

- Sebastian Ewert and Mark B. Sandler: Structured Dropout for Weak Label and Multi-Instance Learning and Its Application to Score-Informed Source Separation. Proc. ICASSP, 2017.
- Tim Zunner: Neural Networks with Nonnegativity Constraints for Decomposing Music Recordings. Master Thesis, FAU, 2021.
- Edgar Andrés Suárez Guarnizo: DNN-Based Matrix Factorization with Applications to Drum Sound Decomposition. Master Thesis, FAU, 2020.

Score-Informed Source Separation

Exploit musical score to support decomposition process

Score-Informed Source Separation

Exploit musical score to support decomposition process

NMF Optimization

Optimization problem:

Given $V \in \mathbb{R}_{\geq 0}^{K imes N}$ and rank parameter $extsf{R}$ minimize

 $\|V - WH\|^2$

with respect to $W \in \mathbb{R}_{\geq 0}^{K imes R}$ and $H \in \mathbb{R}_{\geq 0}^{R imes N}$.

Optimization not easy:

- Nonnegativity constraints
- Nonconvexity when jointly optimizing W and H

Strategy: Iteratively optimize W and H via gradient descent

NMF Optimization

Computation of gradient with respect to H (fixed W)

D := RN $\boldsymbol{\varphi}^W:\mathbb{R}^D\to\mathbb{R}$ $\varphi^W(H) := \|V - WH\|^2$ $\frac{\partial \varphi^{W}}{\partial H_{\rho \nu}} = \frac{\partial \left(\sum_{k=1}^{K} \sum_{n=1}^{N} \left(V_{kn} - \sum_{r=1}^{R} W_{kr} H_{rn} \right)^{2} \right)}{\partial H_{\rho \nu}}$

Variables

 $H \in \mathbb{R}^{R imes N}$ $H_{\rho v}$ $ho \in [1:R]$ $v \in [1:N]$

NMF Optimization

Computation of gradient with respect to H (fixed W) D := RN $\boldsymbol{\varphi}^W:\mathbb{R}^D\to\mathbb{R}$ $\varphi^W(H) := \|V - WH\|^2$

Variables

 $H \in \mathbb{R}^{R \times N}$ $H_{\rho\nu}$ $\rho \in [1:R]$ $v \in [1:N]$

NMF Optimization

Computation of gradient with respect to H (fixed W)

 $\frac{\partial \varphi^{W}}{\partial H_{\rho v}} = \frac{\partial \left(\sum_{k=1}^{K} \sum_{n=1}^{N} \left(V_{kn} - \sum_{r=1}^{R} W_{kr} H_{rn} \right)^{2} \right)}{\partial H_{\rho v}}$ $= \frac{\partial \left(\sum_{k=1}^{K} \left(V_{kv} - \sum_{r=1}^{R} W_{kr} H_{rv} \right)^{2} \right)}{\partial H_{\rho v}}$ D := RN $\boldsymbol{\varphi}^W:\mathbb{R}^D
ightarrow\mathbb{R}$ $\varphi^W(H) := \|V - WH\|^2$ Variables Summand that does $H \in \mathbb{R}^{R imes N}$ not depend on $H_{\rho\nu}$ must be zero $H_{\rho v}$ $\rho \in [1:R]$ $v \in [1:N]$

NMF Optimization

Computation of gradient with respect to H (fixed W)

D := RN $\boldsymbol{\varphi}^W:\mathbb{R}^D\to\mathbb{R}$ $\varphi^W(H) := \|V - WH\|^2$

 $\frac{\partial \varphi^{W}}{\partial H_{\rho v}} = \frac{\partial \left(\sum_{k=1}^{K} \sum_{n=1}^{N} \left(V_{kn} - \sum_{r=1}^{R} W_{kr} H_{rn} \right)^{2} \right)}{\partial H_{\rho v}}$ $W_{k\rho}$)

Variables $H \in \mathbb{R}^{R imes N}$

 $H_{\rho v}$ $\rho \in [1:R]$ $\mathbf{v} \in [1:N]$

$$= \frac{\partial \left(\sum_{k=1}^{K} \left(V_{k\nu} - \sum_{r=1}^{R} W_{kr} H_{r\nu} \right)^2 \right)}{\partial H_{\rho\nu}}$$
$$= \sum_{k=1}^{K} 2 \left(V_{k\nu} - \sum_{r=1}^{R} W_{kr} H_{r\nu} \right) \cdot \left(-\frac{1}{2} \right)$$
Apply chain rule from calculus

NMF Optimization

Computation of gradient with respect to H (fixed W)

D := RN	$\frac{\partial \varphi^{W}}{\partial \varphi^{W}} = \frac{\partial \left(\sum_{k=1}^{K} \sum_{n=1}^{N} \left(V_{kn} - \sum_{r=1}^{R} W_{kr} H_{rn}\right)^{2}\right)}{\partial \varphi^{W}}$
$\phi^{,.}:\mathbb{R}^{p} ightarrow\mathbb{R}$	$\partial H_{\rho\nu}$ $\partial H_{\rho\nu}$
$\varphi^W(H) := \ V - WH\ ^2$	$=\frac{\partial\left(\sum_{k=1}^{K}\left(V_{k\nu}-\sum_{r=1}^{R}W_{kr}H_{r\nu}\right)^{2}\right)}{\partial H_{\rho\nu}}$
Variables	$= \sum_{k=1}^{K} 2 \left(V_{k\nu} - \sum_{r=1}^{R} W_{kr} H_{r\nu} \right) \cdot (-W_{k\rho})$
$H \in \mathbb{R}^{R imes N}$	
$H_{\rho\nu}$	$= 2 \left(\sum_{r=1}^{R} \sum_{k=1}^{K} W_{k\rho} W_{kr} H_{r\nu} - \sum_{k=1}^{K} W_{k\rho} V_{k\nu} \right)$
$ ho \in [1:R]$	
$\mathbf{v} \in [1:N]$	Rearrange
, c [r m]	summands

NMF Optimization

Computation of gradient with respect to H (fixed W)

$$\begin{split} D &:= RN \\ \varphi^W : \mathbb{R}^D \to \mathbb{R} \\ \varphi^W(H) &:= \|V - WH\|^2 \end{split}$$

Variables $H \in \mathbb{R}^{R imes N}$ $H_{
hov}$

 $\rho \in [1:R]$

 $v \in [1:N]$

 $\frac{\partial \varphi^{W}}{\partial H_{\rho v}} = \frac{\partial \left(\sum_{k=1}^{K} \sum_{n=1}^{N} \left(V_{kn} - \sum_{r=1}^{R} W_{kr} H_{rn} \right)^{2} \right)}{\partial H_{\rho v}}$ $= \frac{\partial \left(\sum_{k=1}^{K} \left(V_{kv} - \sum_{r=1}^{R} W_{kr} H_{rv} \right)^{2} \right)}{\partial H_{\rho v}}$ $= \sum_{k=1}^{K} 2 \left(V_{kv} - \sum_{r=1}^{R} W_{kr} H_{rv} \right) \cdot \left(-W_{k\rho} \right)$ $= 2 \left(\sum_{r=1}^{R} \sum_{k=1}^{K} W_{k\rho} W_{kr} H_{rv} - \sum_{k=1}^{K} W_{k\rho} V_{kv} \right)$ $= 2 \left(\sum_{r=1}^{R} \left(\sum_{k=1}^{K} W_{\rho k}^{\top} W_{kr} \right) H_{rv} - \sum_{k=1}^{K} W_{\rho k}^{\top} V_{kv} \right)$ Introduce
transposed W^{\top}

NMF Optimization

Computation of gradient with respect to H (fixed W)

NMF Optimization Gradient descent

Initialization $H^{(0)} \in \mathbb{R}^{R \times N}$ Iteration for $\ell = 0, 1, 2, ...$

$$H_{rn}^{(\ell+1)} = H_{rn}^{(\ell)} - \gamma_{rn}^{(\ell)} \cdot \left(\left(W^{\top} W H^{(\ell)} \right)_{rn} - \left(W^{\top} V \right)_{rn} \right)$$

with suitable learning rate $\gamma_{rn}^{(\ell)} \ge 0$

NMF Optimization Gradient descent

Initialization $H^{(0)} \in \mathbb{R}^{R \times N}$ Iteration for $\ell = 0, 1, 2, ...$

$$H_{rn}^{(\ell+1)} = H_{rn}^{(\ell)} - \gamma_{rn}^{(\ell)} \cdot \left(\left(W^{\top} W H^{(\ell)} \right)_{rn} - \left(W^{\top} V \right)_{rn} \right)$$

with suitable learning rate $\gamma_{rn}^{(\ell)} \ge 0$

Issues:

- How to do the initialization?
- How to choose the learning rate?
- How to ensure nonnegativity?

How to ensure nonnegativity?

Reconstruction of Sound Events

- Reconstruction via spectral masking (Wiener filtering)
- Alternative: Resynthesis approach
- Differentiable Digital Signal Processing (DDSP) combines classical DSP and deep learning
- Generative adversarial networks may help to reduce the artifacts

Lecture 8: Recurrent and Generative Adversarial Network Architectures for Text-to-Speech

Book: Fundamentals of Music Processing

Meinard Müller

Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Selected Topics in Deep Learning for Audio, Speech, and Music Processing

- 1. Introduction to Audio and Speech Processing
- 2. Introduction to Music Processing
- 3. Permutation Invariant Training Techniques for Speech Separation
- 4. Deep Clustering for Single-Channel Ego-Noise Suppression
- 5. Music Source Separation
- 6. Nonnegative Autoencoders with Applications to Music Audio Decomposing
- 7. Attention in Sound Source Localization and Speaker Extraction
- 8. Recurrent and Generative Adversarial Network Architectures for Textto-Speech
- 9. Connectionist Temporal Classification (CTC) Loss with Applications to Theme-Based Music Retrieval
- 10. From Theory to Practise

Book: Fundamentals of Music Processing

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Software & Audio: FMP Notebooks

https://www.audiolabs-erlangen.de/FMP