

# Selected Topics in Deep Learning for Audio, Speech, and Music Processing

# Nonnegative Autoencoders with Applications to Music Audio Decomposing

Meinard Müller, Yigitcan Özer

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

31.05.2021





### **Thanks**

- Tim Zunner (Master Thesis 2021)
- Edgar Suárez Guarnizo (Master Thesis 2020)
- Christian Dittmar (PhD 2018, Fraunhofer IIS)
- Michael Krause (PhD student)
- Yigitcan Özer (PhD student)

### Literature

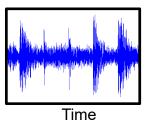
- Daniel Lee and Sebastian Seung: Algorithms for Non-Negative Matrix Factorization. Proc. NIPS, 2000.
- Sebastian Ewert and Meinard Müller: Using Score-Informed Constraints for NMF-Based Source Separation. Proc. ICASSP, 2012.
- Paris Smaragdis and Shrikant Venkataramani: A Neural Network Alternative to Non-Negative Audio Models. Proc. ICASSP, 2017.
- Sebastian Ewert and Mark B. Sandler: Structured Dropout for Weak Label and Multi-Instance Learning and Its Application to Score-Informed Source Separation. Proc. ICASSP, 2017.
- Tim Zunner: Neural Networks with Nonnegativity Constraints for Decomposing Music Recordings. Master Thesis, FAU, 2021.
- Edgar Andrés Suárez Guarnizo: DNN-Based Matrix Factorization with Applications to Drum Sound Decomposition. Master Thesis, FAU, 2020.

# Score-Informed Source Separation

### Exploit musical score to support decomposition process

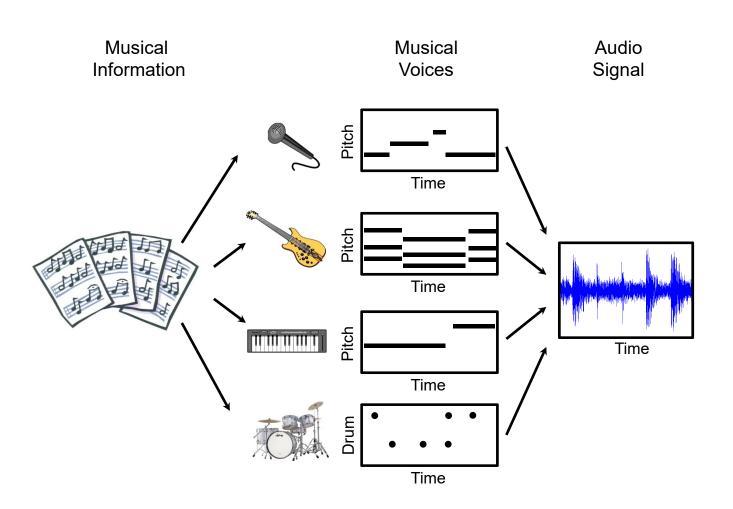
Musical Information Audio Signal





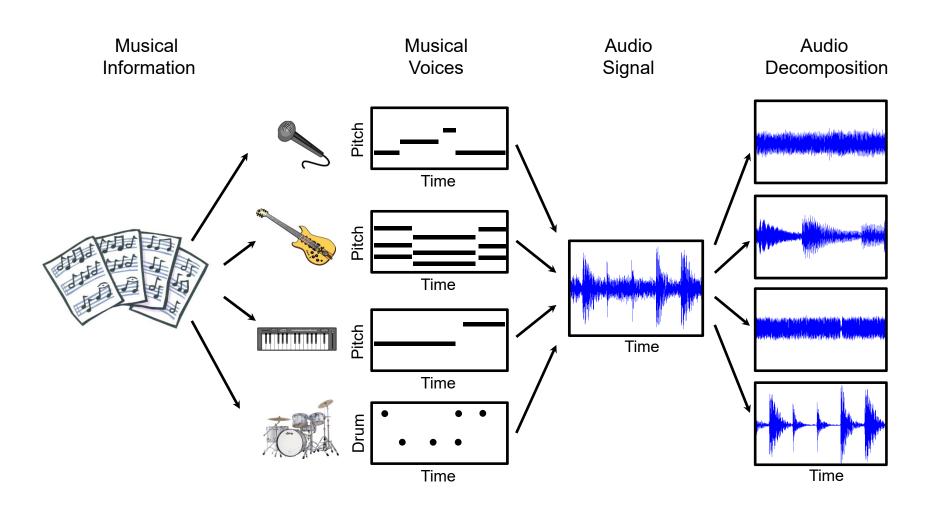
# Score-Informed Source Separation

Exploit musical score to support decomposition process



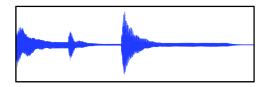
# Score-Informed Source Separation

### Exploit musical score to support decomposition process

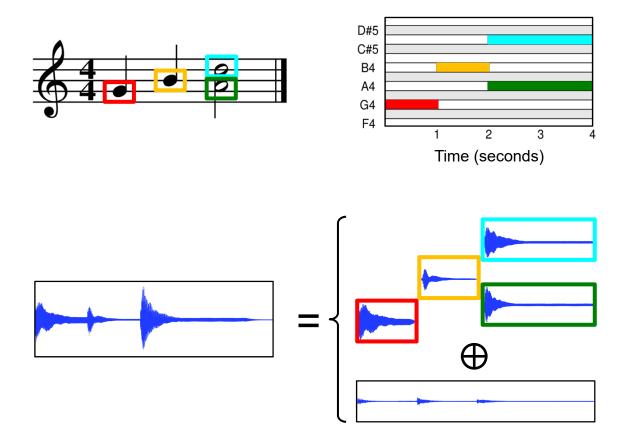


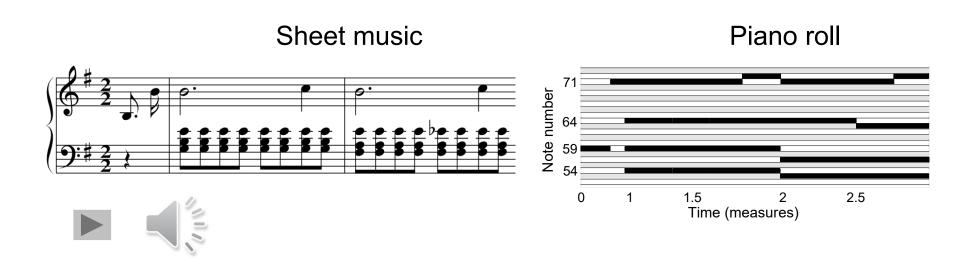
### Notewise decomposition

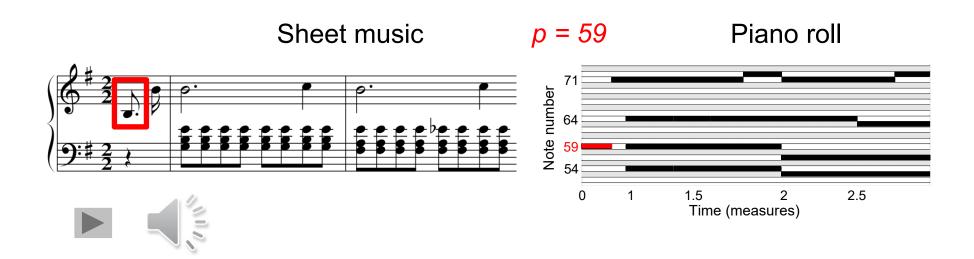


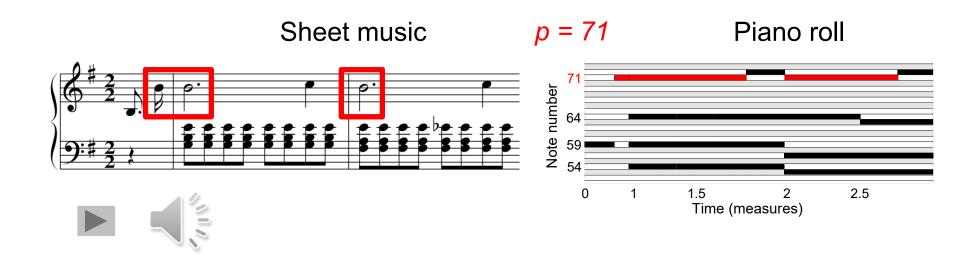


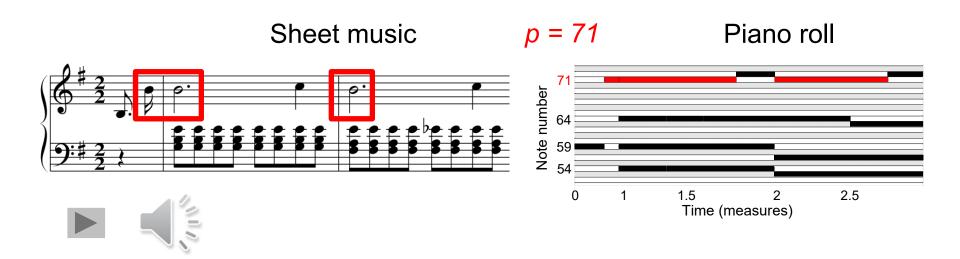
### Notewise decomposition



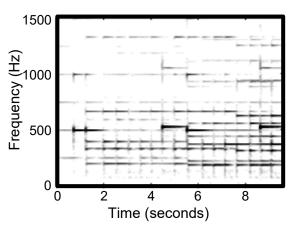


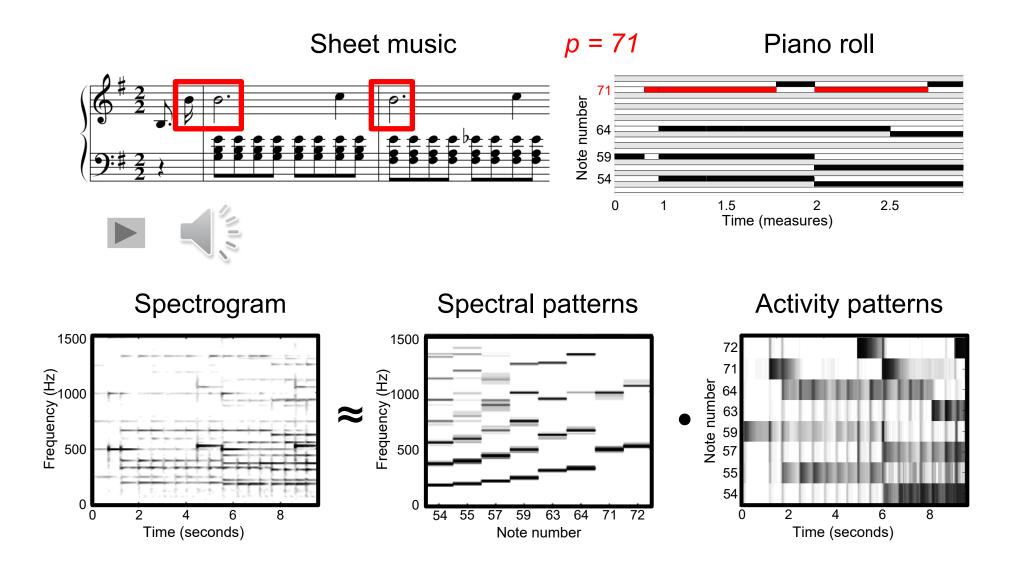


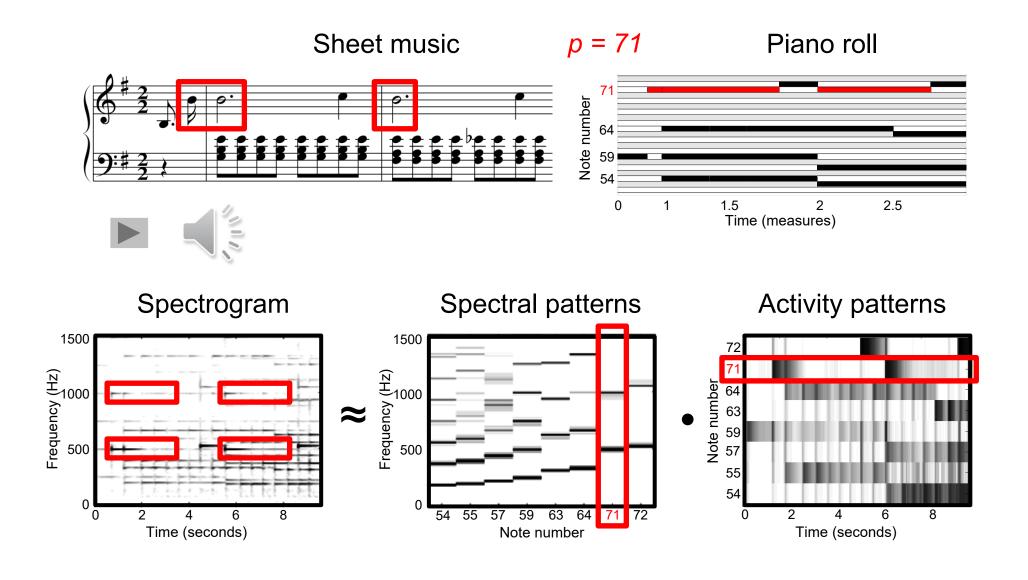


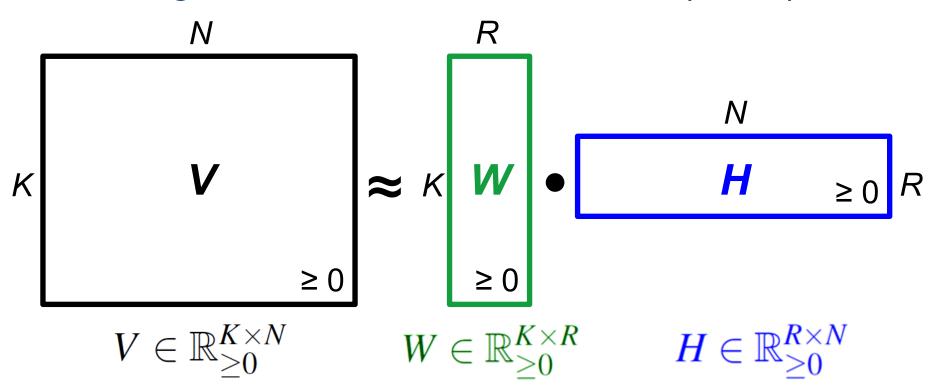


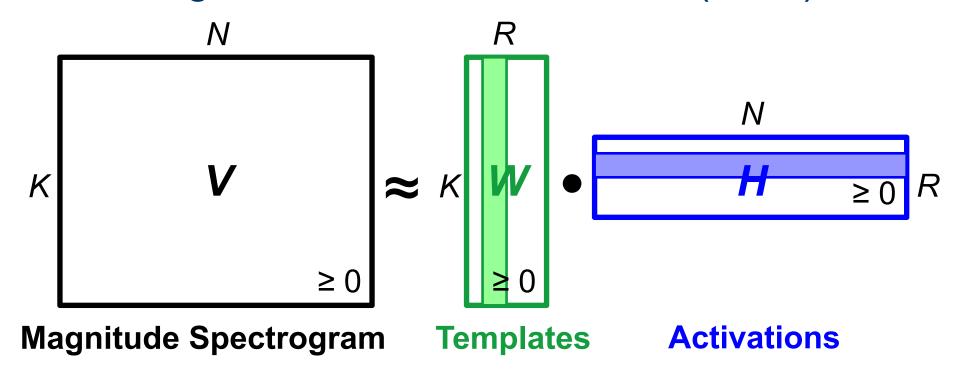
### Spectrogram





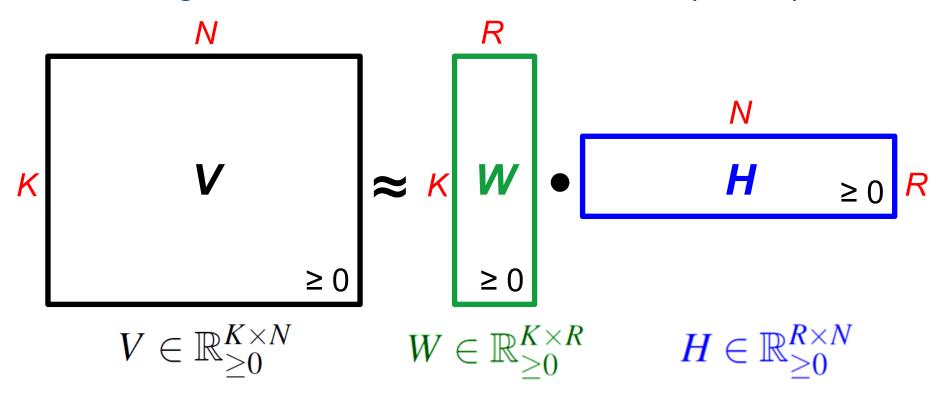






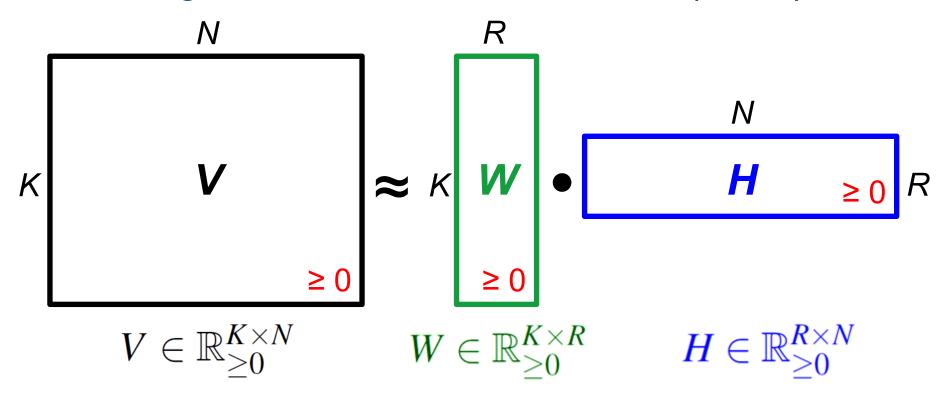
Templates: Pitch + Timbre "How does it sound"

**Activations: Onset time + Duration "When does it sound"** 



### Dimensionality reduction

- K, N typically much larger than R (maximal rank)
- Example: N = 1000, K = 500, R = 20 $K \times N = 500,000$ ,  $K \times R = 10,000$ ,  $R \times N = 20,000$



### Nonnegativity:

- Prevents mutual cancellation of template vectors
- Encourages semantically meaningful decomposition

### Optimization problem:

Given  $V \in \mathbb{R}_{\geq 0}^{K imes N}$  and rank parameter R minimize

$$||V - WH||^2$$

with respect to  $W \in \mathbb{R}_{\geq 0}^{K imes R}$  and  $H \in \mathbb{R}_{\geq 0}^{R imes N}$  .

### Optimization not easy:

- Nonnegativity constraints
- Nonconvexity when jointly optimizing W and H

Strategy: Iteratively optimize W and H via gradient descent

### Computation of gradient with respect to *H* (fixed *W*)

$$D := RN$$

$$oldsymbol{arphi}^W:\mathbb{R}^D o\mathbb{R}$$

$$\boldsymbol{\varphi}^W(H) := \|V - WH\|^2$$

#### Variables

$$H \in \mathbb{R}^{R \times N}$$

$$H_{\rho \nu}$$

$$\rho \in [1:R]$$

$$v \in [1:N]$$

### Computation of gradient with respect to *H* (fixed *W*)

$$D := RN$$
 $\varphi^W : \mathbb{R}^D \to \mathbb{R}$ 
 $\varphi^W(H) := \|V - WH\|^2$ 

$$\frac{\partial \varphi^{W}}{\partial H_{\rho \nu}} = \frac{\partial \left( \sum_{k=1}^{K} \sum_{n=1}^{N} \left( V_{kn} - \sum_{r=1}^{R} W_{kr} H_{rn} \right)^{2} \right)}{\partial H_{\rho \nu}}$$

#### Variables

$$H \in \mathbb{R}^{R \times N}$$

$$H_{\rho \nu}$$

$$\rho \in [1:R]$$

$$\mathbf{v} \in [1:N]$$

### Computation of gradient with respect to *H* (fixed *W*)

$$D := RN$$

$$\varphi^W : \mathbb{R}^D \to \mathbb{R}$$

$$\varphi^W(H) := \|V - WH\|^2$$

$$\frac{\partial \varphi^{W}}{\partial H_{\rho \nu}} = \frac{\partial \left(\sum_{k=1}^{K} \sum_{n=1}^{N} \left(V_{kn} - \sum_{r=1}^{R} W_{kr} H_{rn}\right)^{2}\right)}{\partial H_{\rho \nu}}$$

$$= \frac{\partial \left(\sum_{k=1}^{K} \left(V_{k\nu} - \sum_{r=1}^{R} W_{kr} H_{r\nu}\right)^{2}\right)}{\partial H_{\rho \nu}}$$

#### Variables

$$H \in \mathbb{R}^{R \times N}$$

 $H_{\rho \nu}$ 

$$\rho \in [1:R]$$

$$\mathbf{v} \in [1:N]$$

Summand that does not depend on  $H_{\rho\nu}$  must be zero

### Computation of gradient with respect to H (fixed W)

$$D := RN$$

$$\varphi^W : \mathbb{R}^D \to \mathbb{R}$$

$$\varphi^W(H) := \|V - WH\|^2$$

$$\frac{\partial \varphi^{W}}{\partial H_{\rho \nu}} = \frac{\partial \left(\sum_{k=1}^{K} \sum_{n=1}^{N} \left(V_{kn} - \sum_{r=1}^{R} W_{kr} H_{rn}\right)^{2}\right)}{\partial H_{\rho \nu}}$$

$$= \frac{\partial \left(\sum_{k=1}^{K} \left(V_{k\nu} - \sum_{r=1}^{R} W_{kr} H_{r\nu}\right)^{2}\right)}{\partial H_{\rho \nu}}$$

$$= \sum_{k=1}^{K} 2\left(V_{k\nu} - \sum_{r=1}^{R} W_{kr} H_{r\nu}\right) \cdot (-W_{k\rho})$$

#### Variables

$$H \in \mathbb{R}^{R \times N}$$

 $H_{\rho \nu}$ 

$$\rho \in [1:R]$$

$$v \in [1:N]$$

Apply chain rule from calculus

### Computation of gradient with respect to H (fixed W)

$$D := RN$$

$$\varphi^W : \mathbb{R}^D \to \mathbb{R}$$

$$\varphi^W(H) := \|V - WH\|^2$$

#### Variables

$$H \in \mathbb{R}^{R \times N}$$

$$H_{\rho\nu}$$

$$\rho \in [1:R]$$

$$v \in [1:N]$$

$$\frac{\partial \varphi^{W}}{\partial H_{\rho \nu}} = \frac{\partial \left(\sum_{k=1}^{K} \sum_{n=1}^{N} \left(V_{kn} - \sum_{r=1}^{R} W_{kr} H_{rn}\right)^{2}\right)}{\partial H_{\rho \nu}}$$

$$= \frac{\partial \left(\sum_{k=1}^{K} \left(V_{k\nu} - \sum_{r=1}^{R} W_{kr} H_{r\nu}\right)^{2}\right)}{\partial H_{\rho \nu}}$$

$$= \sum_{k=1}^{K} 2\left(V_{k\nu} - \sum_{r=1}^{R} W_{kr} H_{r\nu}\right) \cdot \left(-W_{k\rho}\right)$$

$$= 2\left(\sum_{r=1}^{R} \sum_{k=1}^{K} W_{k\rho} W_{kr} H_{r\nu} - \sum_{k=1}^{K} W_{k\rho} V_{k\nu}\right)$$
Rearrange summands

### Computation of gradient with respect to H (fixed W)

$$D := RN$$

$$\varphi^W : \mathbb{R}^D \to \mathbb{R}$$

$$\varphi^W(H) := \|V - WH\|^2$$

#### Variables

$$H \in \mathbb{R}^{R imes N}$$
 $H_{
ho V}$ 

$$\rho \in [1:R]$$

$$v \in [1:N]$$

### Computation of gradient with respect to H (fixed W)

$$D := RN$$

$$\varphi^W : \mathbb{R}^D \to \mathbb{R}$$

$$\varphi^W(H) := \|V - WH\|^2$$

$$H \in \mathbb{R}^{R \times N}$$
 $H_{\rho V}$ 

$$\rho \in [1:R]$$

$$v \in [1:N]$$

$$\frac{\partial \varphi^{W}}{\partial H_{\rho \nu}} = \frac{\partial \left(\sum_{k=1}^{K} \sum_{n=1}^{N} \left(V_{kn} - \sum_{r=1}^{R} W_{kr} H_{rn}\right)^{2}\right)}{\partial H_{\rho \nu}}$$

$$= \frac{\partial \left(\sum_{k=1}^{K} \left(V_{k\nu} - \sum_{r=1}^{R} W_{kr} H_{r\nu}\right)^{2}\right)}{\partial H_{\rho \nu}}$$

$$= \sum_{k=1}^{K} 2\left(V_{k\nu} - \sum_{r=1}^{R} W_{kr} H_{r\nu}\right) \cdot \left(-W_{k\rho}\right)$$

$$= 2\left(\sum_{r=1}^{R} \sum_{k=1}^{K} W_{k\rho} W_{kr} H_{r\nu} - \sum_{k=1}^{K} W_{k\rho} V_{k\nu}\right)$$

$$= 2\left(\sum_{r=1}^{R} \left(\sum_{k=1}^{K} W_{\rho k} W_{kr}\right) H_{r\nu} - \sum_{k=1}^{K} W_{\rho k} V_{k\nu}\right)$$

$$= 2\left(\left(W^{\top} W H\right)_{\rho \nu} - \left(W^{\top} V\right)_{\rho \nu}\right).$$

#### Gradient descent

Initialization  $H^{(0)} \in \mathbb{R}^{R \times N}$ Iteration for  $\ell = 0, 1, 2, ...$ 

$$H_{rn}^{(\ell+1)} = H_{rn}^{(\ell)} - \gamma_{rn}^{(\ell)} \cdot \left( \left( W^\top W H^{(\ell)} \right)_{rn} - \left( W^\top V \right)_{rn} \right)$$

with suitable learning rate  $\gamma_{rn}^{(\ell)} \geq 0$ 

#### Gradient descent

Initialization  $H^{(0)} \in \mathbb{R}^{R \times N}$ Iteration for  $\ell = 0, 1, 2, ...$ 

$$H_{rn}^{(\ell+1)} = H_{rn}^{(\ell)} - \gamma_{rn}^{(\ell)} \cdot \left( \left( W^{\top} W H^{(\ell)} \right)_{rn} - \left( W^{\top} V \right)_{rn} \right)$$

with suitable learning rate  $\gamma_{rn}^{(\ell)} \geq 0$ 

#### Issues:

- How to do the initialization?
- How to choose the learning rate?
- How to ensure nonnegativity?

#### Gradient descent

Initialization  $H^{(0)} \in \mathbb{R}^{R \times N}$ Iteration for  $\ell = 0, 1, 2, ...$ 

# Choose adaptive learning rate:

$$\gamma_{rn}^{(\ell)} := rac{H_{rn}^{(\ell)}}{ig(W^ op WH^{(\ell)}ig)_{rn}}$$

$$\begin{split} H_{rn}^{(\ell+1)} &= H_{rn}^{(\ell)} - \overbrace{\gamma_{rn}^{(\ell)}} \cdot \left( \left( W^\top W H^{(\ell)} \right)_{rn} - \left( W^\top V \right)_{rn} \right) \\ &= H_{rn}^{(\ell)} \cdot \frac{\left( W^\top V \right)_{rn}}{\left( W^\top W H^{(\ell)} \right)_{rn}} \end{split}$$

#### Issues:

- How to do the initialization?
- How to choose the learning rate?
- How to ensure nonnegativity?

#### Gradient descent

Initialization  $H^{(0)} \in \mathbb{R}^{R \times N}$ Iteration for  $\ell = 0, 1, 2, ...$ 

# Choose adaptive learning rate:

$$\gamma_{rn}^{(\ell)} := rac{H_{rn}^{(\ell)}}{ig(W^ op W H^{(\ell)}ig)_{rn}}$$

$$H_{rn}^{(\ell+1)} = H_{rn}^{(\ell)} - \underbrace{\begin{pmatrix} \gamma_{rn}^{(\ell)} \end{pmatrix}}_{rn} \cdot \left( \begin{pmatrix} W^{\top}WH^{(\ell)} \end{pmatrix}_{rn} - \begin{pmatrix} W^{\top}V \end{pmatrix}_{rn} \right)$$

$$= H_{rn}^{(\ell)} \cdot \frac{\begin{pmatrix} W^{\top}V \end{pmatrix}_{rn}}{\begin{pmatrix} W^{\top}WH^{(\ell)} \end{pmatrix}_{rn}}$$

#### Issues:

- How to do the initialization?
- How to choose the learning rate?
- How to ensure nonnegativity?

- Update rule become multiplicative
- Nonnegative values stay nonnegative

**Algorithm:** NMF  $(V \approx WH)$ 

**Input:** Nonnegative matrix V of size  $K \times N$ 

Rank parameter  $R \in \mathbb{N}$ 

Threshold  $\varepsilon$  used as stop criterion

**Output:** Nonnegative template matrix W of size  $K \times R$ 

Nonnegative activation matrix H of size  $R \times N$ 

**Procedure:** Define nonnegative matrices  $W^{(0)}$  and  $H^{(0)}$  by some random or informed initialization. Furthermore set  $\ell = 0$ . Apply the following update rules (written in matrix notation):

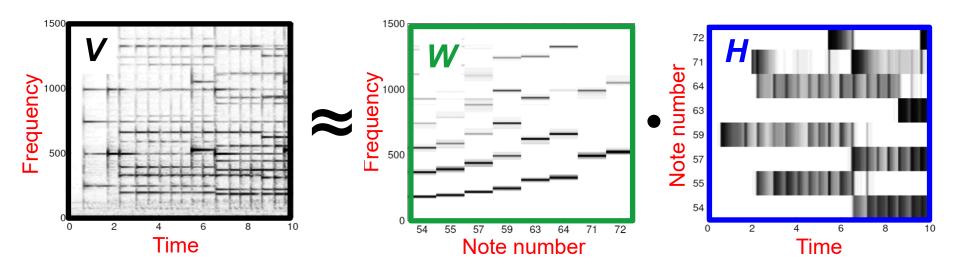
- $(1) \quad H^{(\ell+1)} = H^{(\ell)} \odot \left( ((W^{(\ell)})^\top V) \oslash ((W^{(\ell)})^\top W^{(\ell)} H^{(\ell)}) \right)$
- $(2) W^{(\ell+1)} = W^{(\ell)} \odot \left( (V(H^{(\ell+1)})^{\top}) \oslash (W^{(\ell)}H^{(\ell+1)}(H^{(\ell+1)})^{\top}) \right)$
- (3) Increase  $\ell$  by one.

Repeat the steps (1) to (3) until  $||H^{(\ell)} - H^{(\ell-1)}|| \le \varepsilon$  and  $||W^{(\ell)} - W^{(\ell-1)}|| \le \varepsilon$  (or until some other stop criterion is fulfilled). Finally, set  $H = H^{(\ell)}$  and  $W = W^{(\ell)}$ .

Lee, Seung: Algorithms for Non-Negative Matrix Factorization. Proc. NIPS, 2000.

# NMF-based Spectrogram Decomposition





**Templates:** Pitch + Timbre

(C) A (I)

"How does it sound"

**Activations: Onset time + Duration** 

"When does it sound"

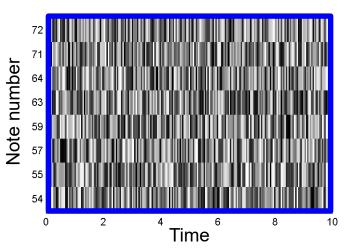
# NMF-based Spectrogram Decomposition



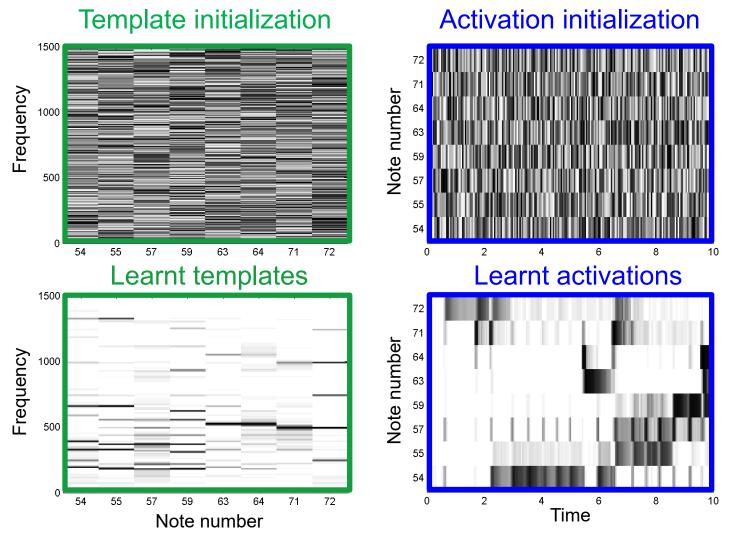
59

Note number

**Activation initialization** 

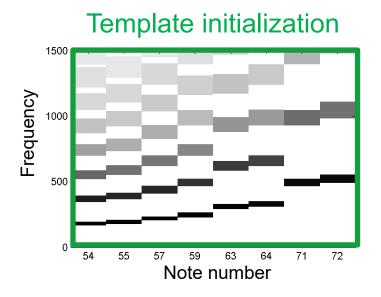


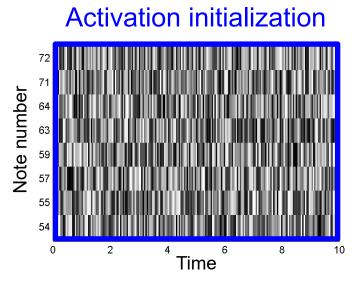
# NMF-based Spectrogram Decomposition



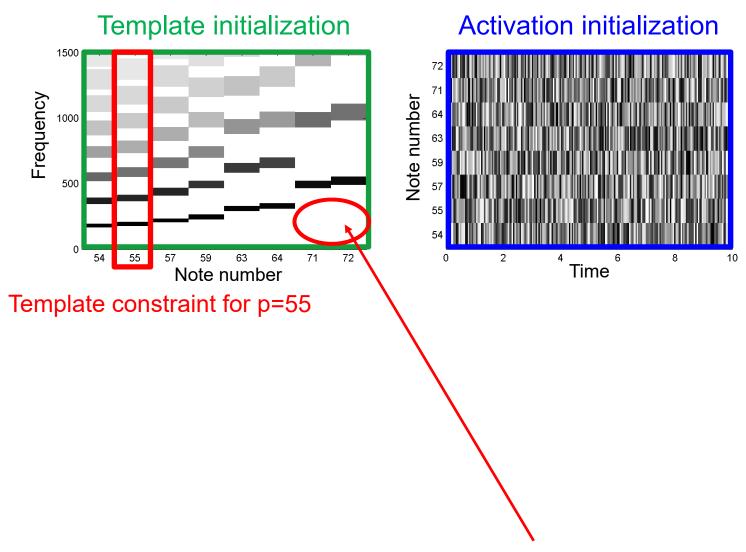
Random initialization → No semantic meaning

### **Constrained NMF: Templates**



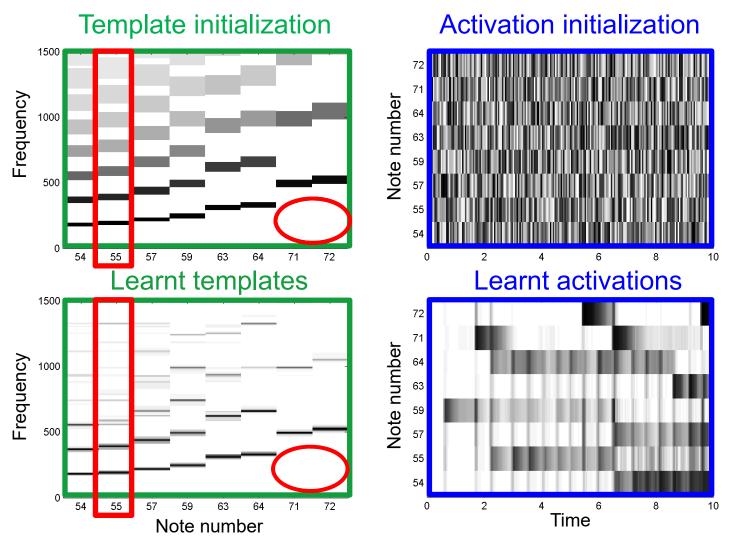


### **Constrained NMF: Templates**



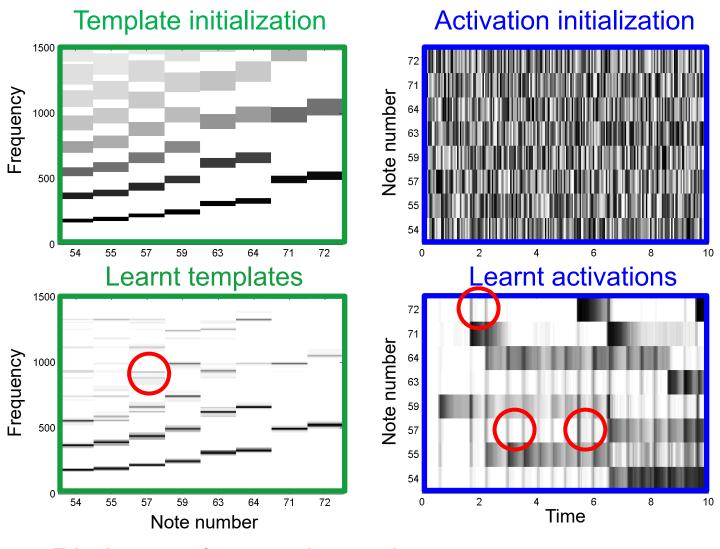
Enforce harmonic structure with zero-valued entries

## **Constrained NMF: Templates**



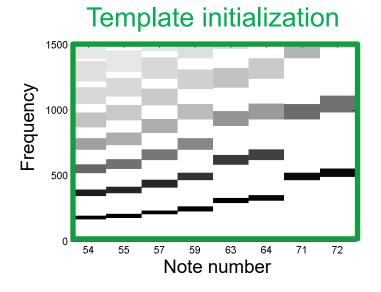
Zero-valued entries remain zero-valued entries!

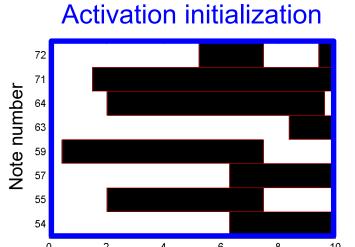
### **Constrained NMF: Templates**



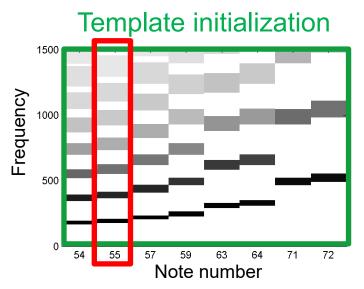
Pitch templates misused to represent onsets





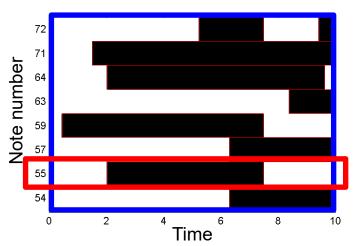


Time

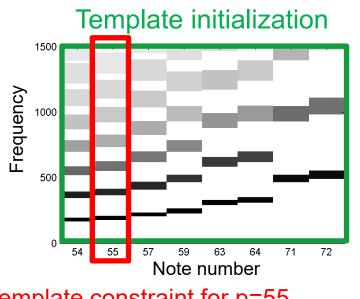


Template constraint for p=55

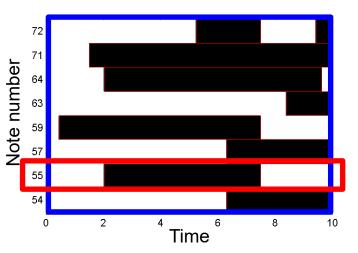




Activation constraints for p=55



**Activation initialization** 



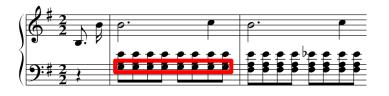
Template constraint for p=55

Activation constraints for p=55

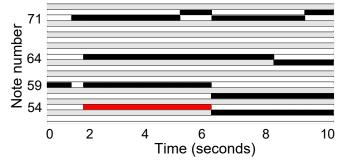
Such information may come from a synchronized score

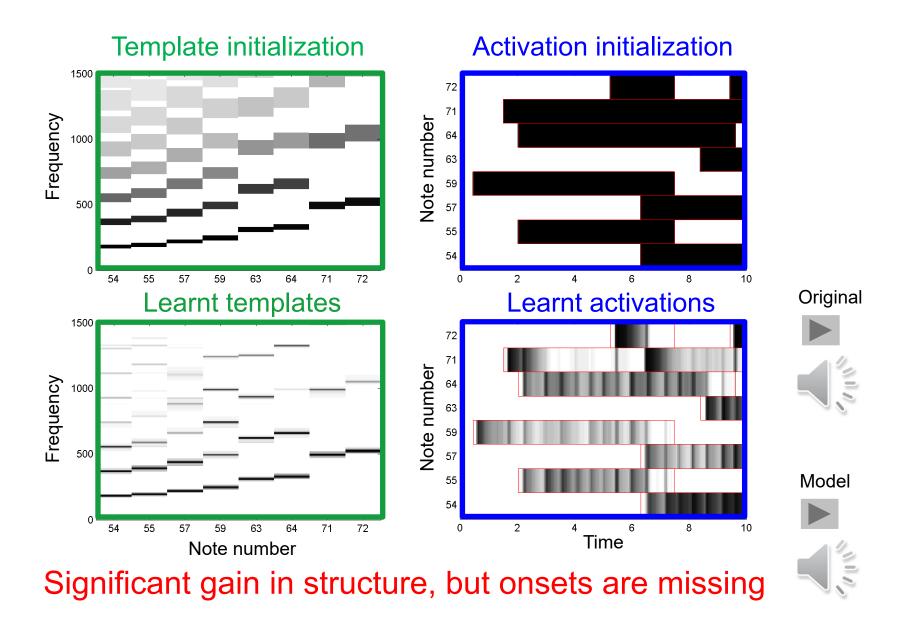


#### Sheet music

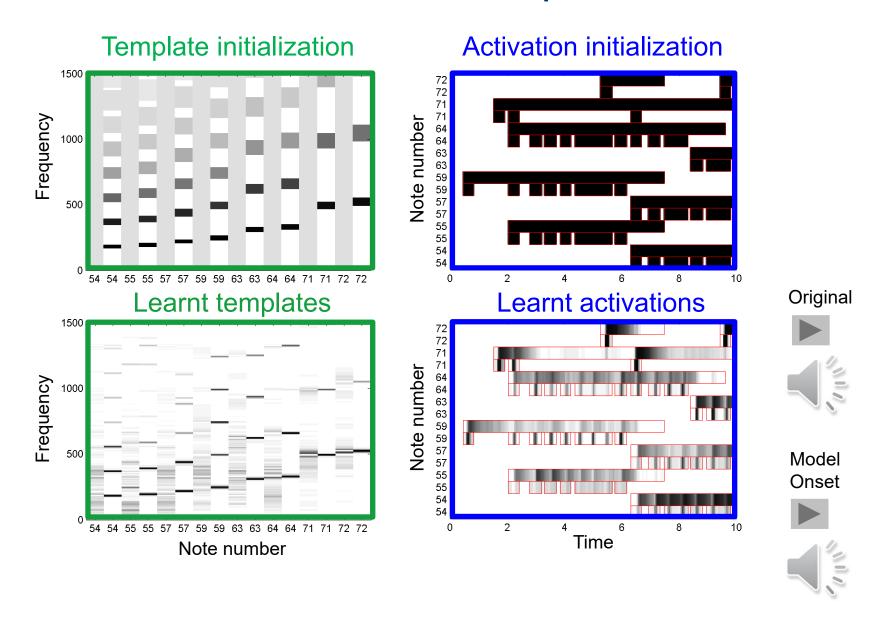








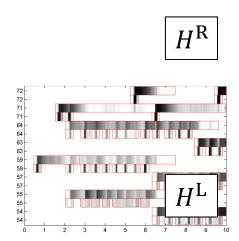
## **Constrained NMF: Onset Templates**



#### Application: Separating left and right hands for piano



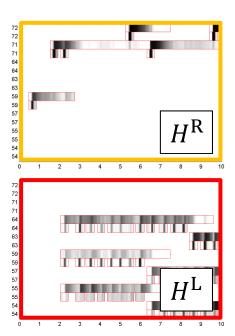
1. Split activation matrix



#### Application: Separating left and right hands for piano



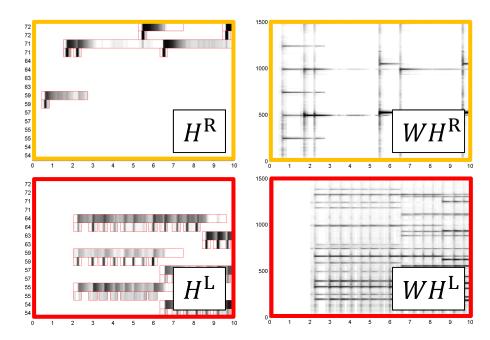
1. Split activation matrix



#### Application: Separating left and right hands for piano



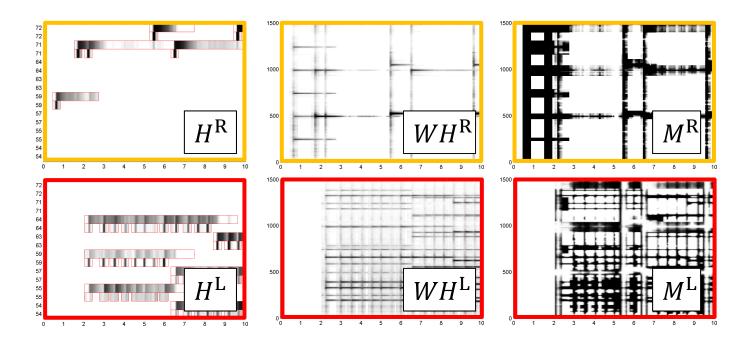
- 1. Split activation matrix
- 2. Model spectrogram for left/right



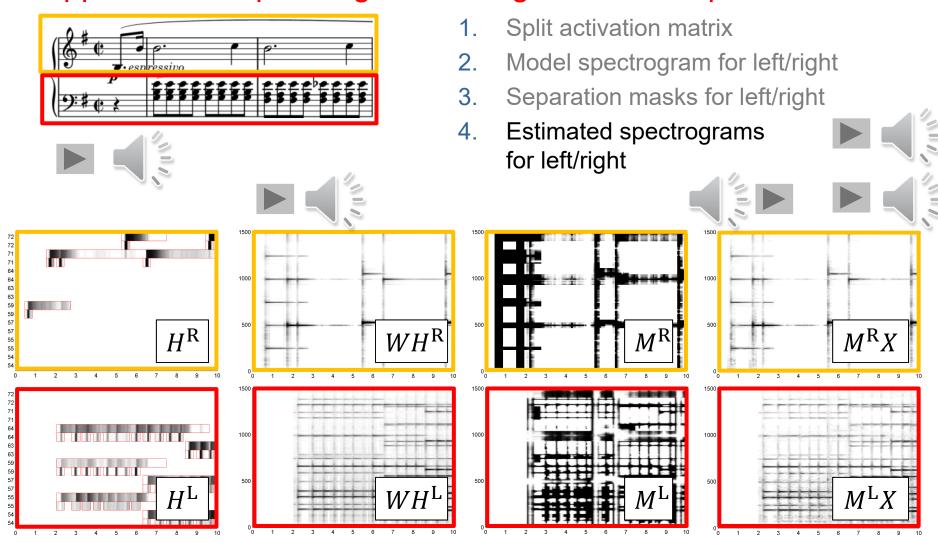
#### Application: Separating left and right hands for piano



- 1. Split activation matrix
- 2. Model spectrogram for left/right
- 3. Separation masks for left/right



#### Application: Separating left and right hands for piano



Application: Separating left and right hands for piano

Chopin, Waltz Op. 64, No. 1



Original





Ewert, Müller: Using Score-Informed Constraints for NMF-based Source Separation. Proc. ICASSP, 2012.

Further results available at

http://www.mpi-inf.mpg.de/resources/MIR/ICASSP2012-ScoreInformedNMF/

Application: Separating left and right hands for piano

Chopin, Waltz Op. 64, No. 1

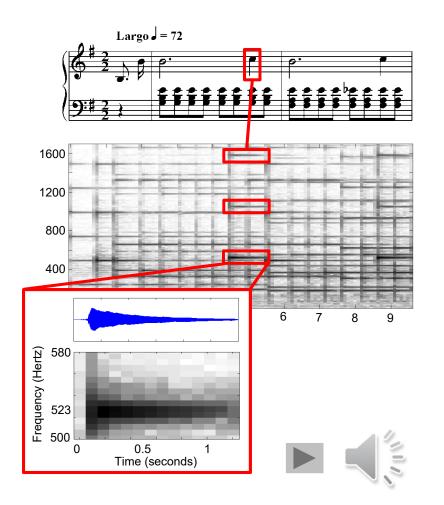


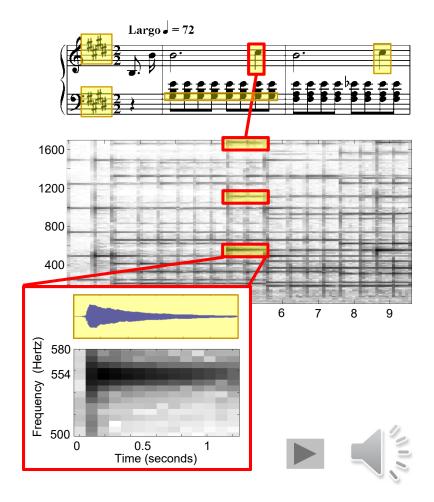
Ewert, Müller: Using Score-Informed Constraints for NMF-based Source Separation. Proc. ICASSP, 2012.

Further results available at

http://www.mpi-inf.mpg.de/resources/MIR/ICASSP2012-ScoreInformedNMF/

#### Application: Audio editing





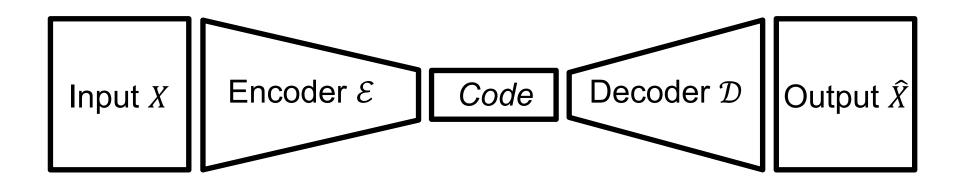
## Conclusions (NMF)

NMF used for spectrogram decomposition

Multiplicative update rules make it easy to constrain NMF model via zero initialization

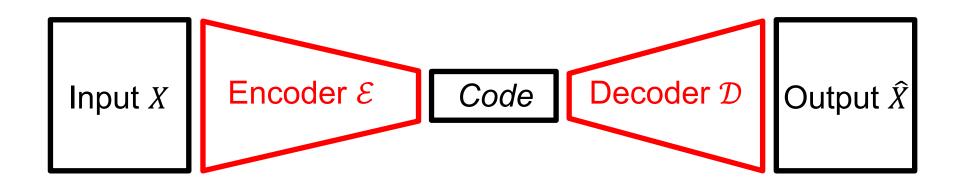
- Exploiting score information to guide separation process (requires score—audio synchronization)
- Application: Separation of arbitrary note groups from given audio recording

#### Autoencoder



- Specific type of neural network
- Encoder: Compress input X into a low-dimensional code
- Decoder: Reconstruct output  $\widehat{X}$  from code

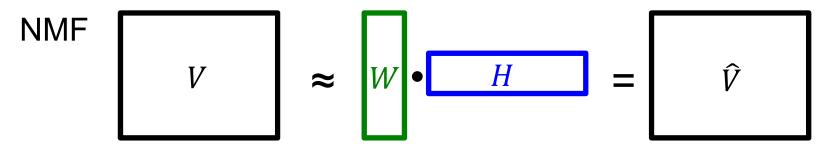
#### Autoencoder



- Specific type of neural network
- Encoder: Compress input X into a low-dimensional code
- Decoder: Reconstruct output  $\widehat{X}$  from code
- Goal: Learn parameters for encoder and decoder such that output is close to input with respect to some loss function:

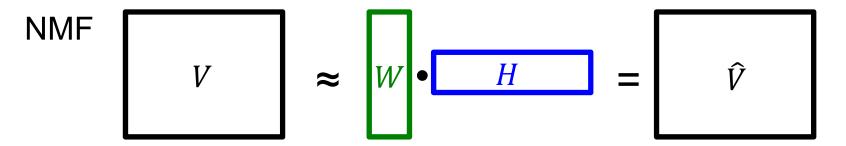
$$\mathcal{L}(X,\hat{X})\approx 0$$

Smaragdis, Venkataramani: A Neural Network Alternative to Non-Negative Audio Models, Proc. ICASSP 2017.

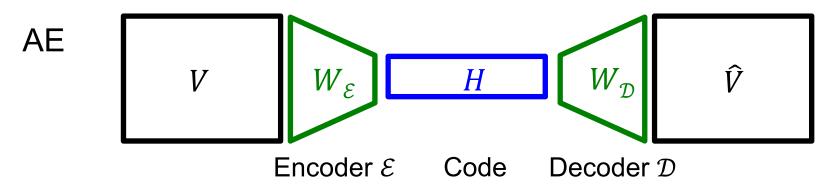


 $V \approx WH$  implies  $W^+V \approx H$  with pseudoinverse  $W^+$ 

Smaragdis, Venkataramani: A Neural Network Alternative to Non-Negative Audio Models, Proc. ICASSP 2017.

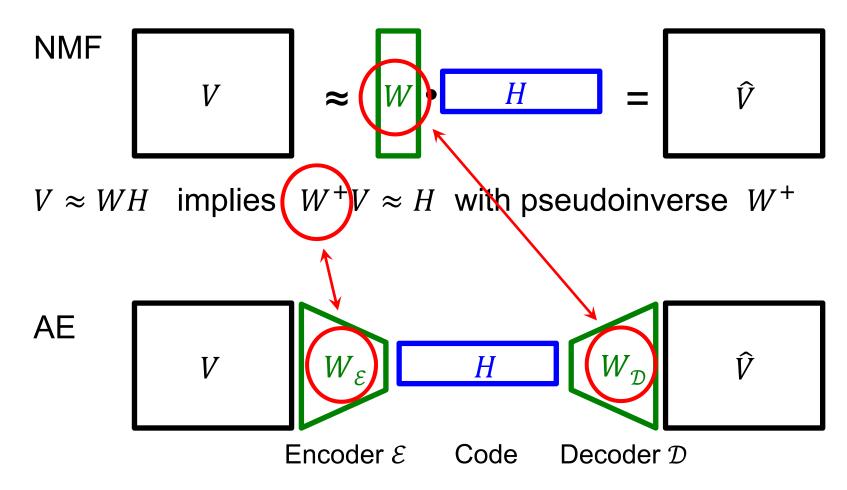


 $V \approx WH$  implies  $W^+V \approx H$  with pseudoinverse  $W^+$ 



- 1. Layer:  $H = W_{\varepsilon} V$
- 2. Layer:  $\hat{V} = W_D H$

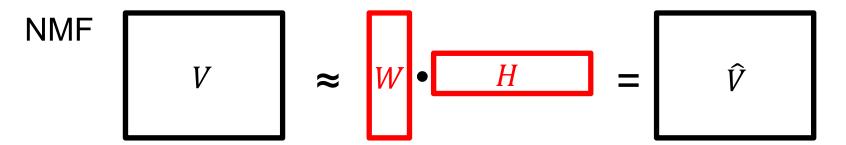
Smaragdis, Venkataramani: A Neural Network Alternative to Non-Negative Audio Models, Proc. ICASSP 2017.



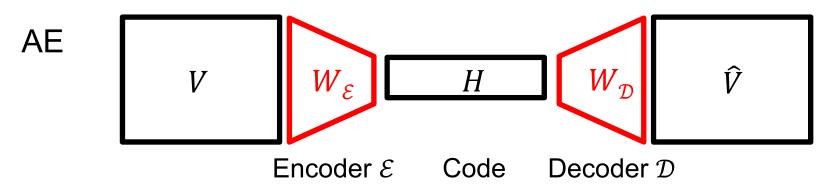
- 1. Layer:  $H = W_{\varepsilon} V$
- 2. Layer:  $\hat{V} = W_{\mathcal{D}} H$

Fully connected network

Smaragdis, Venkataramani: A Neural Network Alternative to Non-Negative Audio Models, Proc. ICASSP 2017.



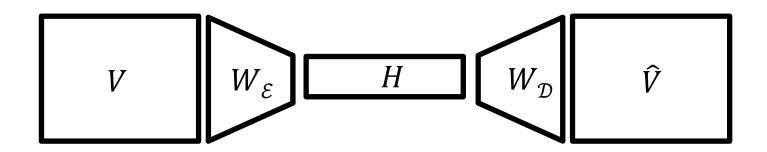
 $V \approx WH$  implies  $W^+V \approx H$  with pseudoinverse  $W^+$ 



- 1. Layer:  $H = W_{\varepsilon} V$
- 2. Layer:  $\hat{V} = W_{\mathcal{D}} H$

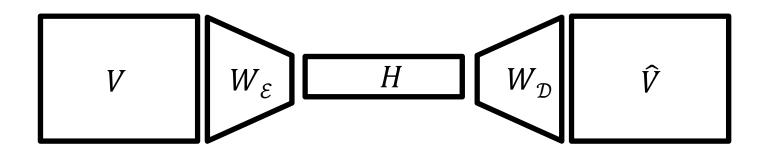
NMF: Learn *H* and *W* 

AE: Learn  $W_{\mathcal{E}}$  and  $W_{\mathcal{D}}$ 



- 1. Layer:  $H = W_{\varepsilon} V$
- 2. Layer:  $\hat{V} = W_{\mathcal{D}} H$

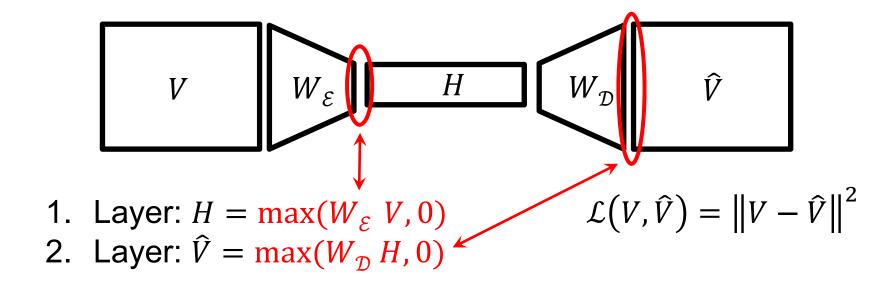
- How can one adjust the AE to simulate NMF?
- How can one achieve nonnegativity?
- How can one incorporate musical knowledge?
- •



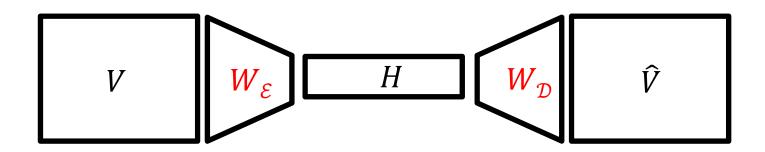
- 1. Layer:  $H = W_{\varepsilon} V$
- 2. Layer:  $\hat{V} = W_{\mathcal{D}} H$

$$\mathcal{L}(V,\widehat{V}) = \left\|V - \widehat{V}\right\|^2$$

Loss function: same as in NMF



- Loss function: same as in NMF
- Activation function (ReLU) makes H and  $\hat{V}$  nonnegative



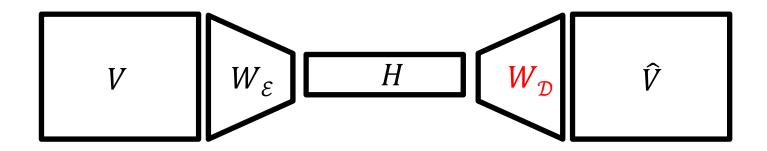
- 1. Layer:  $H = \max(W_{\varepsilon} V, 0)$
- 2. Layer:  $\hat{V} = \max(W_{\mathcal{D}} H, 0)$

$$W_{\mathcal{D}} \leftarrow \max \left( W_{\mathcal{D}} - \gamma \frac{\partial \mathcal{L}}{\partial W_{\mathcal{D}}}, 0 \right)$$

 $\mathcal{L}(V, \widehat{V}) = \|V - \widehat{V}\|^2$ 

- Loss function: same as in NMF
- Activation function (ReLU) makes H and  $\hat{V}$  nonnegative
- Projected gradient descent can be used to keep  $W_{\mathcal{D}}$  (and  $W_{\mathcal{E}}$ ) nonnegative

#### **Musical Constraints**



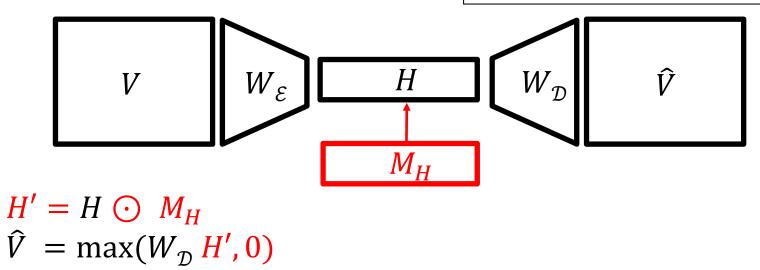
$$H = \max(W_{\varepsilon} V, 0)$$

$$\hat{V} = \max(W_{\mathcal{D}} H, 0)$$

• Template constraints: Project certain entries in  $W_{\mathcal{D}}$  to zero values (using projected gradient decent)

#### **Musical Constraints**

Ewert, Sandler: Structured Dropout for Weak Label and Multi-Instance Learning and Its Application to Score-Informed Source Separation. Proc. ICASSP, 2017.



- Template constraints: Project certain entries in  $W_{\mathcal{D}}$  to zero values (using projected gradient decent)
- Activation constraints: Use structured dropout by applying pointwise multiplication with binary mask  $M_H$

## NAE with Multiplicative Update Rules

- Multiplicative update rules in NMF:
  - Preserve nonnegativity
  - Lead to fast convergence
- Question: Can one introduce multiplicative update rules to train network weights for NAE?
- Use in additive gradient descent

$$W^{(\ell+1)} = W^{(\ell)} - \gamma \cdot \frac{\partial \mathcal{L}}{\partial W}$$

a suitable (adaptive) learning rate  $\,\gamma$  .

## NAE with Multiplicative Update Rules

Encoder:

$$H = W_{\mathcal{E}}V$$

Structured Dropout:

$$H'=H\odot M_H$$

Decoder:

$$\hat{V} = W_{\mathcal{D}}H'$$

Zunner: Neural Networks with Nonnegativity Constraints for Decomposing Music Recordings. Master Thesis, FAU, 2021.

## NAE with Multiplicative Update Rules

#### Encoder:

$$H = W_{\mathcal{E}}V$$

Structured Dropout:

$$H' = H \odot M_H$$

Decoder:

$$\hat{V} = W_{\mathcal{D}}H'$$

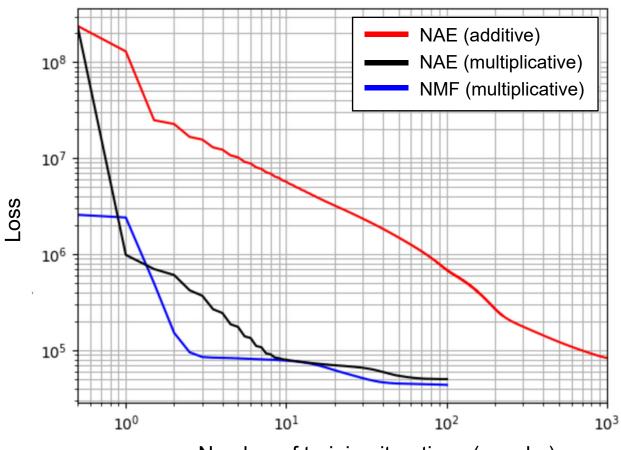
$$W_{\mathcal{E},rk}^{(\ell+1)} = W_{\mathcal{E},rk}^{(\ell)} \cdot \frac{\left(\left(\left(W_{\mathcal{D}}^{\top}V\right) \odot M_{H}\right)V^{\top}\right)_{rk}}{\left(\left(\left(W_{\mathcal{D}}^{\top}W_{\mathcal{D}}H'^{(\ell)}\right) \odot M_{H}\right)V^{\top}\right)_{rk}}$$

$$W_{\mathcal{D},kr}^{(\ell+1)} = W_{\mathcal{D},kr}^{(\ell)} \cdot \frac{\left(V H'^{\top}\right)_{kr}}{\left(W_{\mathcal{D}}^{(\ell)} H' H'^{\top}\right)_{kr}}$$

Similar idea and computation as for NMF.

Zunner: Neural Networks with Nonnegativity Constraints for Decomposing Music Recordings. Master Thesis, FAU, 2021.

# **Approximation Loss**



Number of training iterations (epochs)

Zunner: Neural Networks with Nonnegativity Constraints for Decomposing Music Recordings. Master Thesis, FAU, 2021.

## Conclusions (NAE)

- Simulation of NMF:
  - Decoder corresponds to NMF templates
  - Encoder learns a kind of pseudo-inverse
  - Code corresponds to NMF activations
- Nonnegativity can be achieved via
  - activation function (ReLU)
  - projected gradient descent
  - multiplicative update rules
- Musical knowledge can be integrated via
  - removing network weights (template constraints)
  - structured dropout (activation constraints)

#### Outlook

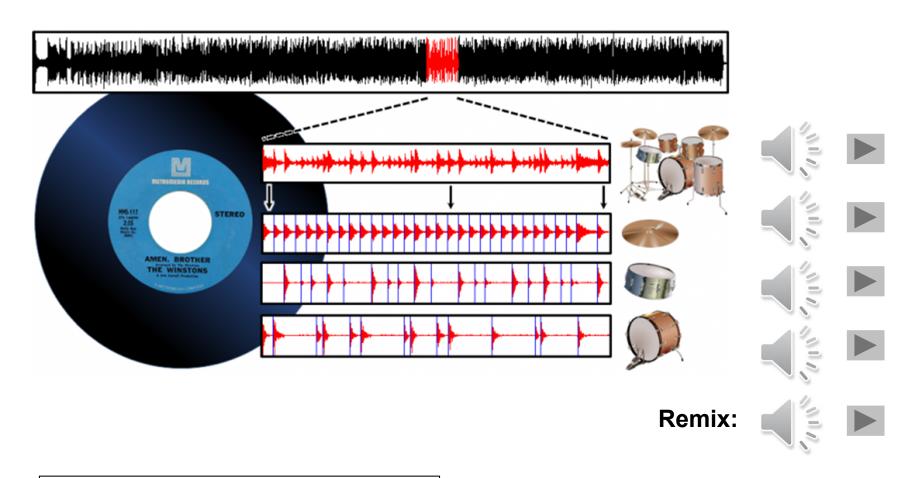
- More complex networks
  - Deeper networks (more layers)
  - Different layer types (CNN, RNN, ...) and activation functions
  - Modification of loss function and regularization terms
- Understanding encoder decoder relationship
  - Nonnegativity
  - Pseudo-inverse
- Update rules
  - Constraints and conversion issues
  - Adaptive learning rates and projected gradient descent

## Audio Mosaicing (Style Transfer)



Driedger, Prätzlich, Müller: Let It Bee – Towards NMF-Inspired Audio Mosaicing, ISMIR 2015..

## Informed Drum-Sound Decomposition



Dittmar, Müller: Reverse Engineering the Amen Break – Score-Informed Separation and Restoration Applied to Drum Recordings, IEEE/ACM TASLP, 2016.

Suárez: DNN-Based Matrix Factorization with Applications to Drum Sound Decomposition. Master Thesis, FAU, 2020.

#### Reconstruction of Sound Events

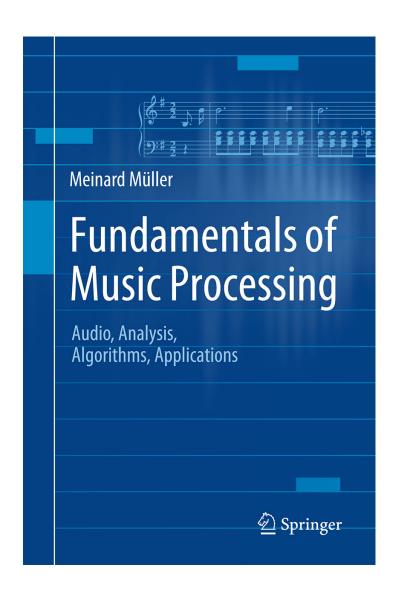
- Reconstruction via spectral masking (Wiener filtering)
- Alternative: Resynthesis approach
- Differentiable Digital Signal Processing (DDSP) combines classical DSP and deep learning
- Generative adversarial networks may help to reduce the artifacts

Lecture 8: Recurrent and Generative Adversarial Network Architectures for Text-to-Speech

# Selected Topics in Deep Learning for Audio, Speech, and Music Processing

- 1. Introduction to Audio and Speech Processing
- 2. Introduction to Music Processing
- 3. Permutation Invariant Training Techniques for Speech Separation
- 4. Deep Clustering for Single-Channel Ego-Noise Suppression
- 5. Music Source Separation
- 6. Nonnegative Autoencoders with Applications to Music Audio Decomposing
- 7. Attention in Sound Source Localization and Speaker Extraction
- Recurrent and Generative Adversarial Network Architectures for Textto-Speech
- Connectionist Temporal Classification (CTC) Loss with Applications to Theme-Based Music Retrieval
- 10. From Theory to Practise

## Book: Fundamentals of Music Processing



Meinard Müller
Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
483 p., 249 illus., hardcover
ISBN: 978-3-319-21944-8
Springer, 2015

Accompanying website: www.music-processing.de

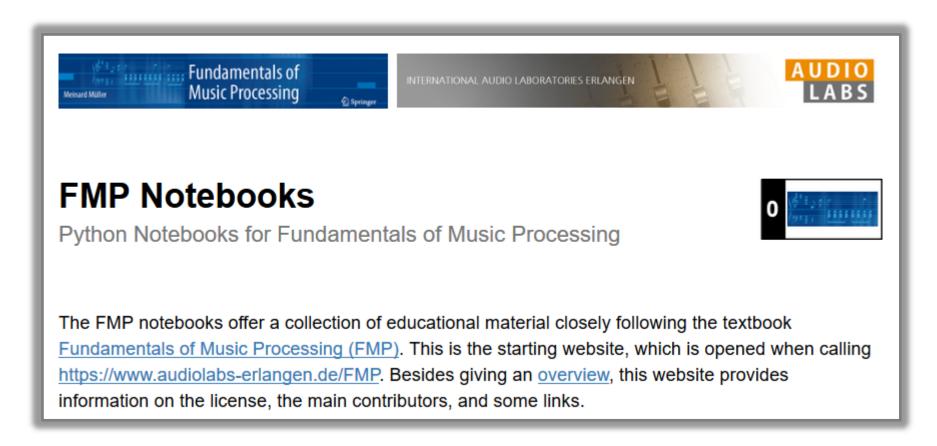
## Book: Fundamentals of Music Processing

| Chapter |   | Music Processing<br>Scenario              |
|---------|---|-------------------------------------------|
| 1       |   | Music Represenations                      |
| 2       |   | Fourier Analysis of<br>Signals            |
| 3       |   | Music Synchronization                     |
| 4       |   | Music Structure<br>Analysis               |
| 5       |   | Chord Recognition                         |
| 6       | 1 | Tempo and Beat<br>Tracking                |
| 7       |   | Content-Based Audio<br>Retrieval          |
| 8       |   | Musically Informed<br>Audio Decomposition |

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

#### Software & Audio: FMP Notebooks



https://www.audiolabs-erlangen.de/FMP