|XD(g) = A(g)X, for all g € G}.

2.2 A Geometric Approach

Let 7 = (Gn D Gpo1 D ... D G) be a chief series of the supersolvable group
G = G, of exponent e and let x € Trr(G) be a fixed irreducible character of G.
We are going to associate to x a simple left CG-module M affording x and a basis
in M such that the resulting representation D is monomial, i.e.; D is monomial
and each non-zero entry of D(g), ¢ € G, is an e-th root of unity. To this end,
we consider all sequences w = (xo,...,Xn = X), with irreducible characters
X € Irr(G;). By Theorem 1 (4) and Frobenius Reciprocity the product

e(w) = ey, .. ey,



of the corresponding central primitive idempotents is non-zero iff all multiplic-
ities {xi|xi+1) = {Xilxi+14Gs) are positive. The set of all those sequences will
be denoted by W(x):

W(X) = {(XO’ s Xn = X) | Xi € II'I'(GZ'), <Xi|Xi+1> > 0}~

Theorem 4 ([6]). Let G be a supersolvable group of exponent e, x an irreducible
character of G, and T a chief series of G. Then the following holds.

(1) Let w € W(x). Then e(w) is a primitive idempotent in CG and CGe(w) is
a simple CG-module affording the character x. The dimension of CGe(w)
equals x(1) = |W(x)|.

(2) Let v € W(x) and set M := CGe(v). Then M = Gyewe(w)M is a
decomposition of M into 1-dimensional linear subspaces e(w)M .

(3) G acts transitively on W(x) by g(xo,---,Xn) := (¢X0s- -, 9Xn)-

(4) For all g € G and all w € W(x) we have ge(w)g™! = e(gw).

(5) Let U be the stabilizer of v € W(x) and L a transversal of the left cosets of
U in G. Then {le(v)|t € L} is a C-basis of CGe(v) and the corresponding
representation D of CG is e-monomual. More precisely, if the 1-dimensional
CU-module e(v)CGe(v) affords the linear character A, then e(v) equals the
central primitive idempotent corresponding to A: e(v) = ey, and D = M G.

Proof. (1). ey = ([Ticn Vex = Hi<n(zx,elrr(G,) ex.)ex = ZweW(x) e(w). Thus
ey 1s the sum of x(1) pairwise orthogonal idempotents e(w); thus all e(w) are
primitive.

(2). Let M = CGe(v) and w € W(x). Then e(w) applied to M causes
successive isotypic decompositions of M along 7 ey, - (ey, - (.. .- (ex._, M) ...)).
As (xi|xi+1) = 1 (by Clifford’s Theorem), e(w) M is a simple CGg-module, hence
one-dimensional.

(3). By Clifford’s Theorem, G acts transitively on the irreducible constituents
of x | Gp_1. Observing that G,,_1 acts trivially on Irr(G,_1), an induction on
n yields our claim.

(4). This follows from gey, g™ = ey, for all x; € Irr(G5).

(5). By (3) and (4), G acts transitively on the set of lines {e(w)M|w € W(x)}
according to ge(w)M = e(gw)gM = e(gw)M. Choosing any nonzero vector
Ty € e(w)M yields a basis (2w )wew(y) of M, and, by (2), the corresponding
matrix representation is monomial. Now we choose the x,, in such a way that the
non-zero entries in the representation matrices to the group elements are all eth
roots of unity. To this end, let U < (G denote the stabilizer of v € W(x) and L a
left coset transversal of U in G. As for g € G, 0 # ge(v) = e(gv)ge(v) € e(gv)M
and G acts transitively on W (y), the set {ge(v)|g € L} is a C-basis of M. As
U stabilizes the line e(v)M = Ce(v), there exists a linear character A of U such
that ue(v) = A(u)e(v), for all u € U. Now let ey = [U[7' 3" . AMu™Hu € CU
denote the central primitive idempotent corresponding to A. Then eye(v) =
e(v) = e(v)ex, and hence CGe(v) < CGey. Thus ey = ae(v), for some a € CG.
But then, e(v) = exe(v) = ae(v)e(v) = ae(v) = ex. m|



The above result suggests to introduce the 7 -character graph of G. This
graph has n + 1 levels. The nodes of level ¢ are the irreducible characters of Gj.
Edges do exist at most between nodes of adjacent levels. More precisely, there
is an edge between x; € Trr(G;) and xi41 € Trr(Gigr) iff {xilxi+1) > 0 (note
that {x;|xit+1) = 1 for supersolvable groups). In addition, it is very convenient
to know the action of G on each level. For this it suffices to take one element
g; € Gj\G;_1 for each j and specify the action of g,,, ..., gi41 on Irr(G;). (Note
that all gi, & <1, act trivially on Irr(G;).) Figure 1 in Subsection 3.3 shows the
character graph of a group of order 128.

2.3 FFTs for Supersolvable Groups

According to the last subsection we already know that a supersolvable group G
of exponent e has an e-monomial DFT D = @&"_, Dy.. The construction of the
Dy, was along 7. Now we look at such a DFT D from a more algorithmic point
of view.

Definition 1. Let 7 = (G = G, D ... Gy = {1}) be a chain of subgroups of the
finite group G. A representation D of CG is called T -adapted iff for all0 <i<n
the following conditions hold:

(1) The restriction D|G; is equal to the direct sum of irreducible representations
of CGy, e, DIG; = ©4F3q, with wrreducible representations Fy,.

(2) Equivalent irreducible constituents of D|G; are equal, i.e., if Fiq ~ F;; then
Fiq = Fiy (but not necessarily ¢ =t).

If D is T-adapted then for all z < n, D|G; is T;-adapted, where 7; denotes the
chain (G; D ... D Gy). It is not hard to show that the above constructed mono-
mial DFTs for supersolvable groups are in fact 7T-adapted, see, e.g. [BCS,p.337].
Now we can state the main result of this subsection.

Theorem 5 (Baum [1]). If G is a supersolvable group with chief series T,
then any T -adapted DFT of CG is monomial and can be evaluated with at most
v - |G| - log |G| operations, where 1.5 < v < 8.5 depends on the prime divisors of
|G-

Proof. (Sketch) Let [G,, : Gn_1] = p and D" = &D;, a T-adapted monomial
DFT of CGy,. Let Fy, ..., F, be the distinct irreducible constituents of DJG,_1.
Then D*~1 = @}, I is a monomial, 7, _i-adapted DFT of CGp—1. As copying
is free in our model, L(D"|G,_1) = L(D"71).

Instead of evaluating D™ at ¢ € CG, directly, we rewrite a according to
the coset decomposition G,, = |_Ij<pngn_1. Then for suitable a; € CG\—1 we
have a = Zj<pgjaj. Hence D"(a) = Zj<p D™ (g7)(D"{Gp—1)(a;). This for-
mula suggests a divide-and-conquer strategy. In the divide-step, we evaluate the
p “smaller” DFTs D"~!(a;). By a tricky application of Clifford’s Theorem com-
bined with local FFTs of size p to handle simultaneously the cases of p extensions,
the conquer-step is managed in such a way that altogether an O(]G|log|G|) up-
per bound is obtained. a



According to Theorem 4 and Theorem 5, a 7-adapted DFT D = @Zlek
of CG is essentially unique. In the sequel, we sometimes write Trrep(G,7) =
{D1, ..., Dp} and similarly Irrep(G;, 7;).

3 Efficient Construction of monomial DFTs

In this section we give a summary of the algorithm in [3] which constructs
a monomial DFT of a supersolvable group G given by a pc-presentation with
O(|G|log|G|) operations. One can even show, that the running time is essentially
proportional to the output length. For a detailed description and analysis of this
algorithm we refer to [3].

3.1 PC-Presentations

Let G be a supersolvable group with chief series 7 as above. For 1 < i < n let
gi be an element in G not in G;_1. With respect to (g1,...,9n) each element
g € G can be expressed uniquely in normal form

g=gm - gn T gt (0 <e < pi).

The multiplication in G is completely described, if the normal forms of all powers
¢F" and all commutators [g;, g;] := gi_lgj_lgigj are known. More formally, every
supersolvable group has a power-commutator presentation (pc-presentation) of
the form

G:<g1,...,gn|gilzui (lgign)’[gi’gj]:wij (1§Z<3§n)>’

with primes p; as well as words u; € Gi_1 and w;; € G, all given in normal
form. Moreover, we require the presentation to be consistent, 1.e., that every
word in the generators has a unique normal form. Consistent pc-presentations
of this kind exactly describe the class of supersolvable groups.

With respect to such a pc-presentation, an irreducible representation of
the group G is fully described by the representing matrices of the generators
Gis- -5 91-

As an example, we give a consistent pc-presentation of a supersolvable group
with 128 elements denoted by (125. In the presentation, trivial commutator
relations are omitted.

Gias = (97,96, 95, 94,93, 92,91 | 91 = 95 = 95 = 95 = g6 = 1,93 = 91,95 = ga,

[92,96] = [92,97] = [93,94] = [93,95] = [93,96] =1, [93,97] = g2,
(94, 95] = g2 - 91,94, 96] = 93 - 91, [95, 97] = 93, [96, 97] = g5)

3.2 The Algorithm

Before describing the algorithm, we want to mention the following important
points. First, the pc-presentation of G already contains all the information on
the group needed in the algorithm, so no group operations are required at all.



Second, even though the irreducible representations are computed over C,
it turns out that the algorithm uses just integer arithmetic. Hence, we never
run into numerical problems! More precisely, all matrices to be processed by
the algorithm are e-monomial and all matrix manipulations are multiplications.
Therefore, we can compute in the additive group Z7., which is isomorphic to the
group of eth roots of unity in €. (One can show that the algorithm works over
any field A containing such a primitive eth root of unity, but, for simplicity, we
just consider the case K = C.)

The central idea of the algorithm is based on Clifford’s Theorem. In our
notation it says that given an irreducible representation F of CG;_1, 0 < < n,
then there are two cases:

Case 1. F extends to p; = [G; : G;_1] pairwise inequivalent irreducible repre-
sentations of €CG; of the same degree deg(F).
Case 2. The induction of F'is an irreducible representation of CG; of degree

pi - deg(F).

Furthermore, up to equivalence all irreducible representations of CG; can be
obtained this way. This allows us to construct the irreducible representations
of CG iteratively in a bottom-up fashion along the chief series 7. However,
constructing an arbitrary DFT is not what we want. We are interested in the
construction of a very special set of irreducible representations - namely repre-
sentations resulting in e-monomial matrices when evaluated at group elements.
Suppose, we already have constructed a full set of nonequivalent irreducible e-
monomial representations of CG;_; denoted by F. In order to construct an e-
monomial D € Trrep(Gy, T;) of level i from a given e-monomial F' € F of level
¢t — 1, we need to know the relation between the conjugate representation F'9:
and the corresponding F € F with F9 ~ F. That is the reason, why the in-
tertwining spaces Int(F9¢ F) come into play. It turns out that all intertwining
matrices in Int(F9, F) are scalar multiples of an e-monomial matrix. In a second
phase, the algorithm computes such intertwining matrices. To cut a long story
short, we now give a summary of the algorithm. At level ¢ the algorithm takes
the following input:

Phase 1. F = Trrep(G;_1,7i—1), i.e., a full set of nonequivalent irreducible e-
monomial representations of CG;_1 such that @Fe}' Fis T;_1-adapted.
Phase 2. For every i — 1 < j < n a permutation n; of F such that F9 ~ 7; F

for all F € F as well as e-monomial matrices X;r € Int(F9%,m;F), F € F.

The following output is computed:

Phase 1. D = Irrep(G;, Ti), i.e., a full set of nonequivalent irreducible e-mono-
mial representations of CG; such that @DED D is T;-adapted.

Phase 2. For every ¢ < j < n a permutation 7; of D such that D% ~ ;D for
all D € D as well as e-monomial matrices Y;p € Int(D% , 7; D), D € D.

Note that the input of level 0 is trivial, all intertwining matrices being set to 1.
Level ¢ of the algorithm consists of two phases.



Phase 1 (Computation of D). Consider F' € F and its g;-conjugate repre-
sentation F'9¢.

Casel. F ~ F9% 1e., mF = F.Then, by Clifford’s Theorem, there are exactly
p := p; pairwise nonequivalent irreducible extensions Dg, ..., D,_1 of F' to CG;
satisfying Dy =x" @ Dy, where x°, x*,...,x?~! are the irreducible characters of
the cyclic group G;/G;—1. Since D, | Gi_1 = F, k=1,...,p— 1, in this step
only the Dy (g;) have to be computed. One can show that Dy(g;) € Int(F9, F)
and ¢ X¥, = F(g¥) with a constant ¢ € €*. The last equation has p distinct
solutions ¢g, ..., ¢p,—1 € C*, which can be proven to be even eth roots of unity.
Thus the desired e-monomial matrices Dy(g;), 0 < k < p, just differ by a factor,
which is a power of a p;th root of unity, and are given by Dy (g;) := cx Xir.

Case 2. F + F9 ie, ml # F. Again, by Clifford’s Theorem, the induced
representation F' 1 G is irreducible and (F 1 G;) | Gi-1 = @L_, F9 . As
F9f ~ 78 F, we know the existence of a unique irreducible representation D of
Cd, sucht that D | G- = @Z;é 78 F. This 7;-adapted representation is now
to be computed. We already know D(g1),..., D(g;—1) from level i — 1. Thus it
remains to specify D(g;). Here, the intertwining spaces constructed in level i —1

are to be used. If Xy := X, x-1p-...- Xjp, 0 < k <p, then
Z
X x5!
-1
D(g;) = XoX]
Xp1 X,

where 7 := XoF (¢0) X2

)X, _1, as shown in [3].

By these two constructions, all irreducible representations of GG; up to isomor-
phism are obtained, and Phase 1 is complete. In addition, during the construction
in Phase 1 a bipartite graph is built up in which ' € F and D € D are linked
if and only if F 1s a constituent of D | G;_1. This “traceback” information is
needed in the next phase. Furthermore, this information, collected over all levels
t=1,...,n,is nothing else but the T-character graph of the group G.

Phase 2 (Computation of 7; and Y;p). Let F € F and i < j < n. We have
to consider the same two cases as in Phase 1.

Case 1. mF = F.In Phase 1, the p extensions Dy, ..., D,_; have been com-
puted. As Dy, is an extension of /', one can show that 7; 10 must be an extension
of m; . Let Ag, ..., Ap_1 be the extension of 7; F'. Then it can be shown that
Yip, := X;r must be set for all k¥ and 7;({Do,...,Dp_1}) = {Ao, ..., Ap_1}.
Using Y;p, one can determine 7; as is explained in [3].

Case 2. m;F # F.In this case, 7;(D) can be immediately determined, since it
equals the unique A € D such that A | ;_1 contains 7; F' (this information is
encoded in the bipartite graph built up in Phase 1). We don’t want to discuss
here the construction of Y;p, which is a bit delicate, but refer to [3].



3.3 An Example: Gi2s

Figure 1 shows the character graph of the group (28 given by its pc-presen-
tation in Subsection 3.1. Each node represents an irreducible character and its
corresponding irreducible representation. The numbers on the left hand side in-
dicate the levels and the numbers on the top are the degrees of the corresponding
reprentations of the top level. To illustrate the above algorithm, we describe the
construction of the irreducible representation of level 7, denoted by D, corre-
sponding to the circled node in Figure 1.
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Fig. 1. Character graph of Gi2s.

The representation D is induced, let’s say by the representation F' of level 6,
and 1s constructed in Phase 1 Case 2 of the algorithm. Suppose the algorithm
has already constructed all data up to level 6 including F' and the intertwining
matrix Xr7p. Since p = pr = 2, we have D | Gg = F @ n7F and D is known at
the generators g1, ..., gs. We can compute D(g7) by the formula

D(ﬂ?) =

F(g?)Xfl] _
1 )

F(g4)X7_p}] _ w?

X X5t [X7F

where w denotes an 8th root of unity, e = 8 being the exponent of (G125. Here we
have used that X is always the identity, X; = X7 is in our specific example

also the identity matrix of dimension 2. F(g2) = F(g4) = [1 w4] has to be

computed using the power-relation g2 = g4 of the pc-presentation.



3.4 Implementation

The presented algorithm has been implemented in the programming language C'.
The tests were run on an Intel Pentium IT with 300 MHz. As we have mentioned
previously, no field arithmetic is needed but only computations in the additve
group Z .. For simplicity, we have assumed e to be known, even though one can
show that this is not necessary.

The efficiency of the implementation 1s based on the fact, that e-monomial
matrices of size N can be multiplied or inverted with only N operations in ..
Since any e-monomial matrix M € CV*¥ can be written in the form

M = ndiag(w®, ... ,w)

with a permutation m € Sy and non-zero coefficients w® ... w?, just the 2N
integers m(1),...,m(N) and ay,...,any have to be stored for M. For the group

G and any r € IN define d"(G) = 22:1 d,, where h denotes the number of
conjugacy classes of GG and dy, ..., dy the degrees of the irreducible characters
of . One easily checks, that the running time to write out the result of the
algorithm, i.e., all matrices D; x(g;), 1 < i < n, 1 < k < h; (h; denoting the
number of conjugacy classes of (&;), 1 <1 < 4, is proportional to Y ., i - d'(G;),
which is bounded from above by >, log(|G;|) - d*(G).

One can show that the number of operations of the algorithm is of this
magnitude O(3 1, log(|G;|) - d*(G;)) with a moderate constant < 20. In this
sense the algorithm is nearly optimal. The following table shows the running
times for some small supersolvable groups to construct all the matrices D; » (¢1)
as above. Here |G| is the order of G, h the number of conjugacy classes of G, o.l.
the output length of the algorithm (i.e., >_=_, log(|G;]) - d*(G;)), r.t. the running
time in milliseconds and r.t./o.l. the quotient of the last two quantities. The
groups in the first three examples are direct products of the symmetric group
Ss, the group in the forth example is G128 from subsection 3.3 and the last
example is concerned with a Sylow 2-subgroup of the symmetric group Sis.

G |Gl & ol.fr.t. (ms)|r.t/o.l.
(Ss)® T776| 243| 13235 266| 0.020
(S5)° 46656| 729| 63528 1125| 0.018
(S5)” 279936|2187|296464|  4250| 0.014
Gias 128 40| 280 15 0.054
Syl,(S16)| 32768| 230 30960|  2156| 0.069

Of course, the first three groups are of a very simple nature. However, the run-
ning time of the algorithm does not essentially depend on the complexity of the
pc-presentation, but mainly on the number and degrees of the irreducible repre-
sentations constituting the DFT. This is verified by the more complex example
Syl,(S16). Therefore, the actual running times for constructing a monomial DFT
of CG reflect very well the theoretical result concerning the output length.



4 Applications

4.1 Related Work

The fast DFT-generation algorithm has been used as a subroutine to solve other
computational problems. Thiimmel [12] has designed an algorithm that computes
from a pe-presentation of a finite p-group G in time O(p- h - |G|) its h conjugacy
classes as well as the character table. Omrani and Shokrollahi [8] have combined
the fast DFT-generation algorithm with Galois theory to construct a full set
of irreducible representations of a supersolvable group G over a finite field K,
char K |G|, which is not assumed to contain a primitive eth root of unity.

4.2 Fast Convolution

FFT-algorithms allow a fast convolution in the group algebra CG along the
formula: a-b = D=Y(D(a)-D(b)), for a,b € CG. (Note that the linear complexities
of a DFT D and its inverse do not differ substantially, for |L(D)—L(D~1)| < |G|,
see [2].) Let D = @!_ Dy be a DFT of G and dj the degree of Dj. Then the

convolution in UG can be performed with at most 2L(D)+ L(D™1)+2 22:1 d3
arithmetic operations. Thus if D, and hence D™, allows a fast Fourier transform,
and d := maxy, dj, then convolution can be done in time O(|G|log |G| + d|G).
As 1 < d < |G]'/?, this constitutes a substantial improvement over the naive
convolution algorithm, which performs this task in time quadratic in the order
of (G. Even in a very special case, a variant of this FFT-based fast convolution
in CG might shed new light onto a classical problem in computational group
theory. A sketch of this will be the last topic of this paper.

4.3 DFT-based Collection

As already mentioned, every element @ in a pc-presented supersolvable group G
can be expressed as a normal word: a = g% := g% - g."7" - .. .- g"*. The normal
form problem is to compute on input («,3) the unique vy with g% - ¢ = ¢7.
Classical techniques for solving this problem involve various kinds of collection
processes (see, e.g., [10]) or Hall polynomials combined with interpolation tech-
niques (see, e.g., [11]). To the best of our knowledge, there is no strategy that is
always superior to all other strategies.

As an alternative to classical collection strategies we propose DFT-based
normalization. To simplify our notation, we start with a pc-presented p-group
G with corresponding chief series 7 = (G, D ... D Gy) and complete lists
Irrep(Gy, 7i) of Ti-adapted e-monomial irreducible representations of CG;. D g
always denotes the trivial representation of CG;, D; 1 always a non-trivial exten-
sion of Dj;_ o satisfying D; 1(g;) = ¢, where ( is a primitive p-th root of unity.
On input («, 8), the algorithm proceeds in n steps (n downto 1) to compute 7.
After Step ¢ + 1, the numbers v,,...,7v4+1 are known. To get =; in Step 7, we
work in G/G;_1 by replacing g; by 1, for all j < i. Consider the word



By definition, w; € G; and w; = ¢, mod G;_;. We want to compute D; 1 (w;),
since 7; is determined by D;1(w;) = D;1(g]") = (7. However, since w; is
expressed in all generators g1, ..., g,, this cannot be done directly at level 7. To
this end we choose a suitable representation F' € Irrep(G,, Tp) whose restriction
to CG; contains D; ; as its first irreducible constituent. Then all what remains
to do is to compute the first position of the diagonal matrix F'(w;), which equals

D; 1(w;) = Dia(g;") = ¢ As
F(wi) = F(gig1) " Fgn) ™™ - Fgn)® - Fg0)™ - Fgn)’ -+ F(g:)™

is a product of monomial matrices and we are interested in only one entry of the
final result, each factor F'(g;) causes only one addition in Z.. Altogether, we
obtain the following.

Theorem 6. Let GG be a pe-presented p-group of order p™ and exponent e, with
corresponding chief series T. Then, given (suitable parts of ) the T -adapted DFT,
normalization of the product of two normal words in G can be done with at most
2-p-n? additions in Z..

Finally, we want to remark that a similar result holds for the normalization of
any formula in the generators g1,..., 9, of G.
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