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Score-Informed Audio Decomposition

Score-Informed Audio Decomposition
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Score-Informed Audio Decomposition

Sheet music p=71 Piano roll
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Score-Informed Audio Decomposition

Sheet music p=71 Piano roll
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Nonnegative Matrix Factorization (NMF)
N R

Nonnegative Matrix Factorization (NMF)

N R
N N
K "4 ~ kK| W|e H >0|R K "4 ~ K||W |e H S0|R
>0 20 >0 20
Ve RKxN RligR Hec RRxN Magnitude Spectrogram  Templates Activations
Templates: Pitch + Timbre “How does it sound”
Activations: Onset time + Duration “When does it sound”
Nonnegative Matrix Factorization (NMF) Nonnegative Matrix Factorization (NMF)
N R N R
N N
K "4 ~ Kkl W|e H >0lR K "4 ~ K W|e H solrR
>0 20 >0 20
V e REXN weRSE®  HeREN v e RGN weRE®  HeREN
Dimensionality reduction Nonnegativity:

= K, N typically much larger than R (maximal rank)
= Example: N = 1000, K = 500, R = 20
Kx N =500000, KxR=10,000, RxN=20,000

= Prevents mutual cancellation of template vectors
= Encourages semantically meaningful decomposition




NMF Optimization

Optimization problem:

Given V € Rgglv and rank parameter R minimize

|V —-wH|?

with respectto W & Rg(;R and H¢e RgéN.

Optimization not easy:
= Nonnegativity constraints
= Nonconvexity when jointly optimizing W and H

Strategy: lteratively optimize W and H via gradient descent

NMF Optimization

Computation of gradient with respect to H (fixed W)
D:=RN

oV :RP SR

oV (H):= |V -WH|*
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H e RRXN
Hpy
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NMF Optimization
Computation of gradient with respect to H (fixed W)

D:=RN agW 9 (TE T (Ve — XK Wi, )
¢V RV =R IHpy OHpy

@V (H) =V -WH|? K (Z{L] (Voo — 3, Wk,.H,-V)z)

JdH,y

Variables Summand that does
H e RRXV not depend on Hpy
Hpy must be zero
pe(l:R]

vell:N|

NMF Optimization
Computation of gradient with respect to H (fixed W)

e IV 9 (Zﬁ;l O (Vi —XE WA:-HH,)“)
oV :RP SR THpy e

w . 2 i R
o' (H):= |V -WH]| P) (z[‘:, (Viv =X, wk,.H,v)—)

B OH,y

Variables =YK, 2<VLV Yk, sz-Hrv) (W)
H e RPN
Hpy Apply chain rule
pell:R] from calculus
ve(l:N]

NMF Optimization
Computation of gradient with respect to H (fixed W)

DRy dp (KT (58 W)
¢V RV =R IHpy dHpy
oY (H) =V - WH|? 5 (Z{L] (Voo — XX, Wk,.H,-V)z)

- OHpy
Variables =¥k, 2<VW -k, ‘/Verrv) (=Wip)
Hc RRXN
Hyy = Z(Zlezlewkpwkl'[""v _Zlewkpvkv)
pe[l:R]

vell:N Rearrange
’ summands




NMF Optimization

Computation of gradient with respect to H (fixed W)

D:=RN

NMF Optimization
Computation of gradient with respect to H (fixed W)

g7 2 (T D (V- X WeH,,)?)
¢V RV =R OHpy dHpy
9" (H):= |V~ WH| 9 (ZK) (Vi = £8 W)

- OH,y
Variables = T2 (Vi —E Wi ) - (<Wip)
H e RPN
Hpe = 2( TR T WepWarHry — A WipVi )
pel[l:R]
ve[l:N] = 2(2116:1 (ZleWka‘/V/\r) Hyy — Zleprkav)
Introduce

transposed w’

D=y st (LT (-8 wh,)°)
¢":RP R Hpy IHpy
9" (H) =V - WH|* 9 (2K (Viw = £8 W)
JHpy
Variables =y, 2(an YR WA»,H,-V) (~Wip)
Hc RRXN
Hpe = 2( R T WapWarHry — T WipVi )
pel[l:R]
vel[l:N] = 2():5:1 (Zf:leTkWAr) Hyy — Zf:lwg;[vkv)

| = 2(WTWH)py = (WV)py). |

NMF Optimization

Gradient descent

Initialization H(®) ¢ RR<N
lteration for ¢ =0,1,2,...

(0+1) _ (g) _ 'y,(fl) . ((WTWHU)),,” - (WTV))n)

rn T

with suitable learning rate %{5) >0

NMF Optimization
Gradient descent

Initialization H©) ¢ REXN
Iteration for ¢ =0,1,2,...

S0 = H) o) (W), - (T,

with suitable learning rate " >0

Issues:

= How to do the initialization?

= How to choose the learning rate?
= How to ensure nonnegativity?

NMF Optimization Choose adaptive
Gradient descent learning rate:

(1) Hi“lfl)
Initialization H® € RR*V N T
Iteration for ¢/ =0,1,2,.. / m

(1) _ g0 7. ((WTWHU))W - (WTV),.,1>

(0) (WTV)

. rn
m

WTwH")
Issues:

= How to do the initialization?

= How to choose the learning rate?

= How to ensure nonnegativity?

NMF Optimization Choose adaptive
Gradient descent learning rate:

Hyy!
Initialization H(©) & RR*N Yoo = m
Iteration for ¢ =0,1,2,... "

a = go 7. ((WTWH("))M _ (WTV)m>

_ o (W),

m

WTWH

( )"” = Update rule
Issues: become
= How to do the initialization? multiplicative
= How to choose the learning rate? |= Nonnegative
= How to ensure nonnegativity? values stay

nonnegative




NMF Optimization

Algorithm: NMF (V =~ WH)

Input:  Nonnegative matrix V of size K x N
Rank parameter R € N
Threshold & used as stop criterion

Output: Nonnegative template matrix W of size K x R
Nonnegative activation matrix H of size R x N

Procedure: Define nonnegative matrices W(®) and H(©) by some random or informed initial-
ization. Furthermore set £ = 0. Apply the following update rules (written in matrix notation):

() HEY=HO o (WO)TV)o(wO)TwOr"))
@) WED ZwO o (VHED)T) o (WOHED (HED)T))
(3)  Increase ¢ by one.

Repeat the steps (1) to (3) until [H() — H=D || < g and WO —w =1 || < ¢ (or until some
other stop criterion is fulfilled). Finally, set H = H() and W =W (®).

Lee, Seung: Algorithms for Non-Negative
Matrix Factorization. Proc. NIPS, 2000.

NMF-based Spectrogram Decomposition
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NMF-based Spectrogram Decomposition

Template initialization Activation initialization
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NMF-based Spectrogram Decomposition

Activation initialization
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Random initialization — No semantic meaning

Constrained NMF: Templates

Template initialization Activation initialization
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Constrained NMF: Templates
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Constrained NMF: Templates

Template initialization
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Constrained NMF: Double Constraints
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Constrained NMF: Double Constraints

Template initialization

Activation initialization
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Constrained NMF: Double Constraints
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Constrained NMF: Onset Templates

Template initialization Activation initialization
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Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

= 1. Split activation matrix
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Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

1. Split activation matrix

H8
- |
(Pt HHEEEEEET
B Q-
3 I
e
Hl
iiiislans ™
llIIIIII‘
IIllll,I

Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

1. Split activation matrix
2. Model spectrogram for left/right
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1. Split activation matrix
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Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

P 1. Split activation matrix
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Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

Chopin, Waltz Op. 64, No. 1

Original »
Ewert, Miller: Using Score-Informed
Constraints for NMF-based Source
Separation. Proc. ICASSP, 2012.
Further results available at
http://www.mpi-inf.mpg.de/reso ICASSP2012- formedNMF

Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

Chopin, Waltz Op. 64, No. 1

Original

Left/right hand

Right hand

AIBAR/R\ 4

Left hand

Ewert, Miller: Using Score-Informed
Constraints for NMF-based Source
Separation. Proc. ICASSP, 2012.

Further results available at
http://www.mpi-inf.mpg.de/resources/MIR/ICASSP2012-ScorelnformedNMF/

Score-Informed Audio Decomposition
Application: Audio editing
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Conclusions (NMF)

= NMF used for spectrogram decomposition

= Multiplicative update rules make it easy to constrain NMF
model via zero initialization

= Exploiting score information to guide separation process
(requires score—audio synchronization)

Application: Separation of arbitrary note groups from given
audio recording

Autoencoder

Input X . Decoder D ||Output £

= Specific type of neural network
= Encoder: Compress input X into a low-dimensional code

= Decoder: Reconstruct output X from code

Autoencoder

Input X Decoder D ||Output X

= Specific type of neural network
= Encoder: Compress input X into a low-dimensional code

= Decoder: Reconstruct output)? from code

= Goal: Learn parameters for encoder and decoder such that output is
close to input with respect to some loss function:

L(X,)?) =0




Smaragdis, Venkataramani: A Neural

NMF and Autoencoder (AE) | sl proe icasSP 2017

NMF

V ~WH implies W*V =~ H with pseudoinverse W+

NMF and Autoencoder (AE)

NMF

v zH-= 4

Smaragdis, Venkataramani: A Neural
Network Alternative to Non-Negative
Audio Models, Proc. ICASSP 2017.

V ~WH implies W*V =~ H with pseudoinverse W+

Encoder &  Code

1. Layer H=W_,V
2. Layer: V=W, H

==

Decoder D

Smaragdis, Venkataramani: A Neural

NMF and Autoencoder (AE) | st proe icassP 2017

NMF

L
[

V ~WH implies@v ~ H with pseudoinverse W+

\

A ‘ v

Encoder ¢ Code Decoder D

1. Layer H=W_,V
2. Layer: V=W, H

’ Fully connected network

NMF and Autoencoder (AE)

NMF

v zH-= v

Smaragdis, Venkataramani: A Neural
Network Alternative to Non-Negative
Audio Models, Proc. ICASSP 2017.

V ~WH implies W*V =~ H with pseudoinverse W+

Encoder &  Code

==

Decoder D

1. Layer H=W_,V
2. Layer: V=W, H

NMF: Learn H and W
AE: Learn W, and W,

Nonnegative Autoencoder (NAE)

1. Layer H=W_.V
2. Layer:V =Wy H

= How can one adjust the AE to simulate NMF?
= How can one achieve nonnegativity?

= How can one incorporate musical knowledge?

Nonnegative Autoencoder (NAE)

1. Layer H=W_.V
2. Layer: V=W, H

= Loss function: same as in NMF

| V

L.v) = v -7|°




Nonnegative Autoencoder (NAE)

1. Layer: H = max(Wg V,0) /V 7 =|v-7v|*

2. Layer: V = max(W, H,0)

= Loss function: same as in NMF

= Activation function (RelLU) makes H and V nonnegative

Nonnegative Autoencoder (NAE)

1. Layer: H = max(W, V,0) L, 0)=|v-v|’
2. Layer: V = max(W, H, 0)

oL
W5 < max WD—]/W,O
D

= Loss function: same as in NMF
= Activation function (ReLLU) makes H and V nonnegative

= Projected gradient descent can be used to
keep W, (and /) nonnegative

Musical Constraints

ID

H = max(W,. V,0)
V = max(W, H,0)

= Template constraints: Project certain entries in W,
to zero values (using projected gradient decent)

Ewert, Sandler: Structured Dropout for
Weak Label and Multi-Instance Learning
and Its Application to Score-Informed
Source Separation. Proc. ICASSP, 2017.

Musical Constraints

[D
—

=HO My
V = max(W, H’,0)

= Template constraints: Project certain entries in W,
to zero values (using projected gradient decent)

= Activation constraints: Use structured dropout by
applying pointwise multiplication with binary mask My

NAE with Multiplicative Update Rules

= Multiplicative update rules in NMF:
Preserve nonnegativity
Lead to fast convergence

= Question: Can one introduce multiplicative update rules to
train network weights for NAE?
= Use in additive gradient descent
oL
T ow

a suitable (adaptive) learning rate 7y .

WD — w© _

NAE with Multiplicative Update Rules

= Encoder:
H=W:V

= Structured Dropout:

H =Ho My
= Decoder:
V = WpH'

Zunner: Neural Networks with Nonnegativity
Constraints for Decomposing Music
Recordings. Master Thesis, FAU, 2021.




NAE with Multiplicative Update Rules

= Encoder:
(((ng) ® M,,)VT>
H=WeV WS =W,
(((Wg WpH!O) © My VT)
= Structured Dropout: i
H =Ho My
= Decoder: ey wem),
Wogr =Wpp  —r—""—
. ke D g
V =WpH' P kr
Similar idea and Zunner: Neural Networks with Nonnegativity

Constraints for Decomposing Music
Recordings. Master Thesis, FAU, 2021.

computation as for NMF.

Approximation Loss

= NAE (additive)
m— NAE (multiplicative)
= NMF (multiplicative)

Loss

Number of training iterations (epochs)

Zunner: Neural Networks with Nonnegativity
Constraints for Decomposing Music
Recordings. Master Thesis, FAU, 2021.

Conclusions (NAE)

= Simulation of NMF:
Decoder corresponds to NMF templates
Encoder learns a kind of pseudo-inverse
Code corresponds to NMF activations

= Nonnegativity can be achieved via
activation function (ReLU)
projected gradient descent
multiplicative update rules

= Musical knowledge can be integrated via
removing network weights (template constraints)
structured dropout (activation constraints)

Outlook

= More complex networks
Deeper networks (more layers)
Different layer types (CNN, RNN, ...) and activation functions
Modification of loss function and regularization terms

= Understanding encoder — decoder relationship
Nonnegativity
Pseudo-inverse

= Update rules
Constraints and conversion issues
Adaptive learning rates and projected gradient descent

Audio Mosaicing (Style Transfer)

Target signal: Beatles—Let it be Source signal: Bees

RRAL | » |

DD dede "

Mosaic signal: Let it Bee

Driedger, Pratzlich, Mdller: Let It
Bee — Towards NMF-Inspired
Audio Mosaicing, ISMIR 2015..

Informed Drum-Sound Decomposition

TR @
Tr AT r)ep

Remix:

vV v v VY

Dittmar, Miiller: Reverse Engineering the

Amen Break — Score-Informed Separation
and Restoration Applied to Drum Recordings,
IEEE/ACM TASLP, 2016.

Suéarez: DNN-Based Matrix Factorization
with Applications to Drum Sound
Decomposition. Master Thesis, FAU, 2020.




Selected Topics in Deep Learning for Audio,

Reconstruction of Sound Events Speech, and Music Processing

= Reconstruction via spectral masking (Wiener filtering) 1. Introduction to Audio and Speech Processing
2. Introduction to Music Processing
L . 3. Permutation Invariant Training Techniques for Speech Separation
* Alternative: Resynthesis approach 4. Deep Clustering for Single-Channel Ego-Noise Suppression
5. Music Source Separation
= Differentiable Digital Signal Processing (DDSP) 6. Nonnegative Autoencoders with Applications to Music Audio
combines classical DSP and deep learning Decomposing
7. Attention in Sound Source Localization and Speaker Extraction

8. Recurrent and Generative Adversarial Network Architectures for Text-
8 to-Speech
artifacts T fr— ; it

9. Connectionist Temporal Classification (CTC) Loss with Applications
Lecture 8: Recurrent and to Theme-Based Music Retrieval
Generative Adversarial 10. From Theory to Practise
Network Architectures for
Text-to-Speech

= Generative adversarial networks may help to reduce the

Book: Fundamentals of Music Processing Book: Fundamentals of Music Processing

Music Processing

Chaptey Scenario

Meinard Miller

Fundamentals of
Music Processing

Audio, Analysis,
Algorithms, Applications

) Springer

Meinard Miiller

Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
483 p., 249 illus., hardcover

ISBN: 978-3-319-21944-8

Springer, 2015

Accompanying website:
www.music-processing.de

1

ol

.| Music Represenations

2

Fourier Analysis of
Signals

Music Synchronization

Music Structure
Analysis

Chord Recognition

Tempo and Beat

" | Tracking

| | Content-Based Audio

Retrieval

Musically Informed
Audio Decomposition

Meinard Miiller

Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
483 p., 249 illus., hardcover

ISBN: 978-3-319-21944-8

Springer, 2015

Accompanying website:
www.music-processing.de

Software & Audio: FMP Notebooks

Fundamentals of

Music Processing

FMP Notebooks

INTERNATIONAL AUDIO.

Python Notebooks for Fundamentals of Music Processing

The FMP notebooks offer a collection of educational material closely following the textbook

Fundamentals of Music Processing (FMP). This is the starting website, which is opened when calling
hitps://www.audiolabs-erlangen.de/FMP. Besides giving an overview, this website provides

information on the license, the main contributors, and some links.

Qe

https://www.audiolabs-erlangen.de/FMP




