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Introduction

• Connectionist Temporal Classification

• Graves, Fernández, Gomez, and Schmidhuber. Connectionist Temporal 
Classification: Labelling Unsegmented Sequence Data with Recurrent 
Neural Networks. ICML 2006. [ACM]

• “Temporal Classification”: Labelling un-segmented data sequences

• “Connectionist”: Refers to the use of deep learning
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Introduction

• Strongly aligned training data
• Character annotations (labels) 

for each time step
• Can be used for training in a 

standard classification setup
• Tedious to annotate

• Weakly aligned training data
• Globally corresponding 

character sequence without 
local alignment

• Cannot be used for training in a 
standard classification setup

• Easier to annotate

• Aim of CTC: Employing weakly 
aligned data for training

• Useful for many applications
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Training data in speech recognition
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Introduction

• Strongly aligned training data
• Pitch/chroma annotations 

(labels) for each time step
• Can be used for training in a 

standard classification setup
• Tedious to annotate

• Weakly aligned training data
• Globally corresponding 

pitch/chroma sequence without 
local alignment

• Cannot be used for training in a 
standard classification setup

• Easier to annotate

• Aim of CTC: Employing weakly 
aligned data for training

• Useful for many applications

Training data in theme-based music retrieval
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Introduction
Standard deep learning setup: Strongly aligned training data

Loss (e.g., Cross-entropy)
→ Compares corresponding labels 
and predictions for each time step 

individually.

Training data: Input

Training data: Target labels
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Neural network

Update

Introduction
Standard deep learning setup: Strongly aligned training data

Training data: Input

Training data: Target labels
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Network prediction
"$#!

Neural network

Introduction
Non-standard deep learning setup: Weakly aligned training data

Loss (e.g., CTC)
→ Compares labels and predictions 

based on temporal alignment 
computed as part of the loss.

Training data: Input

Training data: Target labels
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Network prediction
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Neural network

Update

Introduction
Alignment Representations

“Arrow” representation

“Point” representation

“Unfolded” representation
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CTC Loss Computation: Intuition

• Alphabet ! = #, %, &
• Label sequence ' = (#, &, %)

• Network output          *+ , =

• Alignment - is “expansion” of ' to the temporal length of *+ , (possibly 
consecutive duplicates and blank symbols .)

# & %

CTC Loss Computation: Intuition

• Alphabet ! = #, %, &
• Label sequence ' = (#, &, %)
• Naive idea: “Hard” alignment

(Related: Viterbi decoding)

• Not suitable for gradient-descent-based training (not differentiable)!

• Therefore: “Soft” alignment
(Related: Forward algorithm)

⋮

+(#, #, #, #, #, #, &, %) ≈ 7.14 1 1034

+(#, #, #, #, #, &, %, %) ≈ 3.98 1 1034

+(#, #, #, #, #, &, %, 8) ≈ 3.23 1 103:

⋮
+(8, 8, 8, 8, 8, #, &, %) ≈ 5.82 1 103:

+(8, #, #, &, %, %, 8, 8) ≈ 0.015

<
=
+(=) ≈0.069

# & %



CTC Loss Computation: Intuition

• Alphabet ! = #, %, &
• Label sequence ' = (#, &, %)
• Naive idea: “Hard” alignment

(Related: Viterbi decoding)

• Not suitable for gradient-descent-based training (not differentiable)!

• Therefore: “Soft” alignment
(Related: Forward algorithm)

*(+, #, #, &, %, %, +, +) ≈ 0.015

# & %

Examples

CTC Loss Computation: Formal Description

! = ($%, $',⋯ , $))

• Input feature sequence (length +, elements 
$, ∈ ℝ/, frame 0, dimensionality 1 ∈ ℕ)

! = ($%, $',⋯ , $))

Examples

CTC Loss Computation: Formal Description

! = ($%, $',⋯ , $))

+ = (,%, ,',⋯ , ,-)

• Input feature sequence (length ., elements 
$/ ∈ ℝ2, frame 3, dimensionality 4 ∈ ℕ)

• Label sequence (length 6, elements ,7 ∈
8, index 9, alphabet 8)

! = ($%, $',⋯ , $)) + = (,%, ,',⋯ , ,-)

: ; <
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Examples

CTC Loss Computation: Formal Description

! = ($%, $',⋯ , $))

+ = (,%, ,',⋯ , ,-)

• Input feature sequence (length ., elements 
$/ ∈ ℝ2, frame 3, dimensionality 4 ∈ ℕ)

• Label sequence (length 6, elements ,7 ∈
8, index 9, alphabet 8)

• Neural network :;

! = ($%, $',⋯ , $)) + = (,%, ,',⋯ , ,-)

:;(!)

Examples

CTC Loss Computation: Formal Description

! = ($%, $',⋯ , $))

+ = (,%, ,',⋯ , ,-)

./(!) = (0%, 0',⋯ , 0))

• Input feature sequence (length 1, elements 
$2 ∈ ℝ5, frame 6, dimensionality 7 ∈ ℕ)

• Label sequence (length 9, elements ,: ∈
;, index <, alphabet ;)

• Neural network ./
• Network output: probability distribution

02: ;> → [0,1] (;′ = ; ∪ {G})

! = ($%, $',⋯ , $)) + = (,%, ,',⋯ , ,-)

./(!)

(0%, 0',⋯ , 0))

CTC Loss Computation: Formal Description

• Alignment of label sequence ! to feature 
sequence " yields sequence (length #, 
elements $% ∈ '′)

" = (,-, ,/,⋯ , ,1) ! = (2-, 2/,⋯ , 23)

45(")6 = ($-, $/,⋯ , $1)

6 = ($-, $/,⋯ , $1)(7-, 7/,⋯ , 71)

Examples

8 9 9 : ; ; 8 8



CTC Loss Computation: Formal Description

• Alignment of label sequence ! to feature 
sequence " yields sequence (length #, 
elements $% ∈ '′)

• Probability of alignment

" = (,-, ,/,⋯ , ,1) ! = (2-, 2/,⋯ , 23)

45(")6 = ($-, $/,⋯ , $1)

6 = ($-, $/,⋯ , $1)
7(6|") =9

%:-

1
;%($%)

7(6|")

(;-, ;/,⋯ , ;1)

Examples

7 ) ≈ 0.043A B B C D D A A

CTC Loss Computation: Formal Description

• Alignment of label sequence ! to feature 
sequence " yields sequence (length #, 
elements $% ∈ '′)

• Probability of alignment

• Alignment * can be reduced to label 
sequence ! by composition of two functions:

• Removing consecutive duplicates +,
• Removing blank symbols +,,
• + = +,, ∘ +,
• + * = +′′ +′ * = !

" = (01, 03,⋯ , 05) ! = (61, 63,⋯ , 67)

89(")* = ($1, $3,⋯ , $5)

* = ($1, $3,⋯ , $5)
:(*|") =<

%=1

5
>%($%)

:(*|")

(>1, >3,⋯ , >5)

+(*)

Examples
* = ?, ?, @, @, @

+′ * = + * = ?, @

* = ?, A, ?, @, A, @, @
+′(*) = ?, A, ?, @, A, @

+′′ +′ * = +(*) = ?, ?, @, @

CTC Loss Computation: Formal Description

• Many different alignments ! map to the 
same label sequence " (“valid alignments”)

• Set of all valid alignments

• Probability of label sequence

• CTC loss

• Problem: Combinatorial explosion in the 
cardinality of the set #$,"

• Solution: Compute & " $ by dynamic 
programing

$ = ()*, )+,⋯ , )-) " = (/*, /+,⋯ , /0)

12($)

! = (3*, 3+,⋯ , 3-)

&(!|$)

(5*, 5+,⋯ , 5-)

⋱

⋱

7(!)#$," = {! ∈ :; -: 7(!) = "}

&("|$) = >
!∈#$,"

&(!|$)

?2 $, " = − log&("|$)

&("|$)

?2 $, "

#$,"

CTC Loss Computation: Formal Description

• Modified label sequence (length 2" + 1, 
elements %& ∈ (′ for * ∈ {1,⋯ , 2" + 1})

obtained by inserting blank symbols / into 0 at 
the beginning, the end, and between each two 
consecutive elements

• Idea: Align network output (23, 24,⋯ , 25) to 
modified label sequence (73, 74,⋯ , 74893), but 
allow for skipping the inserted blank symbols /
(except where it is used to separate 
consecutive duplicates)

• Set of all alignments that correspond to :

: = (73, 74,⋯ , 74893)

Examples
0 = <, =
: = /, <, /, =, /

0 = <, <, =, =, =
: = /, <, /, <, /, =, /, =, /, =, /

! = ($%, $',⋯ , $)) + = (,%, ,',⋯ , ,-)

./(!)

0 = (1%, 1',⋯ , 1))

2(0|!)

(4%, 4',⋯ , 4))

⋱

⋱

6(0)

2(+|!)

7/ !, +

8!,+

>?,:
@ = {A ∈ (@ 5: C′(A) = :}

CTC Loss Computation: Formal Description

• Forward matrix

of ! ∈ {1,⋯ ,'} and ) ∈ 1,⋯ , 2+ + 1 ,
encoding the probability that the first ! time 
steps correspond to the first ) elements of the 
modified label sequence -

• Forward matrix contains probability of label 
sequence

. ), ! = 0
1∈23,-4

56(1(8::))<-(8:=)

>
?<8

:
@?(A?)

B(C|3) = .(2+ + 1, ') + .(2+, ')

! = ($%, $',⋯ , $)) + = (,%, ,',⋯ , ,-)

./(!)

0 = (1%, 1',⋯ , 1))

2(0|!)

(4%, 4',⋯ , 4))

⋱

⋱

6(0)

2(+|!)

7/ !, +

8!,+

! 1,1 = %& '& = %& (
! 2,1 = %& '* = %& +&
! ,, 1 = 0, ∀, > 2

CTC Loss Computation: Formal Description

• Initialization

0 = 1 0 = 2 ⋯ 0 = N
, = 2M+ 1 0
, = 2M 0

⋮ 0
, = 2 %& +&
, = 1 %& (

Time steps

St
ep

s 
in

 6
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, = 2M 0
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! ", $ = &' () * +
! ", $ − 1 + !(" − 1, $ − 1) , if () = 3
! ", $ − 1 + !(" − 1, $ − 1) , if ()45 = ()

! ", $ − 1 + ! " − 1, $ − 1 + !(" − 2, $ − 1) , otherwise

! 1,1 = &> (> = &> 3
! 2,1 = &> (5 = &> ?>
! ", 1 = 0, ∀" > 2

CTC Loss Computation: Formal Description

• Initialization

• Recursion 

$ = 1 $ = 2 ⋯ $ = N

" = 2M+ 1 0

" = 2M 0

⋮ 0

" = 2 &> ?>
" = 1 &> 3

Time steps

St
ep

s 
in

 G

Example

G = ⋯ , 3, H, I, H, 3, J, 3,⋯

! ", $ = &' () * +
! ", $ − 1 + !(" − 1, $ − 1) , if () = 3
! ", $ − 1 + !(" − 1, $ − 1) , if ()45 = ()

! ", $ − 1 + ! " − 1, $ − 1 + !(" − 2, $ − 1) , otherwise

! 1,1 = &> (> = &> 3
! 2,1 = &> (5 = &> ?>
! ", 1 = 0, ∀" > 2
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CTC Loss Computation: Formal Description

• Initialization

• Recursion 

$ = 1 $ = 2 ⋯ $ = N
" = 2M+ 1 0 ⋯ ⋯ ⋯
" = 2M 0 ⋯ ⋯ ⋯

⋮ 0 ⋯ ⋯ ⋯
" = 2 &> ?> ⋯ ⋯ ⋯
" = 1 &> 3 ⋯ ⋯ ⋯

G(H|J)

Time steps

St
ep

s 
in
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Difference to hard 
alignment: Sum 
instead of max!

Applications

Application: Speech Recognition

1 Graves et al. Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks. ICML 2006. [ACM]
2 Sak et al. Google Voice Search: Faster and More Accurate. Google AI Blog, 2015

(https://ai.googleblog.com/2015/09/google-voice-search-faster-and-more.html).

Training pair
Weakly aligned pair: Audio & string

Input

Labels Hello

Network prediction
Character probabilities over time

• Task: Estimate character labels from 
waveform

• CTC-based training: Using weakly 
aligned pairs to train DNN for computing 
character probabilities1

• Classes: 26 characters, space, and blank 
symbol

• Approach: Finding most probable 
character sequence for given character 
probabilities, e.g., using beam search

• CTC is a core technology used in today’s 
speech recognizing systems, e.g., in the 
Google App2

Application: Lyrics Alignment

1 Stoller et al. End-to-end Lyrics Alignment for Polyphonic Music Using an Audio-To-Character Recognition Model. ICASSP 2019. [IEEE]
2 Graves et al. Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks. ICML 2006. [ACM]

Training pair
Weakly aligned pair: Audio & string

Input

Labels Hello

Network prediction
Character probabilities over time

• Task: Align character labels from lyrics to 
music recording1

• CTC-based training: Using weakly 
aligned pairs to train DNN for computing 
character probabilities (as before)2

• Classes: 26 characters, space, and blank 
symbol (as before)

• But: Now acoustic model needs to ignore 
non-singing-voice components of input 
representation

• Approach: Finding most probable 
alignment for given lyrics (dynamic 
programming similar to Viterbi)

• Beyond lyrics alignment, lyrics 
transcription is a challenging problem1

Demo: Synced 
lyrics feature in the 
Apple Music App

Song: Jingle Bells 
by Pentatonix

Source: Twitter, 
@PTXofficial
https://twitter.com/PTXofficial/
status/1337556809553301506

Sorry for the untimely 
Christmas music!

Application: Theme-Based Music Retrieval

• Task: Given a symbolically encoded 
musical theme, find music recordings, 
where theme is being played1–3

• Challenges due to differences in:1
• Modality (symbolic vs. audio)
• Tuning
• Transposition
• Tempo
• Degree of polyphony

Query
Symbolically encoded monophonic 

musical theme

!" !! ! #!$ !!"!% """ 42 &
$ ! ! #! !

Database
Audio recordings of polyphonic 

music

1 Balke et al. Retrieving Audio Recordings Using Musical Themes. ICASSP 2016. 
[IEEE]
2 Zalkow et al. Evaluating Salience Representations for Cross-Modal Retrieval of 
Western Classical Music Recordings. ICASSP 2019. [IEEE]
3 Zalkow and Müller. Using Weakly Aligned Score–Audio Pairs to Train Deep 
Chroma Models for Cross-Modal Music Retrieval. ISMIR 2020. [Zenodo]



Application: Theme-Based Music Retrieval

• Retrieval procedure based on chroma 
features and sequence alignment 
algorithm (subsequence dynamic time 
warping)1–3

• Standard chroma features capture the full 
spectral content (influenced by theme 
and accompaniment)

• Learning enhanced chroma features with 
CTC loss (mainly influenced by theme 
and not by accompaniment)3

Query

Database

1 Balke et al. Retrieving Audio Recordings Using Musical Themes. ICASSP 2016. 
[IEEE]
2 Zalkow et al. Evaluating Salience Representations for Cross-Modal Retrieval of 
Western Classical Music Recordings. ICASSP 2019. [IEEE]
3 Zalkow and Müller. Using Weakly Aligned Score–Audio Pairs to Train Deep 
Chroma Models for Cross-Modal Music Retrieval. ISMIR 2020. [Zenodo]
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Application: Theme-Based Music Retrieval

• Retrieval procedure based on chroma 
features and sequence alignment 
algorithm (subsequence dynamic time 
warping)1–3

• Standard chroma features capture the full 
spectral content (influenced by theme 
and accompaniment)

• Learning enhanced chroma features with 
CTC loss (mainly influenced by theme 
and not by accompaniment)3

Query

Database

1 Balke et al. Retrieving Audio Recordings Using Musical Themes. ICASSP 2016. 
[IEEE]
2 Zalkow et al. Evaluating Salience Representations for Cross-Modal Retrieval of 
Western Classical Music Recordings. ICASSP 2019. [IEEE]
3 Zalkow and Müller. Using Weakly Aligned Score–Audio Pairs to Train Deep 
Chroma Models for Cross-Modal Music Retrieval. ISMIR 2020. [Zenodo]
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Application: Theme-Based Music Retrieval
Training pair

Weakly aligned pair

Input

Labels E D# E G E E …

Network prediction
Chroma probabilities over time

Post-processing

• Task: Learn chroma representation that 
represents musical themes3

• CTC-based training: Using weakly 
aligned score–audio pairs to train DNN 
for computing chroma probabilities

• Classes: 12 chroma labels and blank 
symbol

• Observation: Blank-probabilities are 
active most of the time

• Approach: Post-processing of network 
prediction (remove blank probabilities 
and ℓ"-normalize each column)

1 Balke et al. Retrieving Audio Recordings Using Musical Themes. ICASSP 2016. 
[IEEE]
2 Zalkow et al. Evaluating Salience Representations for Cross-Modal Retrieval of 
Western Classical Music Recordings. ICASSP 2019. [IEEE]
3 Zalkow and Müller. Using Weakly Aligned Score–Audio Pairs to Train Deep 
Chroma Models for Cross-Modal Music Retrieval. ISMIR 2020. [Zenodo]

Chroma Variant Top-1 Top-10

Application: Theme-Based Music Retrieval
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• Retrieval results1 for dataset2 with 2067 musical 
themes

1 Zalkow and Müller. Using Weakly Aligned Score–Audio Pairs to Train Deep Chroma Models for Cross-

Modal Music Retrieval. ISMIR 2020. [Zenodo] 
2 Zalkow et al. MTD: A Multimodal Dataset of Musical Themes for MIR Research. TISMIR 2020. [TISMIR]
3 Bosch and Gómez. Melody Extraction Based on a Source-Filter Model Using Pitch Contour Selection.

SMC 2016. [UPF]

Standard chroma features 0.561 0.723

Enhanced chroma features (baseline) 0.824 0.861

DNN-based chroma features (CTC) 0.867 0.942

DNN-based chroma features (linear scaling) 0.829 0.914

DNN-based chroma features (strong alignment) 0.882     0.939

Outlook and Further Notes Outlook and Further Notes

1 Hannun. Sequence Modeling with CTC. Distill, 2017 (https://distill.pub/2017/ctc/)
2 Hannun. Transcribing Real-valued Sequences with Deep Neural Networks. PhD Thesis, Stanford University, 2018. [Stanford]

• Good review of loss computation by Hannun.1,2



Outlook and Further Notes

• CTC is suited for gradient-based training because it accumulates all 
possible alignments (i.e., summation over the set !",$). This procedure is 
different from related alignment algorithms such as dynamic time warping 
(DTW), where the optimal alignment is computed (corresponding to a 
maximization over !",$). A variant of DTW adapted for the usage with 
neural networks is known as soft-DTW.1

1 Cuturi and Blondel: Soft-DTW: A Differentiable Loss Function for Time-Series, ICML 2017. [PMLR]
2 Müller and Zalkow. FMP Notebooks: Educational Material for Teaching and Learning Fundamentals of Music Processing. ISMIR 2019. [Zenodo]

Figure from FMP2

Outlook and Further Notes

• A CTC-based network models the dependencies between input and output. 
However, the dependencies between individual output elements are not 
modeled explicitly. One may use an external “language model” if needed. 
An extension of CTC for jointly modeling both input–output and output–
output dependencies is denoted as Sequence Transduction.1

1 Graves: Sequence Transduction with Recurrent Neural Networks. ICML Workshop on Representation Learning 2012. [arXiv]

Outlook and Further Notes

• Many studies show that the probabilities for the blank symbol are often 
dominant in the output of CTC-based networks (“spiky problem”). One may 
modify the CTC algorithm to compensate for that.1

1 Li and Wang: Reinterpreting CTC Training as Iterative Fitting. Pattern Recognition, 2020. [ScienceDirect, arXiv]

Network prediction
Chroma probabilities over time

Post-processing

Outlook and Further Notes

• In its basic form, CTC is only able to model one label at a time (music 
application: “monophonic”). There are also extensions of CTC to multi-label 
problems (music application: “polyphonic”).1

1 Wigington et al. Multi-Label Connectionist Temporal Classification. ICDAR 2019. [IEEE]


