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Score-Informed Audio Decomposition
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Nonnegative Matrix Factorization (NMF)
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Nonnegative Matrix Factorization (NMF)

Nonnegativity:
 Prevents mutual cancellation of template vectors 
 Encourages semantically meaningful decomposition
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Optimization problem:

Given                         and rank parameter  R minimize

with respect to                        and                       .   

NMF Optimization

Optimization not easy:
 Nonnegativity constraints
 Nonconvexity when jointly optimizing W and H

Strategy: Iteratively optimize W and H via gradient descent

NMF Optimization
Computation of gradient with respect to H (fixed W)
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Gradient descent

Initialization
Iteration for 

Issues:
 How to do the initialization?
 How to choose the learning rate?
 How to ensure nonnegativity?

 Update rule 
become 
multiplicative

 Nonnegative 
values stay 
nonnegative

Choose adaptive 
learning rate:



NMF Optimization

Lee, Seung: Algorithms for Non-Negative 
Matrix Factorization.  Proc. NIPS, 2000.

NMF-based Spectrogram Decomposition
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Constrained NMF: Templates
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Such information may come
from a synchronized score
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Constrained NMF: Onset Templates
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Score-Informed Audio Decompostion

1. Split activation matrix
Application: Separating left and right hands for piano
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Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

Chopin, Waltz Op. 64, No. 1

Original

Further results available at
http://www.mpi-inf.mpg.de/resources/MIR/ICASSP2012-ScoreInformedNMF/

Ewert, Müller: Using Score-Informed 
Constraints for NMF-based Source 
Separation. Proc. ICASSP, 2012.

Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

Chopin, Waltz Op. 64, No. 1

Original

Left/right hand

Right hand

Left hand

Further results available at
http://www.mpi-inf.mpg.de/resources/MIR/ICASSP2012-ScoreInformedNMF/

Ewert, Müller: Using Score-Informed 
Constraints for NMF-based Source 
Separation. Proc. ICASSP, 2012.

Score-Informed Audio Decomposition
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Application: Audio editing

Conclusions (NMF)

 NMF used for spectrogram decomposition

 Multiplicative update rules make it easy to constrain NMF 
model via zero initialization

 Exploiting score information to guide separation process
(requires score–audio synchronization)

 Application: Separation of arbitrary note groups from given
audio recording

Autoencoder

CodeEncoder ℰ Decoder 𝒟
 Specific type of neural network

 Encoder: Compress input 𝑋 into a low-dimensional code 

 Decoder: Reconstruct output 𝑋 from code
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Autoencoder

CodeEncoder ℰ Decoder 𝒟
 Specific type of neural network

 Encoder: Compress input 𝑋 into a low-dimensional code 

 Decoder: Reconstruct output 𝑋 from code

 Goal: Learn parameters for encoder and decoder such that output is 
close to input with respect to some loss function:

Input 𝑋 Output 𝑋



NMF and Autoencoder (AE)
Smaragdis, Venkataramani: A Neural 
Network Alternative to Non-Negative 
Audio Models, Proc. ICASSP 2017.
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AE

1. Layer: 𝐻 𝑊ℰ  𝑉
2. Layer: 𝑉 𝑊𝒟 𝐻 Fully connected network

NMF and Autoencoder (AE)
Smaragdis, Venkataramani: A Neural 
Network Alternative to Non-Negative 
Audio Models, Proc. ICASSP 2017.
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Encoder ℰ Decoder 𝒟
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Code

𝑉 𝑊𝐻 implies   𝑊 𝑉 𝐻 with pseudoinverse  𝑊
NMF

AE

1. Layer: 𝐻 𝑊ℰ  𝑉
2. Layer: 𝑉 𝑊𝒟 𝐻 NMF: Learn 𝐻 and  𝑊

AE:    Learn 𝑊ℰ and 𝑊𝒟

Nonnegative Autoencoder (NAE)

𝑉𝑉 𝑊ℰ 𝐻 𝑊𝒟
1. Layer: 𝐻 𝑊ℰ  𝑉
2. Layer: 𝑉 𝑊𝒟 𝐻
 How can one adjust the AE to simulate NMF?
 How can one achieve nonnegativity?
 How can one incorporate musical knowledge?
 …

Nonnegative Autoencoder (NAE)

1. Layer: 𝐻 𝑊ℰ  𝑉
2. Layer: 𝑉 𝑊𝒟 𝐻
 Loss function: same as in NMF

ℒ 𝑉,𝑉 𝑉 𝑉
𝑉𝑉 𝑊ℰ 𝐻 𝑊𝒟



Nonnegative Autoencoder (NAE)

1. Layer: 𝐻 max 𝑊ℰ  𝑉, 0
2. Layer: 𝑉 max 𝑊𝒟 𝐻, 0
 Loss function: same as in NMF

 Activation function (ReLU) makes 𝐻 and 𝑉  nonnegative
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Nonnegative Autoencoder (NAE)

1. Layer: 𝐻 max 𝑊ℰ  𝑉, 0
2. Layer: 𝑉 max 𝑊𝒟 𝐻, 0
 Loss function: same as in NMF

 Activation function (ReLU) makes 𝐻 and 𝑉  nonnegative
 Projected gradient descent can be used to 

keep 𝑊𝒟  
(and 𝑊ℰ ) nonnegative

ℒ 𝑉,𝑉 𝑉 𝑉
𝑉𝑉 𝑊ℰ 𝐻 𝑊𝒟

𝑊𝒟 ⟵ max 𝑊𝒟 𝛾 𝜕ℒ𝜕𝑊𝒟 
, 0

Musical Constraints

 Template constraints: Project certain entries in  𝑊𝒟  
to zero values (using projected gradient decent)

𝑉𝑉 𝑊ℰ 𝐻 𝑊𝒟
𝐻 max 𝑊ℰ  𝑉, 0𝑉 max 𝑊𝒟 𝐻, 0

Musical Constraints

 Template constraints: Project certain entries in  𝑊𝒟  
to zero values (using projected gradient decent)

 Activation constraints: Use structured dropout by
applying pointwise multiplication with binary mask 𝑀

𝑉𝑉 𝑊ℰ 𝐻 𝑊𝒟

Ewert, Sandler: Structured Dropout for 
Weak Label and Multi-Instance Learning 
and Its Application to Score-Informed 
Source Separation. Proc. ICASSP, 2017.

𝐻′ 𝐻 ⊙  𝑀𝑉  max 𝑊𝒟 𝐻′, 0 𝑀

NAE with Multiplicative Update Rules

 Multiplicative update rules in NMF:
– Preserve nonnegativity
– Lead to fast convergence

 Question: Can one introduce multiplicative update rules to
train network weights for NAE?

 Use in additive gradient descent

a suitable (adaptive) learning rate      .

NAE with Multiplicative Update Rules

 Encoder:

 Structured Dropout:

 Decoder:

Zunner: Neural Networks with Nonnegativity
Constraints for Decomposing Music 
Recordings. Master Thesis, FAU, 2021.



NAE with Multiplicative Update Rules

 Encoder:

 Structured Dropout:

 Decoder:

Zunner: Neural Networks with Nonnegativity
Constraints for Decomposing Music 
Recordings. Master Thesis, FAU, 2021.

Similar idea and 
computation as for NMF.

Approximation Loss

Zunner: Neural Networks with Nonnegativity
Constraints for Decomposing Music 
Recordings. Master Thesis, FAU, 2021.

Number of training iterations (epochs)

Lo
ss

NAE (additive)
NAE (multiplicative)
NMF (multiplicative) 

Conclusions (NAE)

 Simulation of NMF:
– Decoder corresponds to NMF templates
– Encoder learns a kind of pseudo-inverse 
– Code corresponds to NMF activations

 Nonnegativity can be achieved via
– activation function (ReLU)
– projected gradient descent
– multiplicative update rules

 Musical knowledge can be integrated via
– removing network weights (template constraints)
– structured dropout (activation constraints)

Outlook

 More complex networks 
– Deeper networks (more layers)
– Different layer types (CNN, RNN, …) and activation functions
– Modification of loss function and regularization terms

 Understanding encoder – decoder relationship
– Nonnegativity
– Pseudo-inverse

 Update rules
– Constraints and conversion issues
– Adaptive learning rates and projected gradient descent 

Audio Mosaicing (Style Transfer)
Source signal: BeesTarget signal: Beatles–Let it be

Mosaic signal: Let it Bee

Driedger, Prätzlich, Müller:  Let It 
Bee – Towards NMF-Inspired 
Audio Mosaicing, ISMIR 2015..

Informed Drum-Sound Decomposition

Remix:

Dittmar, Müller: Reverse Engineering the 
Amen Break – Score-Informed Separation 
and Restoration Applied to Drum Recordings, 
IEEE/ACM TASLP, 2016.

Suárez: DNN-Based Matrix Factorization 
with Applications to Drum Sound 
Decomposition. Master Thesis, FAU, 2020.



Reconstruction of Sound Events

Lecture 8: Recurrent and 
Generative Adversarial 
Network Architectures for 
Text-to-Speech

 Reconstruction via spectral masking (Wiener filtering)

 Alternative: Resynthesis approach

 Differentiable Digital Signal Processing (DDSP) 
combines classical DSP and deep learning 

 Generative adversarial networks may help to reduce the
artifacts

Selected Topics in Deep Learning for Audio, 
Speech, and Music Processing
1. Introduction to Audio and Speech Processing
2. Introduction to Music Processing
3. Permutation Invariant Training Techniques for Speech Separation
4. Deep Clustering for Single-Channel Ego-Noise Suppression
5. Music Source Separation
6. Nonnegative Autoencoders with Applications to Music Audio 

Decomposing
7. Attention in Sound Source Localization and Speaker Extraction
8. Recurrent and Generative Adversarial Network Architectures for Text-

to-Speech
9. Connectionist Temporal Classification (CTC) Loss with Applications 

to Theme-Based Music Retrieval
10. From Theory to Practise

Book: Fundamentals of Music Processing

Meinard Müller
Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
483 p., 249 illus., hardcover
ISBN: 978-3-319-21944-8
Springer, 2015

Accompanying website: 
www.music-processing.de

Book: Fundamentals of Music Processing

Meinard Müller
Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
483 p., 249 illus., hardcover
ISBN: 978-3-319-21944-8
Springer, 2015

Accompanying website: 
www.music-processing.de

Software & Audio: FMP Notebooks

https://www.audiolabs-erlangen.de/FMP


