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Music Information Retrieval (MIR)

Sheet Music (Image) CD / MP3 (Audio) MusicXML (Text)

Music Film (Video)

Dance / Motion (Mocap) MIDI

Music Literature (Text)Singing / Voice (Audio)

Music



Piano Roll Representation



Player Piano (1900)



Time

Pitch

J.S. Bach, C-Major Fuge 

(Well Tempered Piano, BWV 846)

Piano Roll Representation (MIDI)



Query: 

Goal:  Find all occurrences of the query

Piano Roll Representation (MIDI)



Matches: 

Piano Roll Representation (MIDI)

Query: 

Goal:  Find all occurrences of the query



Music Retrieval Database

Hits

Bernstein (1962) 
Beethoven, Symphony No. 5

Beethoven, Symphony No. 5:
 Bernstein (1962) 
 Karajan (1982) 
 Gould (1992)

 Beethoven, Symphony No. 9
 Beethoven, Symphony No. 3
 Haydn Symphony No. 94

Query

Audio identification

Audio matching

Version identification

Category-based music retrieval

Retrieval tasks:



Music Retrieval

Audio identification

Audio matching

Version identification

Category-based music retrieval

High
specificity

Low
specificity

Fragment-based 
retrieval 

Document-based 
retrieval

Specificity Granularity

Modalities

Retrieval tasks:



Music Retrieval

Audio identification

Audio fingerprinting

Plagiarism detection

Copyright monitoring

Audio matching

Remix / remaster retrieval

Cover song detection
Version identification

Variation / motif
discovery

Musical quotations 
discovery

Year / epoch discovery

Key / mode discovery

Loudness-based retrieval

Tag / metadata inference 

Mood classification
Genre / style similarity

Instrument-based retrieval

Music / speech segmentation

Recommendation

Category-Based 
Retrieval

Audio 
Matching

Specificity lowhigh
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Version
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Music Synchronization: Audio-Audio
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Music Synchronization: Audio-Audio

Karajan

Gould

Beethoven’s Fifth

Time (seconds)

Time (seconds)



Application: Interpretation Switcher



Music Synchronization: Audio-Audio

Given: Two different audio recordings (two versions) of
the same underlying piece of music.

Goal: Find for each position in one audio recording
the musically corresponding position 
in the other audio recording.

Task



Music Synchronization: Audio-Audio
Traditional Engineering Approach:

 Robust to variations (e.g., instrumentation, timbre, dynamics)
 Discriminative (e.g., capturing harmonic, melodic, tonal aspects)

1.)  Feature extraction

 Capturing local and global tempo variations
 Trade-off: Robustness vs. accuracy
 Efficiency

2.)   Temporal alignment

Chroma features

Dynamic time warping (DTW)



Music Synchronization: Audio-Audio
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Music Synchronization: Audio-Audio
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Music Synchronization: Audio-Audio

Karajan

Gould

Beethoven’s Fifth

Time (indices)
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Music Synchronization: Audio-Audio

Karajan

Gould

Beethoven’s Fifth

Time (indices)

Time (indices)

E♭

E♭

Time–chroma representations



Music Synchronization: Audio-Audio
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Music Synchronization: Audio-Audio
Cost matrix
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Music Synchronization: Audio-Audio
Cost matrix
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Music Synchronization: Audio-Audio
Cost-minimizing warping path

Time (indices)

Ti
m

e 
(in

di
ce

s)
Ka

ra
ja

n

Gould



Music Synchronization: Audio-Audio

Karajan

Gould

Optimal alignment (cost-minimizing warping path)

Time (indices)

Time (indices)



Music Synchronization: Audio-Audio
Deep Learning Approaches:

 Learn audio features from data
– Should be able to achieve high alignment accuracy
– Should be robust to performance variations
– Musical relevance?

 Alignment problem
– Pre-aligned data for training
– Part of loss function → differentiability?

Lecture 9: Connectionist 
Temporal Classification (CTC) 
Loss with Applications to 
Theme-Based Music Retrieval



Music Synchronization: Image-Audio
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Music Synchronization: Image-Audio
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Application: Score Viewer
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Image Processing: Optical Music Recognition
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Audio Processing: Fourier Analysis

Image Processing: Optical Music Recognition



How to make the data comparable?
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Audio Processing: Fourier Analysis

Image Processing: Optical Music Recognition



Music Synchronization: Image-Audio
Deep Learning Approach: 

Dorfer, Schlüter, Vall, Korzeniowski, Widmer.
End-to-End Cross-Modality Retrieval with
CCA Projections and Pairwise Ranking Loss. 
International Journal of Multimedia 
Information Retrieval, 2018.

 Cross-modal embedding
 Requires corresponding snippets 

of audio and sheet music for 
training

 Triplet Loss function
max 0,𝑑 𝑥௔,𝑦௣ െ 𝑑 𝑥௔, 𝑦௡ ൅  α

 Problem very hard
– Performance variations
– Layout variations



Music Synchronization: Image-Audio
Deep Learning Approach: Soft Attention Mechanism

Lecture 7: 
Attention in 
Sound Source 
Localization 
and Speaker 
Extraction



Music Processing

Coarse/Relative Level Fine/Absolute Level

What do different versions or
instances have in common?

What are the characteristics of a 
specific version or instance?

Provide coarse description:
What makes up a piece of music?

Capture nuances and subtleties:
What makes music come alive?

Identify despite of differences Identify the differences

Example tasks:
Music Retrieval
Genre Classification
Global Tempo Estimation

Example tasks:
Music Transcription
Performance Analysis
Local Tempo Estimation



Tempo Estimation and Beat Tracking
Basic task:  “Tapping the foot when listening to music’’

Light effects

Music recommendation

DJ

Audio editing



Tempo Estimation and Beat Tracking

Time (seconds)

Example:      Queen – Another One Bites The Dust

Basic task:  “Tapping the foot when listening to music’’



Time (seconds)

Tempo Estimation and Beat Tracking

Example:      Queen – Another One Bites The Dust

Basic task:  “Tapping the foot when listening to music’’



Example:      Chopin – Mazurka Op. 68-3

Pulse level: Quarter note

Tempo:          ???

Tempo Estimation and Beat Tracking



Example:      Chopin – Mazurka Op. 68-3

Pulse level: Quarter note

Tempo:          50-200 BPM

Time (beats)

Te
m

po
 (B

PM
)

50

200

Tempo curve

Tempo Estimation and Beat Tracking



 Onset detection
 Beat tracking
 Tempo estimation

Tasks

Tempo Estimation and Beat Tracking



 Onset detection
 Beat tracking
 Tempo estimation

Tasks

Tempo Estimation and Beat Tracking



periodphase

 Onset detection
 Beat tracking
 Tempo estimation

Tasks

Tempo Estimation and Beat Tracking



Tempo := 60 / period

Beats per minute (BPM)

 Onset detection
 Beat tracking
 Tempo estimation

Tasks

period

Tempo Estimation and Beat Tracking



Onset Detection (Spectral Flux)

Time (seconds)

Audio recording



1. Spectrogram
Magnitude spectrogram || X Steps:

Onset Detection (Spectral Flux)
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Compressed spectrogram Y

Onset Detection (Spectral Flux)

1. Spectrogram
2. Logarithmic compression

Steps:
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Spectral difference

Onset Detection (Spectral Flux)

1. Spectrogram
2. Logarithmic compression
3. Differentiation &

half wave rectification

Steps:
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Spectral difference

Novelty curve

Onset Detection (Spectral Flux)

1. Spectrogram
2. Logarithmic compression
3. Differentiation &

half wave rectification
4. Accumulation

Steps:

Time (seconds)
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 (H

z)

Time (seconds)

0 1 2 3 4 5 6
0

20

40

60



Onset Detection (Spectral Flux)

1. Spectrogram
2. Logarithmic compression
3. Differentiation &

half wave rectification
4. Accumulation

Steps:

Novelty function



Substraction of local average

Onset Detection (Spectral Flux)

1. Spectrogram
2. Logarithmic compression
3. Differentiation &

half wave rectification
4. Accumulation
5. Normalization

Steps:

Novelty function



Onset Detection (Spectral Flux)

1. Spectrogram
2. Logarithmic compression
3. Differentiation &

half wave rectification
4. Accumulation
5. Normalization

Steps:

Normalized novelty function



Onset Detection (Spectral Flux)

1. Spectrogram
2. Logarithmic compression
3. Differentiation &

half wave rectification
4. Accumulation
5. Normalization

Steps:

Peak positions indicate beat candidates
Normalized novelty function



Onset Detection (Spectral Flux)

1. Spectrogram
2. Logarithmic compression
3. Differentiation &

half wave rectification
4. Accumulation
5. Normalization

Steps:

Peak positions indicate beat candidates
Normalized novelty function

Deep Learning Approaches: 

1. Input representation
2. Sigmoid activation
3. Convolution &

rectified linear unit (ReLU)
4. Pooling
5. Convolution & ReLU



Local Pulse and Tempo Tracking

Time (seconds)

Normalized novelty function



Local Pulse and Tempo Tracking
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Normalized novelty function

Fourier temogram (STFT of novelty function)



Local Pulse and Tempo Tracking
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Optimizing local periodicity kernel

Fourier temogram (STFT of novelty function)
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Local Pulse and Tempo Tracking
Te

m
po

 (B
PM

)

Time (seconds)

Optimizing local periodicity kernelHalfwave rectificationAccumulation of kernels

Time (seconds)

Fourier temogram (STFT of novelty function)



Local Pulse and Tempo Tracking
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Local Pulse and Tempo Tracking

Novelty Curve

Predominant Local Pulse (PLP)

Time (seconds)

Time (seconds)



Local Pulse and Tempo Tracking

Deep Learning Approaches: 

 End-to-end approach
– Input: Short audio snippets
– Output: Tempo value

 DL architecture inspired by
traditional engineering
– Layers and activation functions
– Shape of convolutional kernels

Schreiber, Müller: A Single-Step Approach to 
Musical Tempo Estimation Using a 
Convolutional Neural Network, ISMIR 2018.

Fr
eq

ue
nc

y 
 (H

z)
Time (seconds)

Spectral
filter

(e.g., 5x1)

Temporal 
filter

(e.g., 1x5)



Automatic Music Transcription
Task: Convert a music recording into sheet music

Music 
Transcription



Automatic Music Transcription
Task: Convert a music recording into sheet music

(or another symbolic music representation)

Music 
Transcription



Automatic Music Transcription
Task: Convert a music recording into sheet music

(or another symbolic music representation)

Music 
Transcription

Multitask learning for estimating
 pitches,
 note onsets & offsets,
 beat & measure positions,
 musical voices & instrumentation,
 pedalling, dynamics, …



Why is Music Processing Challenging?

Chopin, Mazurka Op. 63 No. 3 Example:



Why is Music Processing Challenging?

 Waveform

Chopin, Mazurka Op. 63 No. 3 Example:
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Why is Music Processing Challenging?

 Waveform / Spectrogram

Chopin, Mazurka Op. 63 No. 3 Example:
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Why is Music Processing Challenging?

 Waveform / Spectrogram

 Performance
– Tempo
– Dynamics
– Note deviations
– Sustain pedal

Chopin, Mazurka Op. 63 No. 3 Example:



Why is Music Processing Challenging?

 Waveform / Spectrogram

 Performance
– Tempo
– Dynamics
– Note deviations
– Sustain pedal

 Polyphony

Chopin, Mazurka Op. 63 No. 3 Example:

Main Melody

Accompaniment
Additional melody line



 Decomposition of audio stream into different sound sources

 Central task in digital signal processing

 “Cocktail party effect”

Source Separation



Source Separation

 Decomposition of audio stream into different sound sources

 Central task in digital signal processing

 “Cocktail party effect”

 Several input signals

 Sources are assumed to be statistically independent



Source Separation (Music)

Time

Time

 Main melody, accompaniment, drum track

 Instrumental voices

 Individual note events

 Only mono or stereo

 Sources are often highly dependent



Singing Voice Extraction

Singing voice Accompaniment

Original Recording



Singing Voice Extraction

Original recording HPR

Harmonic component Residual componentPercussive component

Harmonic portion  
singing voice

MR TR SL

F0 annotation

Harmonic portion  
accompaniment

Fricatives
singing voice

Instrument onsets
accompaniment

Vibrato & formants
singing voice

Diffuse instruments sounds
accompaniment

+ +

Estimate
singing voice

Estimate
accompaniment

Time

Fr
eq
ue
nc
y

Traditional 
engineering
approach: 

Driedger, Müller: Extracting 
Singing Voice from Music 
Recordings by Cascading 
Audio Decomposition 
Techniques, ICASSP 2015.



Singing Voice Extraction

Singing voice Accompaniment

Original Recording

Reference voices:

Engineering approach:

Deep learning approach:

Lecture 5:
Music 
Source 
Separation

Deep learning
has lead to
breakthrough

Stöter, Uhlich Luitkus, 
Mitsufuji: Open-Unmix – A 
Reference Implementation 
for Music Source 
Separation, JOSS 2019. 



Score-Informed Audio Decomposition
Exploit musical score to support decomposition process

Ewert, Pardo, 
Müller, Plumbley: 
Score-Informed 
Source Separation 
for Musical Audio 
Recordings,
IEEE SPM, 2014.



NMF (Nonnegative Matrix Factorization)

≈N

K
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M



NMF (Nonnegative Matrix Factorization)

≈

Templates Activations

N

M K

K

M

Magnitude Spectrogram

Templates:     Pitch + Timbre

Activations:  Onset time + Duration

“How does it sound”

“When does it sound”



NMF-Decomposition

N
ot

e 
nu

m
be

r

Fr
eq

ue
nc

y

Note number Time

Initialized template Initialized activations

Random initialization



NMF-Decomposition
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Learnt templates Learnt activations

Initialized template Initialized activations

Random initialization →  No semantic meaning



NMF-Decomposition
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NMF-Decomposition
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Note number Time

Activation constraints for p=55

Initialized template Initialized activations

Template constraint for p=55 

Constrained initialization



NMF-Decomposition
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Time

Org
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Note number

Initialized template Initialized activations

Constrained initialization →  NMF as refinement

Learnt templates Learnt activations



NMF-Decomposition

Lecture 6: Nonnegative 
Autoencoders with Applications 
to Music Audio Decomposing

≈ W H =

H

Smaragdis, Venkataramani: A Neural 
Network Alternative to Non-Negative 
Audio Models, ICASSP 2017.



Score-Informed Audio Decomposition
Exploit musical score to support decomposition process
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NMF-based spectrogram decomposition



Score-Informed Audio Decomposition
Exploit musical score to support decomposition process
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NMF-based spectrogram decomposition



Score-Informed Audio Decomposition
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Application: Audio editing



Informed Drum-Sound Decomposition

Remix:
Dittmar, Müller: Reverse Engineering the 
Amen Break – Score-Informed Separation 
and Restoration Applied to Drum Recordings, 
IEEE/ACM TASLP, 2016.



Informed Drum-Sound Decomposition

Lecture 8: Recurrent and 
Generative Adversarial 
Network Architectures for 
Text-to-Speech

Major challenge: Reconstructed sound
events often have artifacts

Approaches:

 Resynthesize certain sound
components

 Differentiable Digital Signal 
Processing (DDSP) combines 
classical DSP and deep learning 

 Generative adversarial networks
may help to reduce the artifacts



Audio Mosaicing
Source signal: BeesTarget signal: Beatles–Let it be

Mosaic signal: Let it Bee

Driedger, Prätzlich, Müller:  Let It 
Bee – Towards NMF-Inspired 
Audio Mosaicing, ISMIR 2015..



Selected Topics in Deep Learning for Audio, 
Speech, and Music Processing
1. Introduction to Audio and Speech Processing
2. Introduction to Music Processing
3. Permutation Invariant Training Techniques for Speech Separation
4. Deep Clustering for Single-Channel Ego-Noise Suppression
5. Music Source Separation
6. Nonnegative Autoencoders with Applications to Music Audio 

Decomposing
7. Attention in Sound Source Localization and Speaker Extraction
8. Recurrent and Generative Adversarial Network Architectures for Text-

to-Speech
9. Connectionist Temporal Classification (CTC) Loss with Applications 

to Theme-Based Music Retrieval
10. From Theory to Practise



Book: Fundamentals of Music Processing

Meinard Müller
Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
483 p., 249 illus., hardcover
ISBN: 978-3-319-21944-8
Springer, 2015

Accompanying website: 
www.music-processing.de



Book: Fundamentals of Music Processing

Meinard Müller
Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
483 p., 249 illus., hardcover
ISBN: 978-3-319-21944-8
Springer, 2015

Accompanying website: 
www.music-processing.de



Software & Audio: FMP Notebooks

https://www.audiolabs-erlangen.de/FMP


