

Overview

- 1. Introduction
- 2. CTC Loss Computation
- 3. Applications
- 4. Outlook and Further Notes

Lecturers

Frank Zalkow

- Music Informatics and Musicology (B.A., University of Music Karlsruhe)
- Music Informatics (M.A., University of Music Karlsruhe)
 Ph.D. student in music information retrieval
- (FAU, supervisor: Meinard Müller)

Meinard Müller

- Mathematics (Diplom/Master, Bonn University)
- Computer Science (Ph.D., Bonn University)
- Information Retrieval (Habilitation, Bonn University)
- Combinatorics (Postdoc, Keio University, Japan)
- · Senior Researcher (Max-Planck Institute, Saarland)
- Professor: Semantic Audio Processing (FAU)

Introduction

- Connectionist Temporal Classification
- Graves, Fernández, Gomez, and Schmidhuber. Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks. ICML 2006. [ACM]
- "Temporal Classification": Labelling un-segmented data sequences
- "Connectionist": Refers to the use of deep learning

Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks

 Alex Graves¹
 ALEX@IDSIA.CH

 Santiago Fernández¹
 SANTLAGOBIDSIA.CH

 Faustino Gomez¹
 TINO@IDSIA.CH

 JÜrgen Schmidhuber^{1,2}
 JURCREN®IDSIA.CH

 1 stituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), Galleria 2, 6928 Manno-Lugano, Switzerland
 ²

 ² Technische Universität München (TUM), Boltzmannstr. 3, 85748 Garching, Munich, Germany
 ³

Introduction

Training data in theme-based music retrieval

- Strongly aligned training data

 Pitch/chroma annotations
- Pitch/chroma annotations (labels) for each time step
 Can be used for training in a
- standard classification setup
 Tedious to annotate
- Weakly aligned training data
 Globally corresponding
 - pitch/chroma sequence without local alignment
 - Cannot be used for training in a standard classification setup
 Easier to annotate
- Aim of CTC: Employing weakly aligned data for training
- Useful for many applications

Introduction

Training data in speech recognition

- Strongly aligned training data

 Character annotations (labels)
- for each time step
 Can be used for training in a standard classification setup
- Tedious to annotate
- Weakly aligned training data
 - Globally corresponding character sequence without local alignment
 - Cannot be used for training in a standard classification setup
 Easier to annotate
- Aim of CTC: Employing weakly aligned data for training
- Useful for many applications

Introduction

Non-standard deep learning setup: Weakly aligned training data

Standard deep learning setup: Strongly aligned training data

m = 2

m = 1

 $p_1(y_1)$

 $p_1(\epsilon)$

CTC Loss Computation: Formal Description

- Classes: 26 characters, space, and blank symbol
- Approach: Finding most probable character sequence for given character probabilities, e.g., using beam search
- CTC is a core technology used in today's speech recognizing systems, e.g., in the Google App²

Weakly al	gned pair: Audio & string
Input	
Labels	Hello
Netw Characte	vork prediction r probabilities over time
3 Characters	

¹ Graves et al. Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks. ICML 2006. [ACM] ² Sak et al. Google Voice Search: Faster and More Accurate. Google Al Blog. 2015 (https://ai.googleblog.com/2015/09/google-voice-search-faster-and-more.htm).

² Zalkow et al. Evaluating Salience Representations for Cross-Modal Retrieval of Western Classical Music Recordings. ICASSP 2019. [IEEE]
³ Zalkow and Müller. Using Weakly Aligned Score-Audio Pairs to Train Deep Chroma Models for Cross-Modal Music Retrieval. ISMIR 2020. [Cenodo]

Application: Theme-Based Music Retrieval

2 Time (seconds)

Database

Training pair

Weakly aligned pair

Network prediction

Chroma probabilities over time

Post-processing

Labels ED#EGEE

- Retrieval procedure based on chroma features and sequence alignment algorithm (subsequence dynamic time warping)^{1–3}
- Standard chroma features capture the full spectral content (influenced by theme and accompaniment)
- Learning enhanced chroma features with CTC loss (mainly influenced by theme and not by accompaniment)³

¹ Balke et al. Retrieving Audio Recordings Using Musical Themes. ICASSP 2016. [IEEE]

² Zalkow et al. Evaluating Salience Representations for Cross-Modal Retrieval of Western Classical Music Recordings. ICASSP 2019. [IEEE] ³ Zalkow and Müller. Using Weakly Aligned Score-Audio Pairs to Train Deep Chroma Models for Cross-Modal Music Retrieval. ISMIR 2020. [Zenodo]

Application: Theme-Based Music Retrieval

P

Input

Class

- Task: Learn chroma representation that represents musical themes³
- CTC-based training: Using weakly aligned score–audio pairs to train DNN for computing chroma probabilities
- Classes: 12 chroma labels and blank symbol
- Observation: Blank-probabilities are active most of the time
- Approach: Post-processing of network prediction (remove blank probabilities and l²-normalize each column)

¹ Balke et al. Retrieving Audio Recordings Using Musical Themes. ICASSP 2016 [IEEE]

² Zalkow et al. Evaluating Salience Representations for Cross-Modal Retrieval o Western Classical Music Recordings. ICASSP 2019. [[EEE]

³ Zalkow and Müller. Using Weakly Aligned Score–Audio Pairs to Train Deep Chroma Models for Cross-Modal Music Retrieval. ISMIR 2020. [Zenodo]

Outlook and Further Notes

- Retrieval procedure based on chroma features and sequence alignment algorithm (subsequence dynamic time warping)¹⁻³
- Standard chroma features capture the full spectral content (influenced by theme and accompaniment)
- Learning enhanced chroma features with CTC loss (mainly influenced by theme and not by accompaniment)³

¹ Balke et al. Retrieving Audio Recordings Using Musical Themes. ICASSP 2016.

² Zalkow et al. Evaluating Salience Representations for Cross-Modal Retrieval of Western Classical Music Recordings. ICASSP 2019. [EEE] ³ Zalkow and Müller. Using Weakly Aligned Score-Audio Pairs to Train Deep Chroma Models for Cross-Modal Music Retrieval. ISMIR 2020. [<u>Zenodo</u>]

Application: Theme-Based Music Retrieval

- Retrieval results¹ for dataset² with 2067 musical themes

Chroma Variant	Top-1	Top-10	59
Standard chroma features	0.561	0.723	
Enhanced chroma features (baseline)		0.861	())
DNN-based chroma features (CTC)	0.867	0.942	
DNN-based chroma features (linear scaling)	0.829	0.914	())
DNN-based chroma features (strong alignment)	0.882	0.939	

