

# Selected Topics in Deep Learning for Audio, Speech, and Music Processing

### Introduction to Music Processing

#### **Meinard Müller**

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

26.04.2021





### **Group Meinard Müller**

- Frank Zalkow
- Sebastian Rosenzweig
- Michael Krause
- Yigitcan Özer
- Peter Meier (extern)
- **Christian Dittmar**
- Christof Weiß
- Stefan Balke
- Jonathan Driedger
- Thomas Prätzlich



















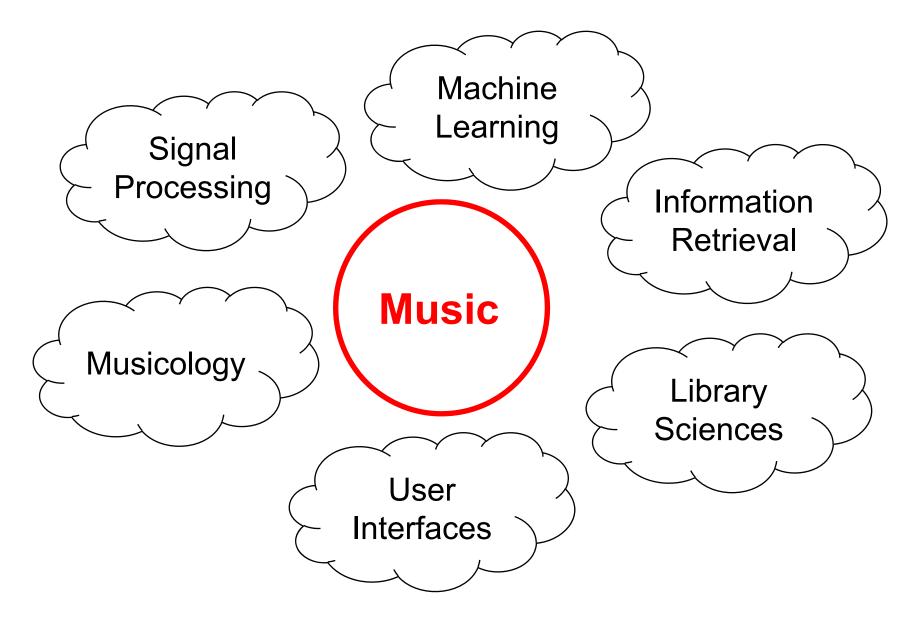




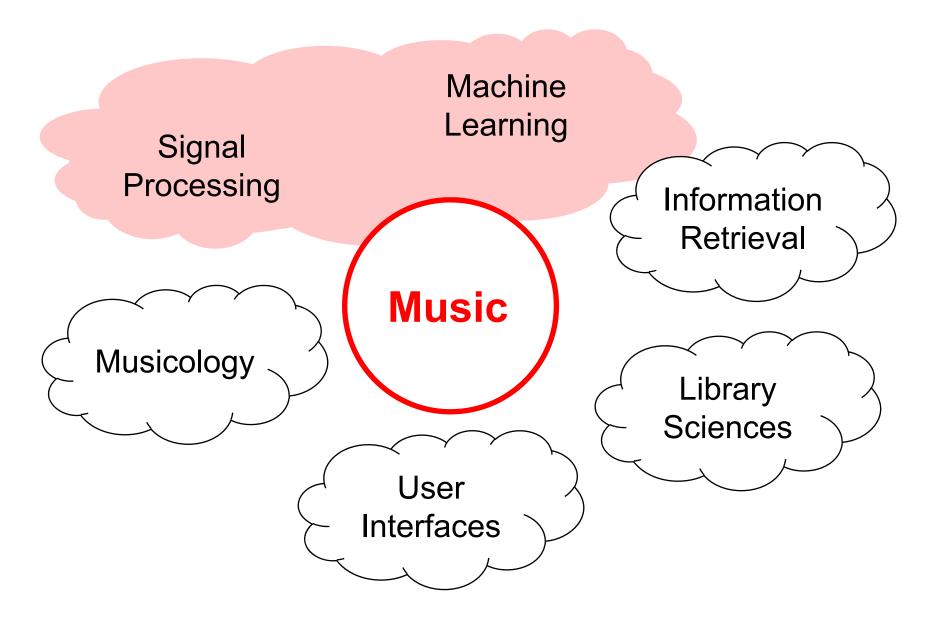




### Music Information Retrieval (MIR)



### Music Information Retrieval (MIR)

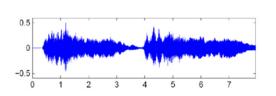


### Music Information Retrieval (MIR)

#### Sheet Music (Image)



#### CD / MP3 (Audio)



MusicXML (Text)

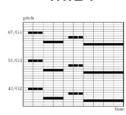
<note> <pitch> <step>E</step> <alter>-1</alter> <octave>4</octave> </pitch> <duration>2</duration> <type>half</type> </note>

Dance / Motion (Mocap)





**MIDI** 



Singing / Voice (Audio)



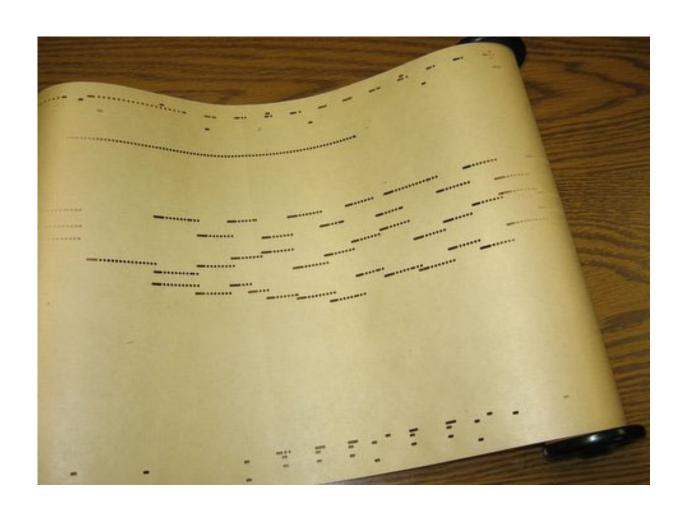
Music Film (Video)



Music Literature (Text)



## Piano Roll Representation

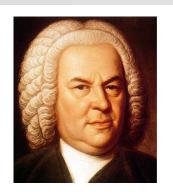


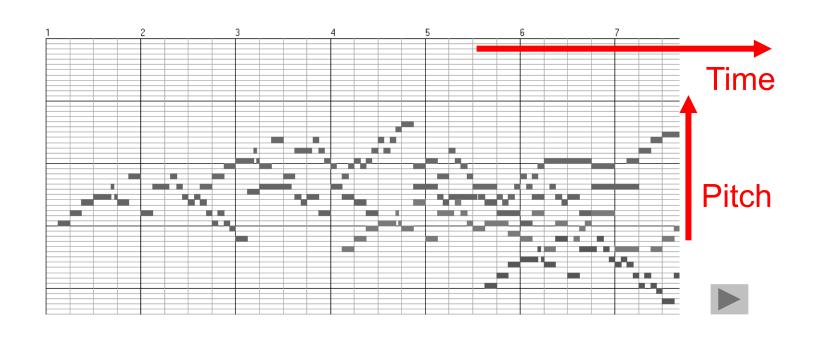
## Player Piano (1900)



### Piano Roll Representation (MIDI)

J.S. Bach, C-Major Fuge (Well Tempered Piano, BWV 846)





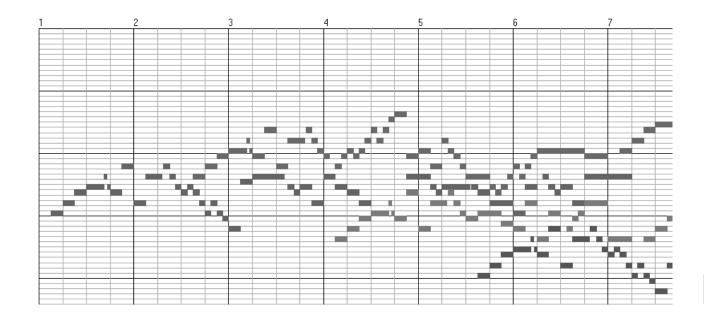


### Piano Roll Representation (MIDI)

Query:



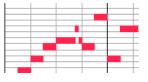
Goal: Find all occurrences of the query

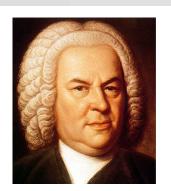




## Piano Roll Representation (MIDI)

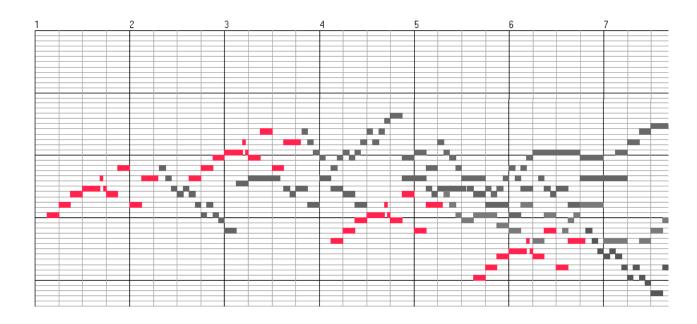
Query:





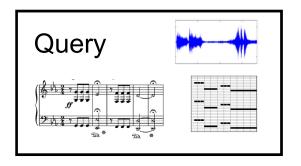
Goal: Find all occurrences of the query

#### Matches:



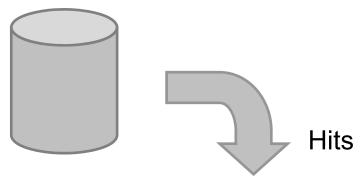


### Music Retrieval









#### **Retrieval tasks:**

Audio identification

Audio matching

Version identification

Category-based music retrieval

Bernstein (1962) Beethoven, Symphony No. 5

Beethoven, Symphony No. 5:

- Bernstein (1962)
- Karajan (1982)
- Gould (1992)





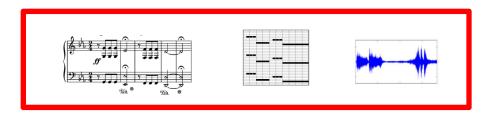
- Beethoven, Symphony No. 9
- Beethoven, Symphony No. 3
- Haydn Symphony No. 94





### Music Retrieval

#### **Modalities**



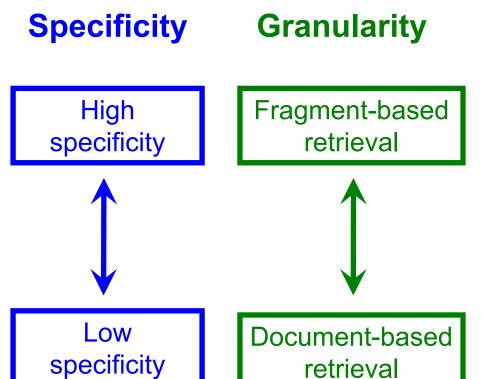
#### **Retrieval tasks:**

Audio identification

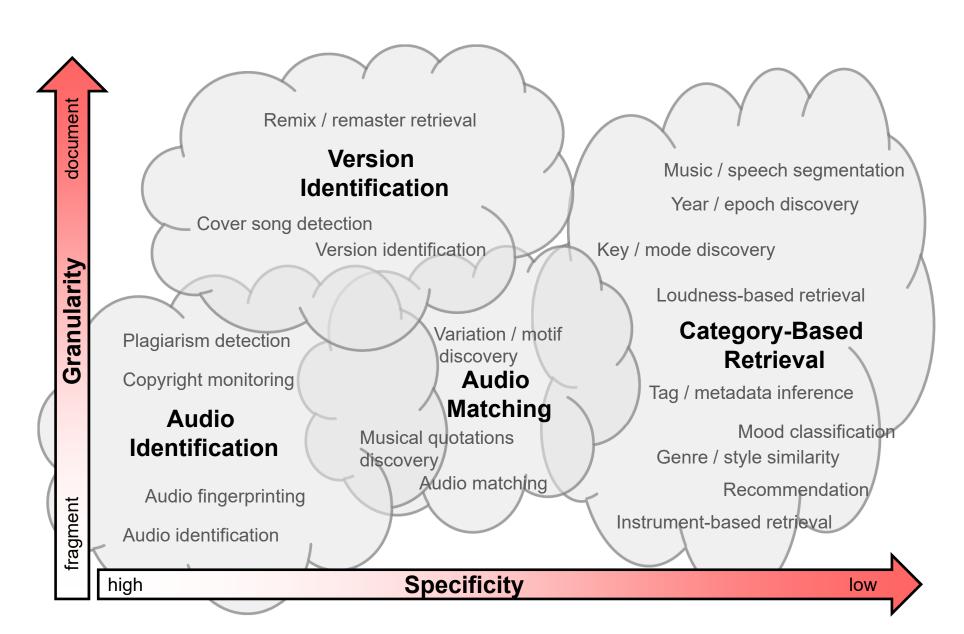
Audio matching

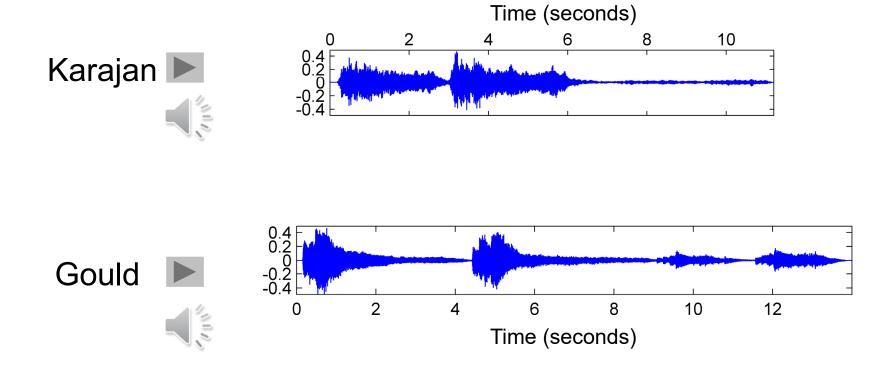
Version identification

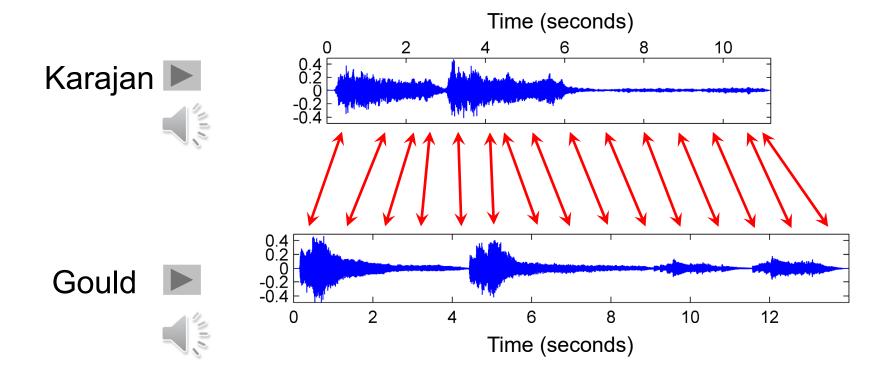
Category-based music retrieval



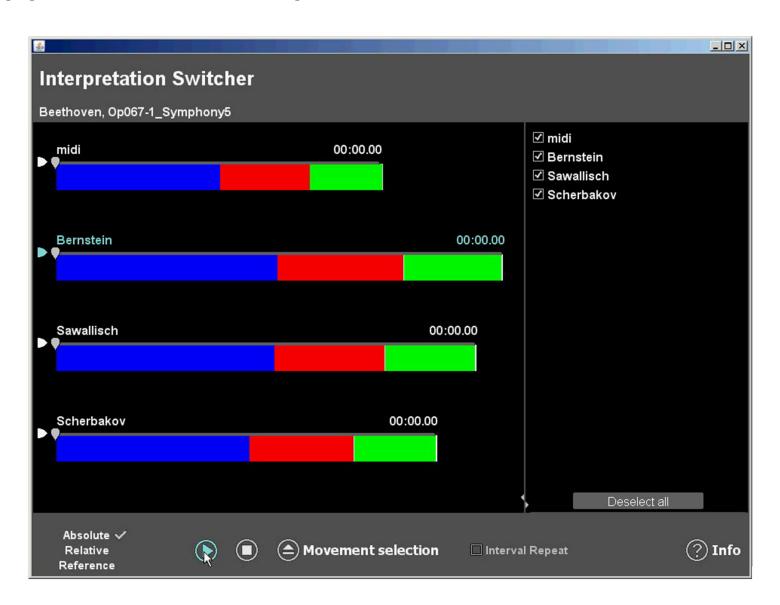
### Music Retrieval







### Application: Interpretation Switcher



#### Task

Given: Two different audio recordings (two versions) of

the same underlying piece of music.

**Goal:** Find for each position in one audio recording

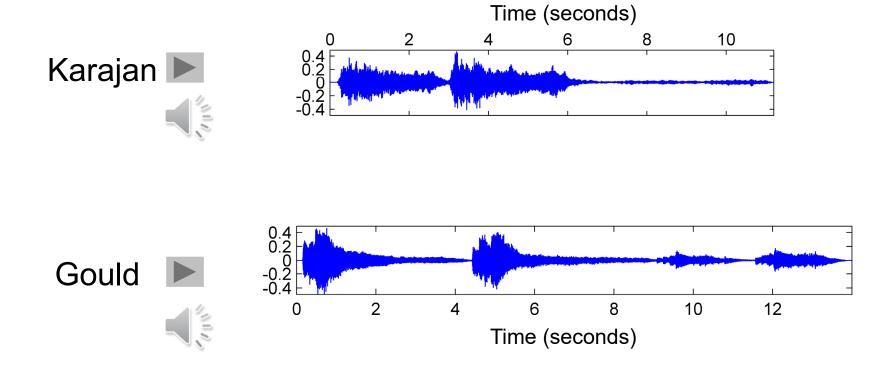
the musically corresponding position

in the other audio recording.

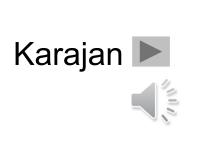
### **Traditional Engineering Approach:**

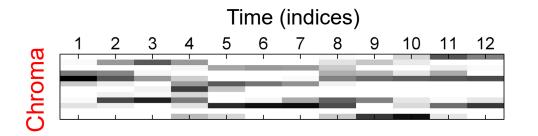
- 1.) Feature extraction
  - Robust to variations (e.g., instrumentation, timbre, dynamics)
  - Discriminative (e.g., capturing harmonic, melodic, tonal aspects)
    - Chroma features

- 2.) Temporal alignment
  - Capturing local and global tempo variations
  - Trade-off: Robustness vs. accuracy
  - Efficiency
    - Dynamic time warping (DTW)



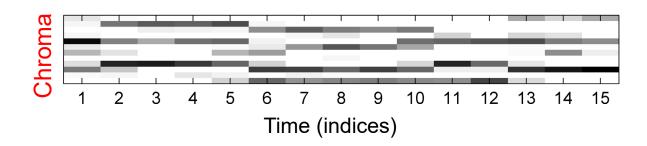
Beethoven's Fifth

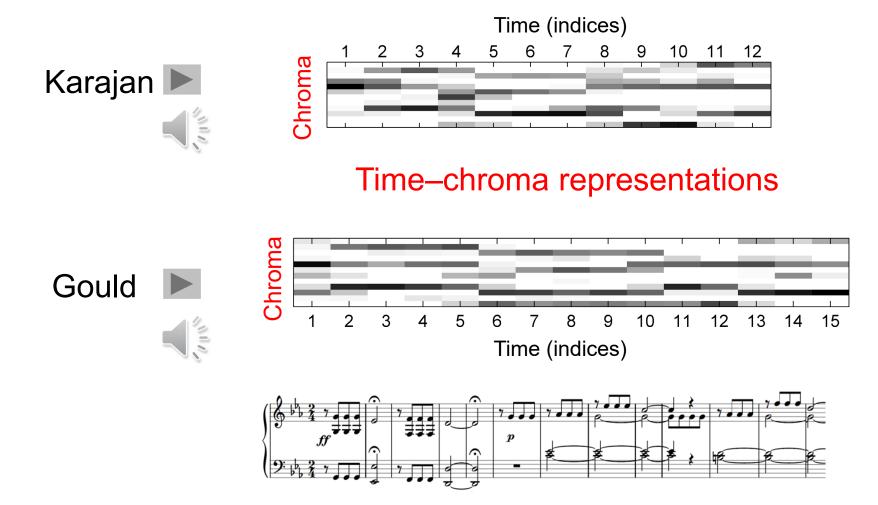


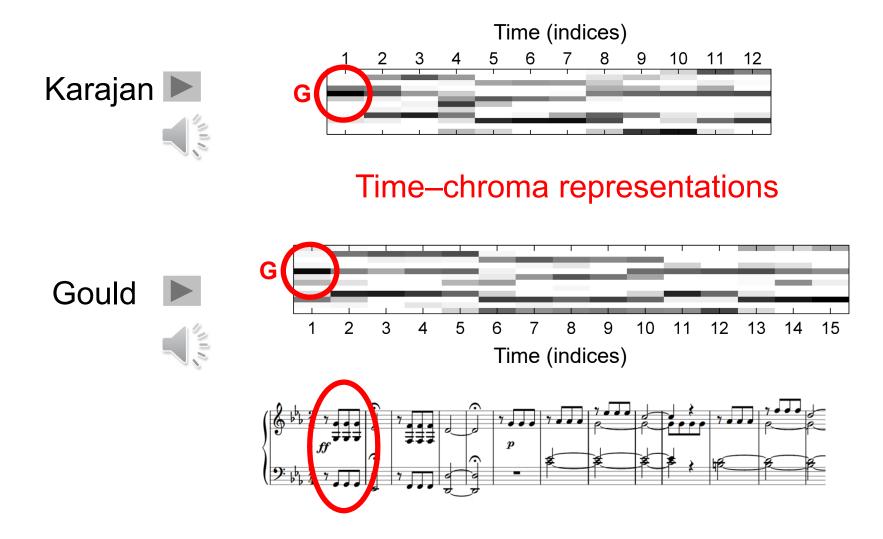


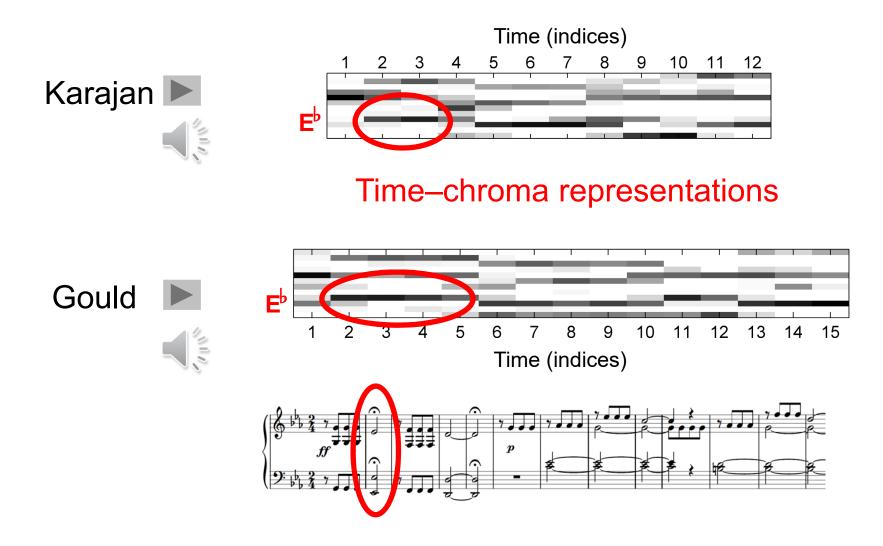
Time-chroma representations

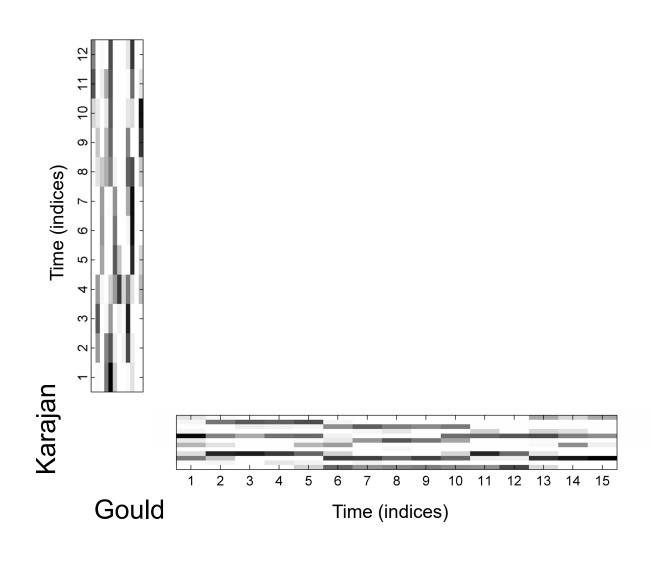




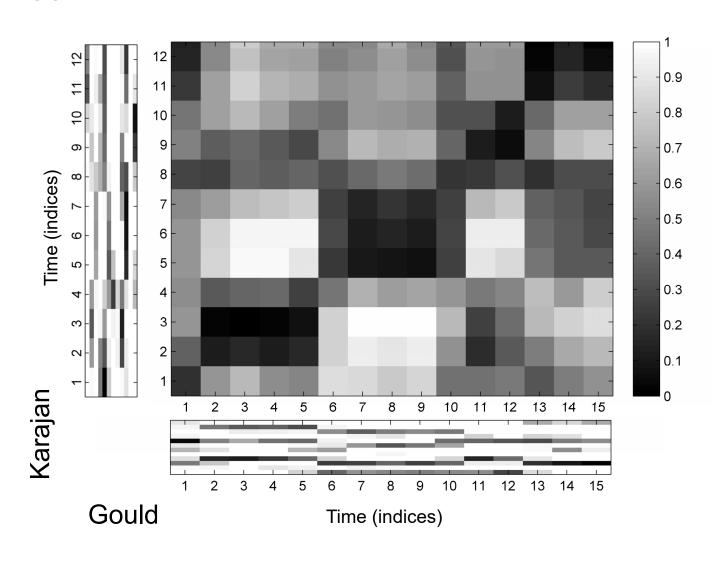




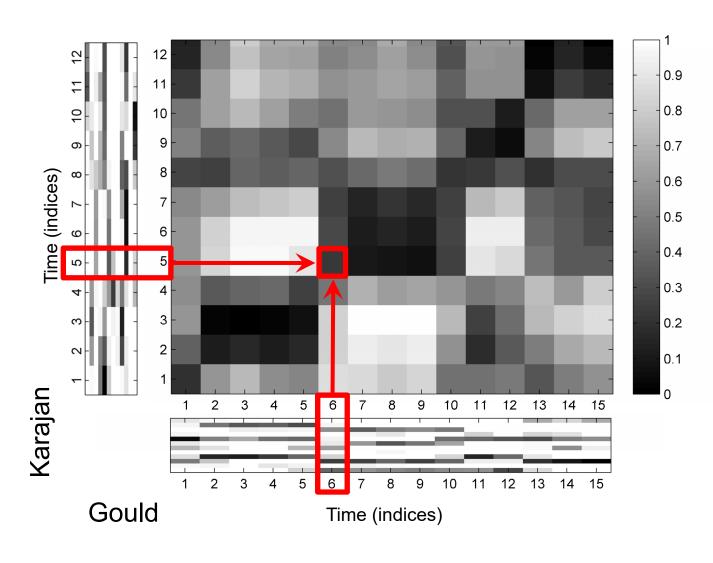




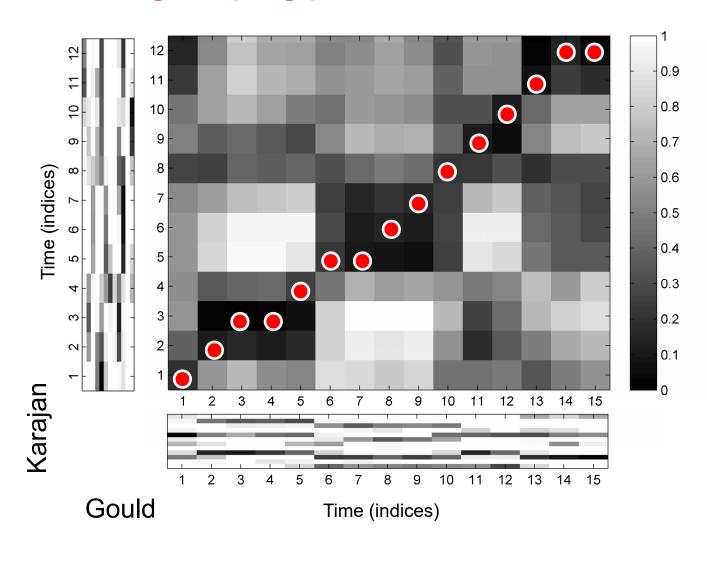
#### **Cost matrix**



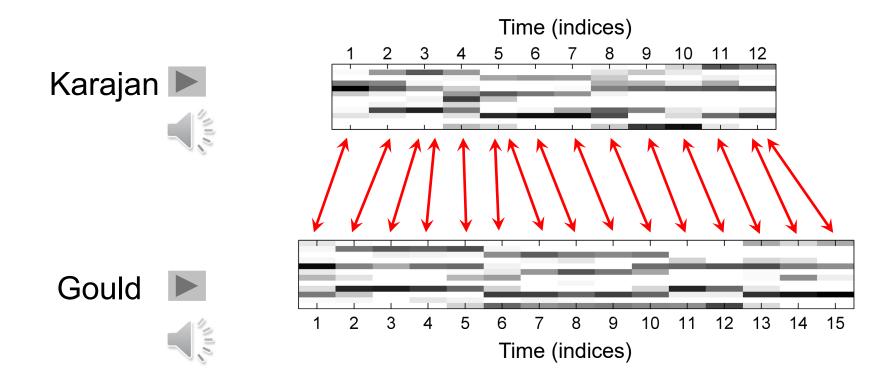
#### **Cost matrix**



### **Cost-minimizing warping path**



Optimal alignment (cost-minimizing warping path)



#### **Deep Learning Approaches:**

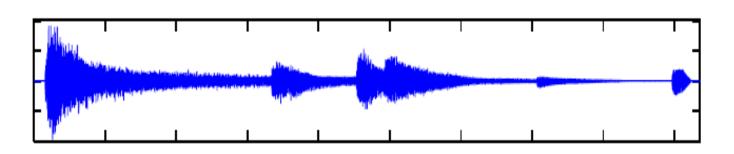
- Learn audio features from data
  - Should be able to achieve high alignment accuracy
  - Should be robust to performance variations
  - Musical relevance?
- Alignment problem
  - Pre-aligned data for training
  - Part of loss function → differentiability?

Lecture 9: Connectionist
Temporal Classification (CTC)
Loss with Applications to
Theme-Based Music Retrieval

## Music Synchronization: Image-Audio



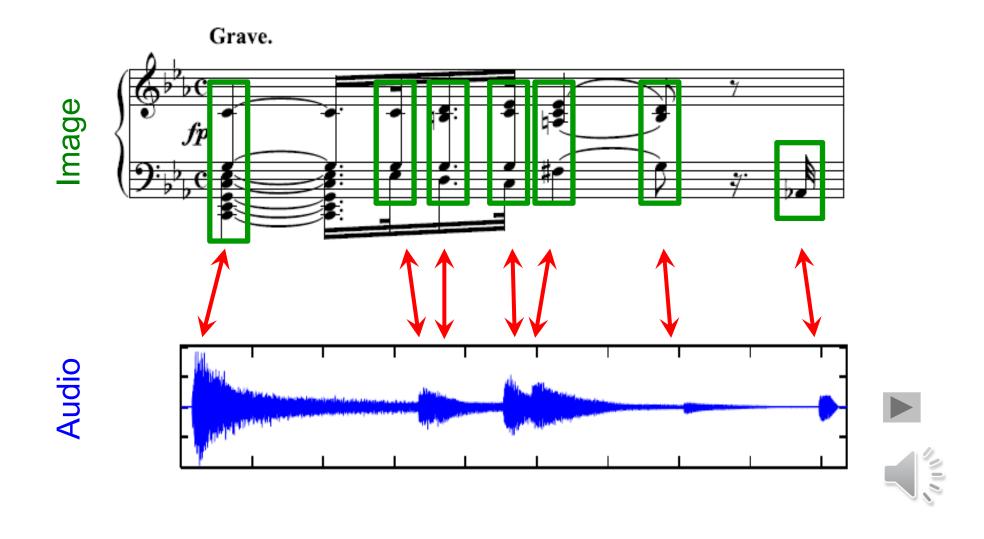
Audio



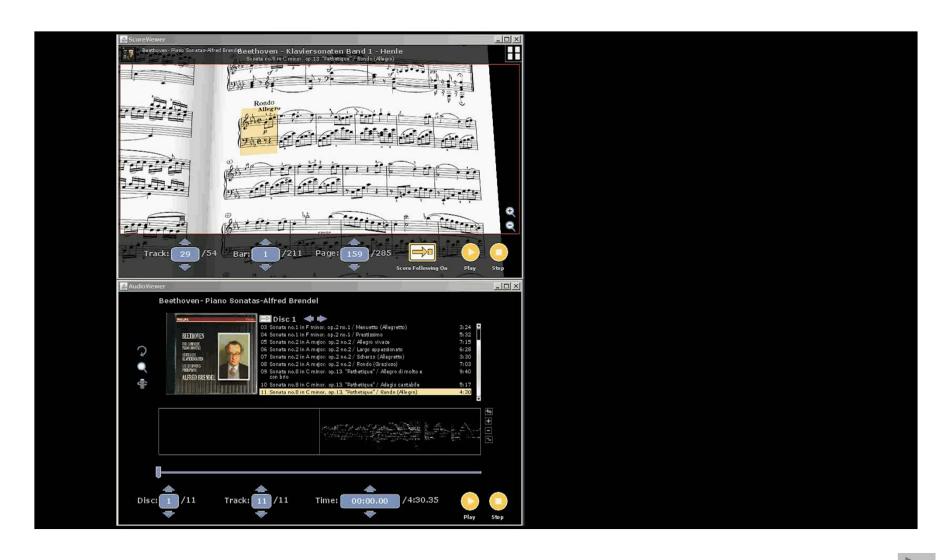




## Music Synchronization: Image-Audio



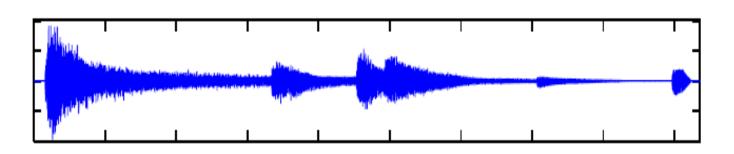
### **Application: Score Viewer**



### How to make the data comparable?



Audio







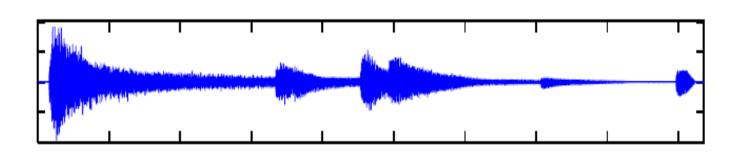
### How to make the data comparable?

### Image Processing: Optical Music Recognition

Image



Audic







### How to make the data comparable?

Image Processing: Optical Music Recognition

Image



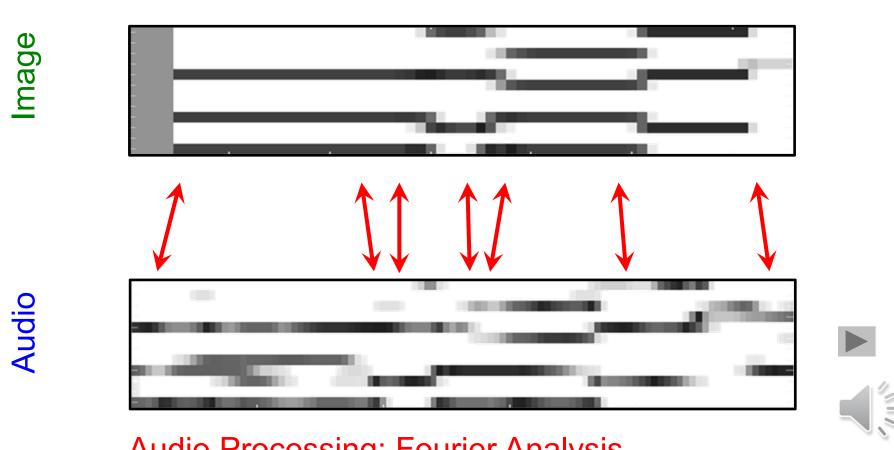
Audio



Audio Processing: Fourier Analysis

## How to make the data comparable?

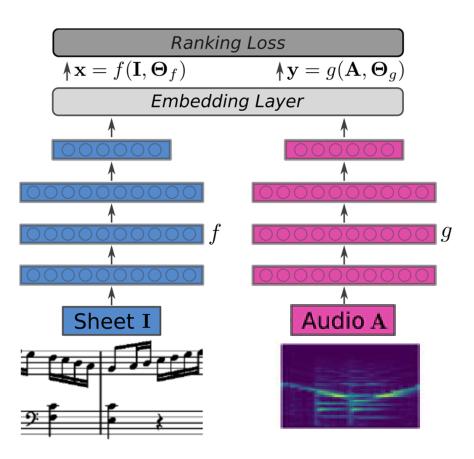
Image Processing: Optical Music Recognition



Audio Processing: Fourier Analysis

## Music Synchronization: Image-Audio

### **Deep Learning Approach:**

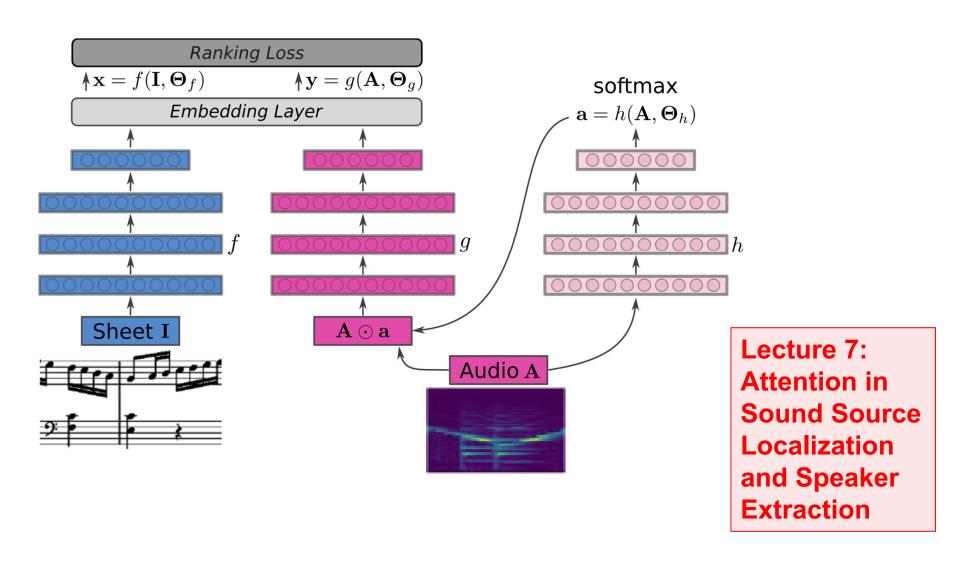


- Cross-modal embedding
- Requires corresponding snippets of audio and sheet music for training
- Triplet Loss function  $\max(0, d(x^a, y^p) d(x^a, y^n) + \alpha)$
- Problem very hard
  - Performance variations
  - Layout variations

Dorfer, Schlüter, Vall, Korzeniowski, Widmer. End-to-End Cross-Modality Retrieval with CCA Projections and Pairwise Ranking Loss. International Journal of Multimedia Information Retrieval, 2018.

### Music Synchronization: Image-Audio

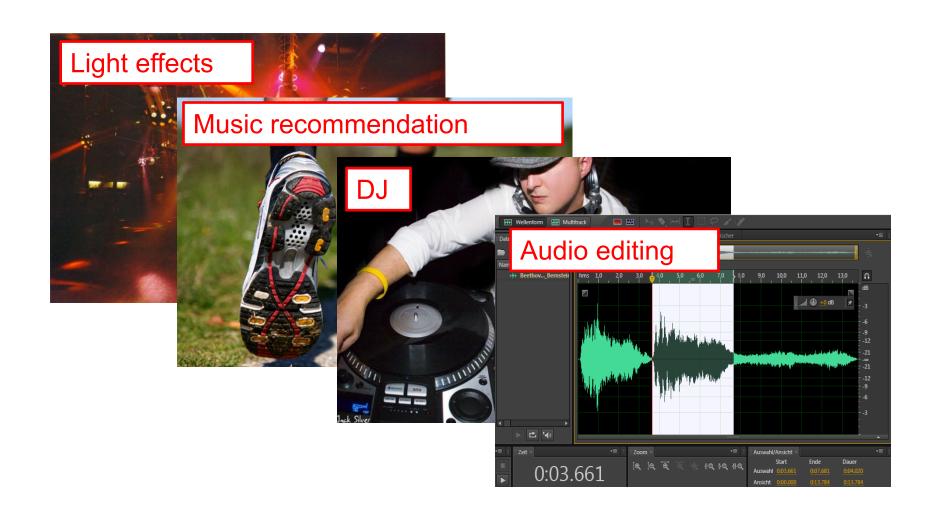
#### Deep Learning Approach: Soft Attention Mechanism



# Music Processing

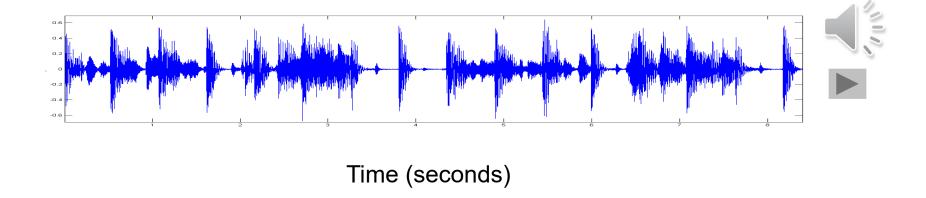
| Coarse/Relative Level                                                          | Fine/Absolute Level                                                               |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| What do different versions or instances have in common?                        | What are the characteristics of a specific version or instance?                   |
| Provide coarse description: What makes up a piece of music?                    | Capture nuances and subtleties: What makes music come alive?                      |
| Identify despite of differences                                                | Identify the differences                                                          |
| Example tasks:  Music Retrieval  Genre Classification  Global Tempo Estimation | Example tasks:  Music Transcription  Performance Analysis  Local Tempo Estimation |

Basic task: "Tapping the foot when listening to music"



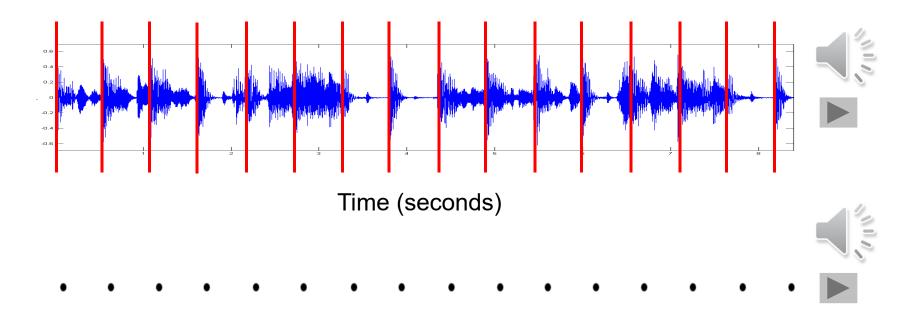
Basic task: "Tapping the foot when listening to music"

Example: Queen – Another One Bites The Dust



Basic task: "Tapping the foot when listening to music"

Example: Queen – Another One Bites The Dust



Example: Chopin – Mazurka Op. 68-3

Pulse level: Quarter note

Tempo: ???









Example: Chopin – Mazurka Op. 68-3

Pulse level: Quarter note

Tempo: 50-200 BPM

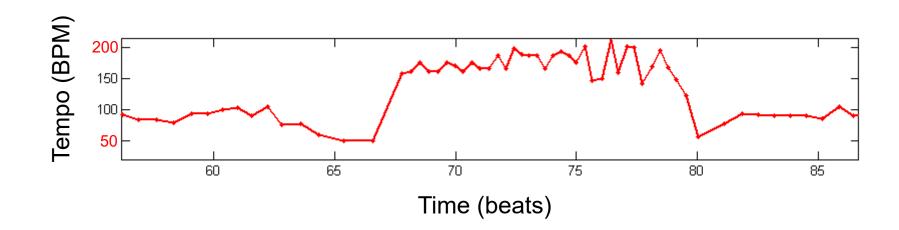






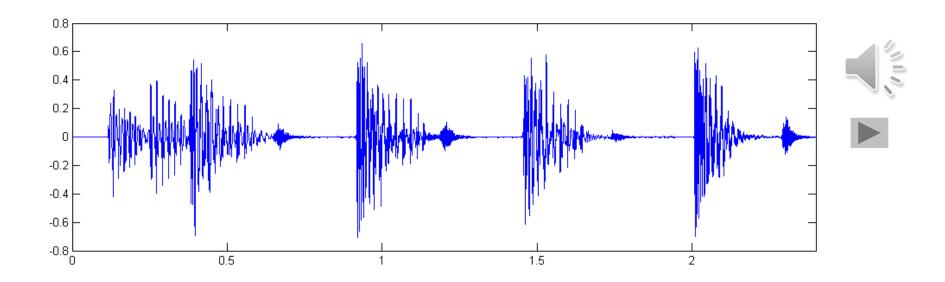


#### Tempo curve



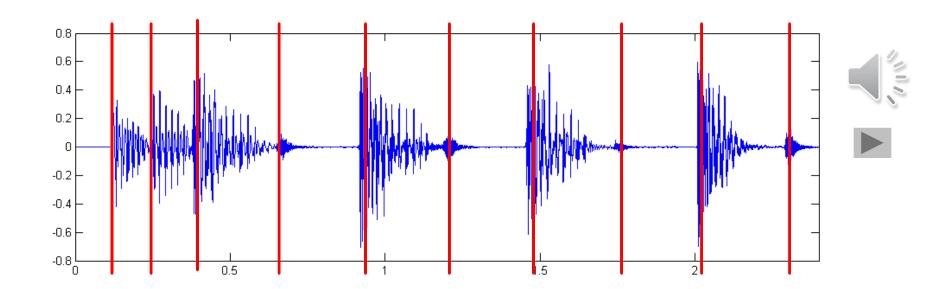
#### **Tasks**

- Onset detection
- Beat tracking
- Tempo estimation



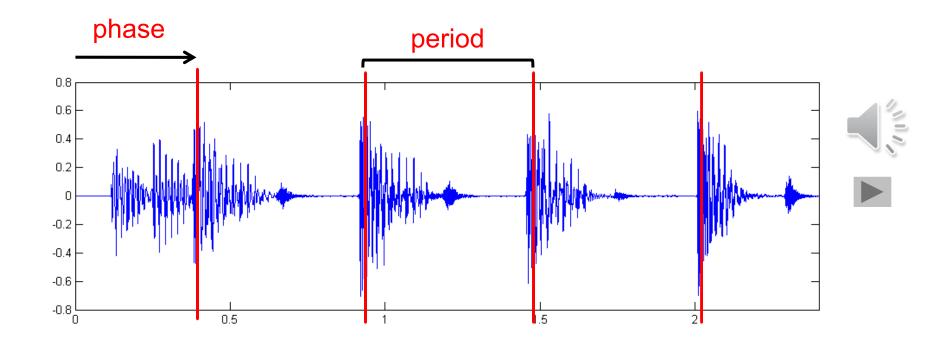
#### Tasks

- Onset detection
- Beat tracking
- Tempo estimation



#### **Tasks**

- Onset detection
- Beat tracking
- Tempo estimation

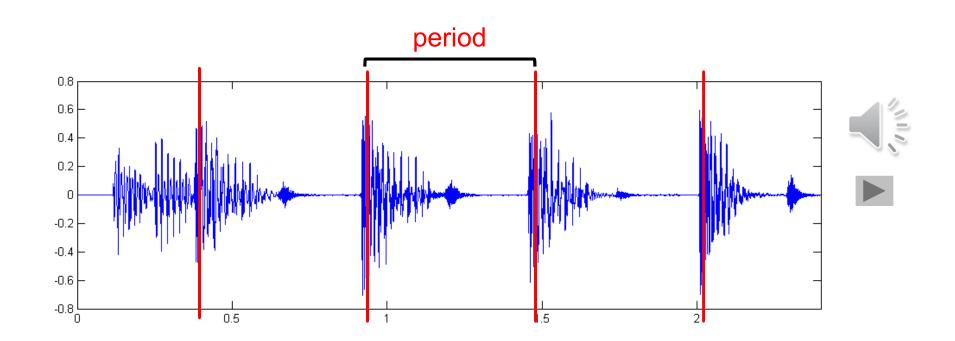


#### **Tasks**

- Onset detection
- Beat tracking
- Tempo estimation

Tempo := 60 / period

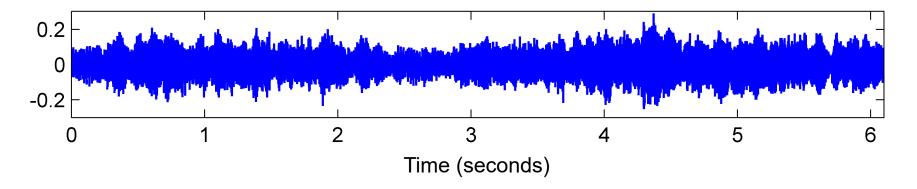
Beats per minute (BPM)

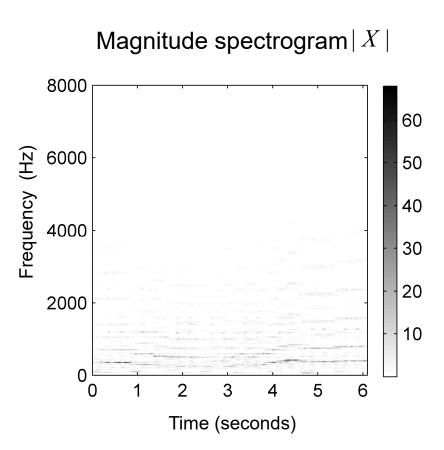




### Audio recording



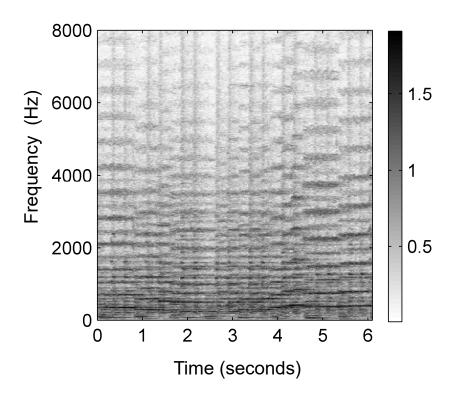




#### Steps:

1. Spectrogram

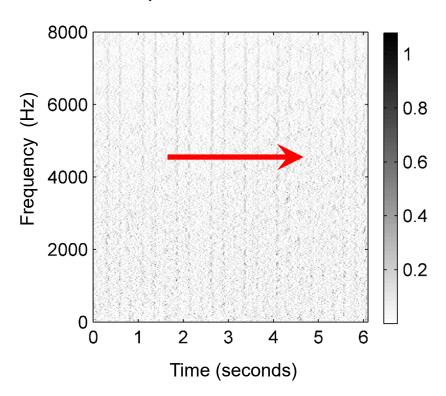
#### Compressed spectrogram Y



#### Steps:

- 1. Spectrogram
- 2. Logarithmic compression

#### Spectral difference



#### Steps:

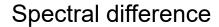
- 1. Spectrogram
- 2. Logarithmic compression
- Differentiation & half wave rectification

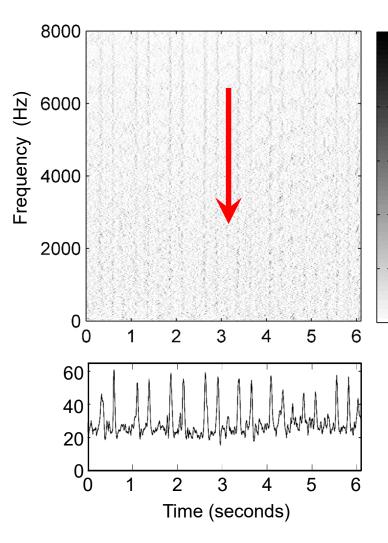
0.8

0.6

0.4

0.2





#### Steps:

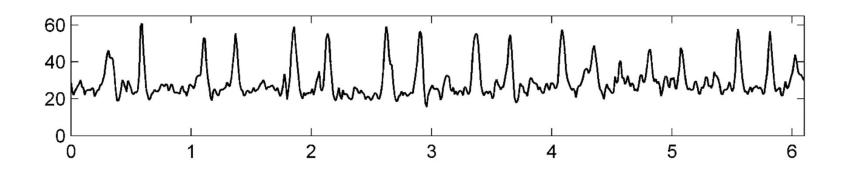
- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation & half wave rectification
- 4. Accumulation

Novelty curve

#### Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation & half wave rectification
- 4. Accumulation

#### Novelty function

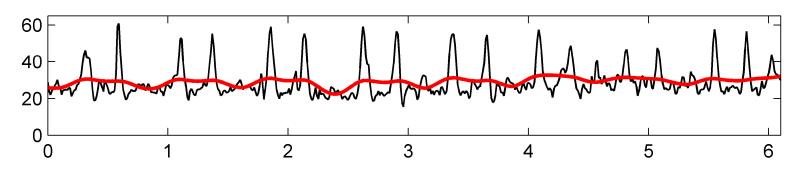


#### Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation & half wave rectification
- 4. Accumulation
- 5. Normalization

#### Novelty function

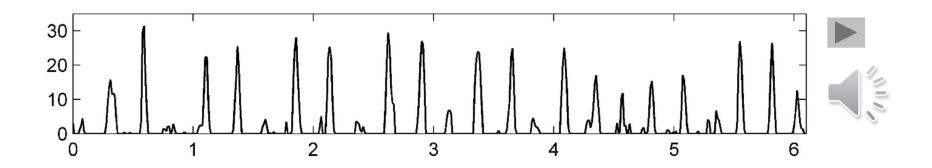
#### Substraction of local average



#### Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation & half wave rectification
- 4. Accumulation
- 5. Normalization

#### Normalized novelty function

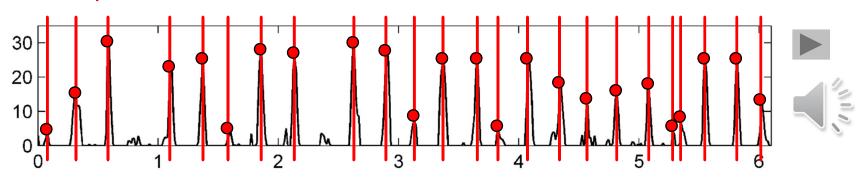


#### Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation & half wave rectification
- Accumulation
- 5. Normalization

#### Normalized novelty function

Peak positions indicate beat candidates



#### **Deep Learning Approaches:**

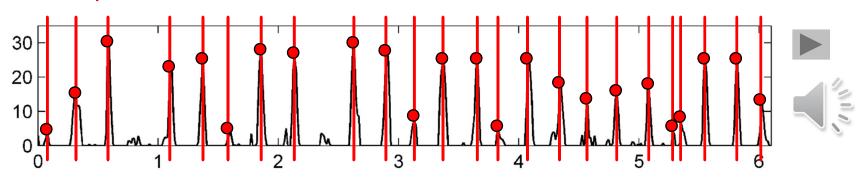
- 1. Input representation
- 2. Sigmoid activation
- 3. Convolution & rectified linear unit (ReLU)
- 4. Pooling
- Convolution & ReLU

#### Steps:

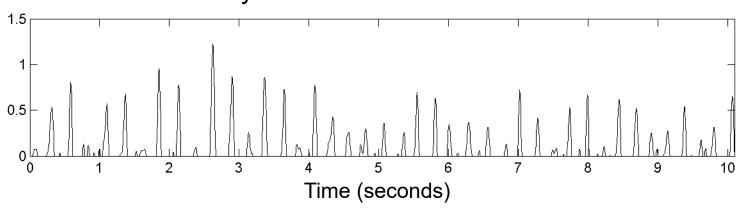
- 1. Spectrogram
- 2. Logarithmic compression
- Differentiation & half wave rectification
- Accumulation
- 5. Normalization

#### Normalized novelty function

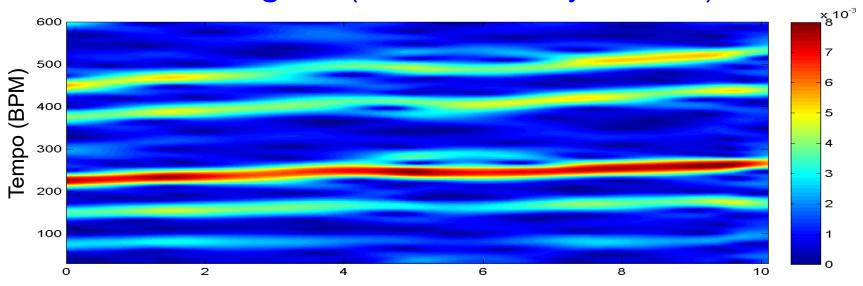
Peak positions indicate beat candidates



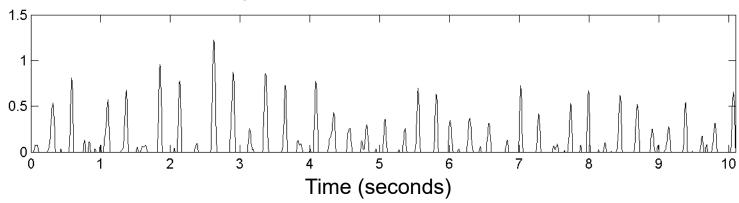
#### Normalized novelty function



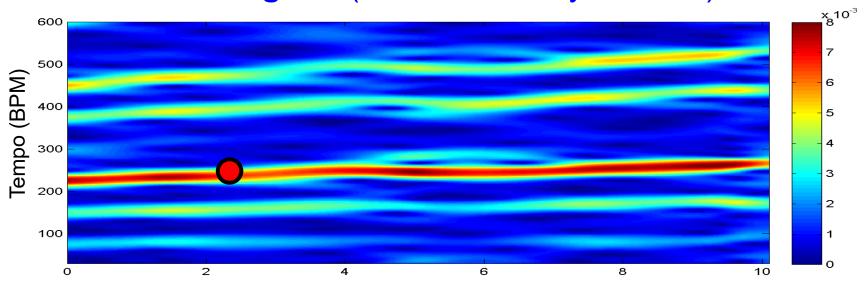
### Fourier temogram (STFT of novelty function)



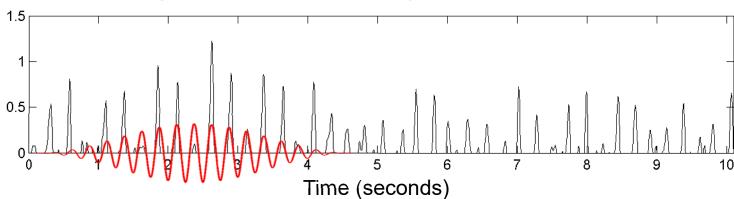
#### Normalized novelty function



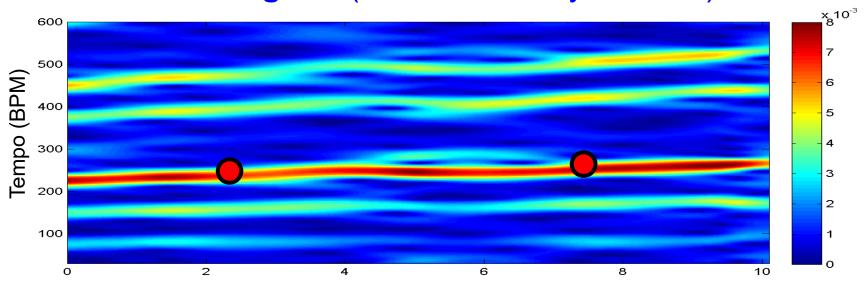
### Fourier temogram (STFT of novelty function)



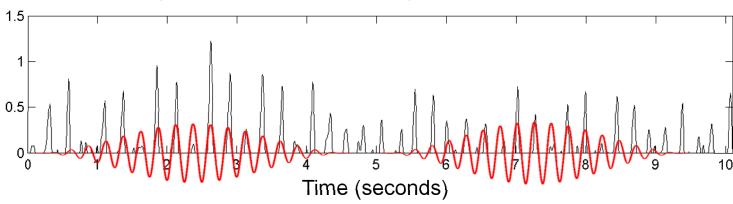
### **Optimizing local periodicity kernel**



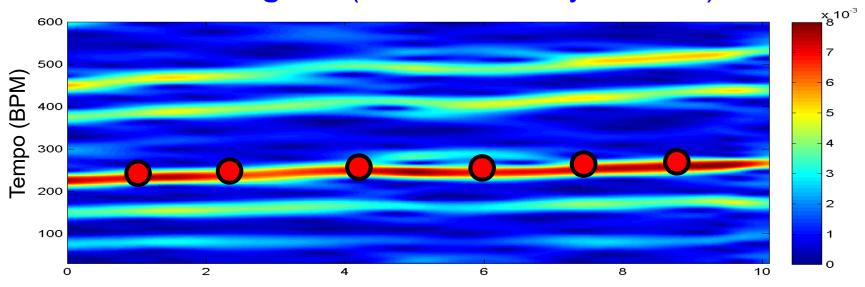
### Fourier temogram (STFT of novelty function)



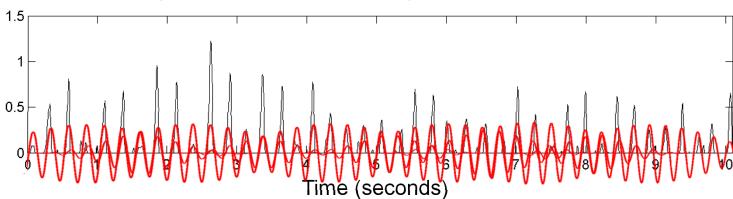
### **Optimizing local periodicity kernel**



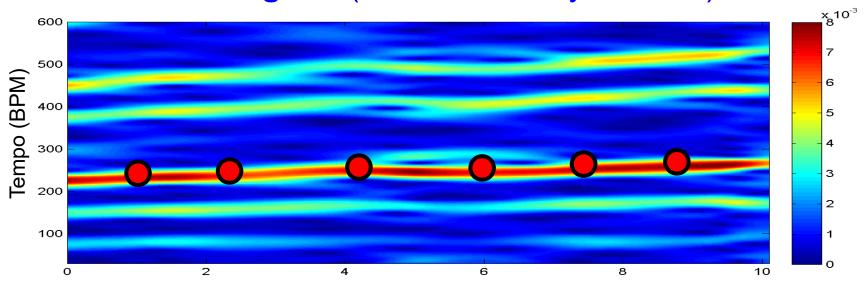
### Fourier temogram (STFT of novelty function)



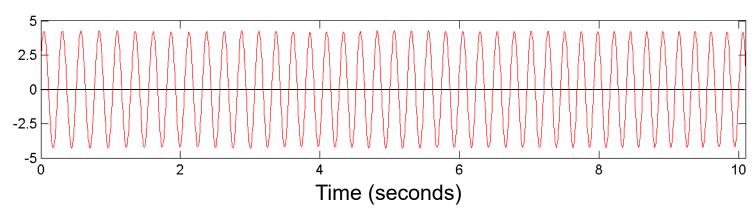
### **Optimizing local periodicity kernel**



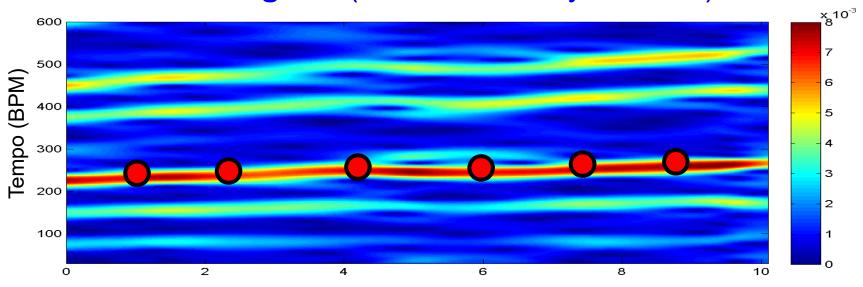
### Fourier temogram (STFT of novelty function)



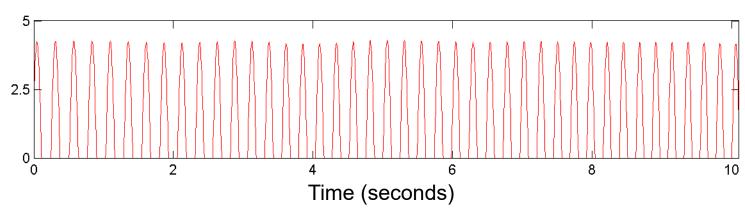
### **Accumulation of kernels**



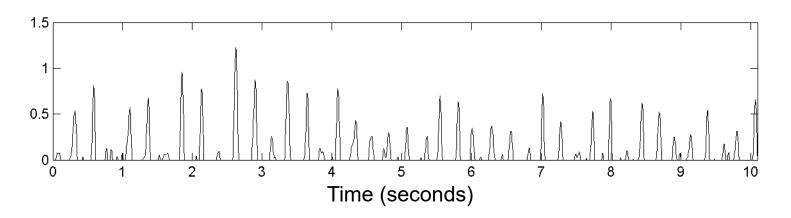
### Fourier temogram (STFT of novelty function)



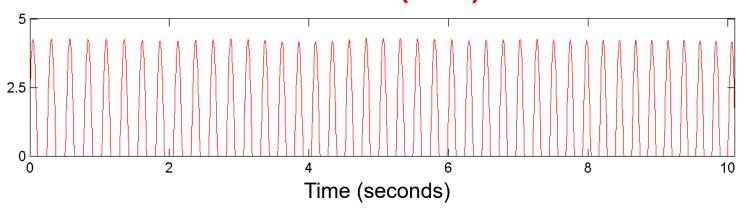
#### **Halfwave rectification**



### **Novelty Curve**



### **Predominant Local Pulse (PLP)**

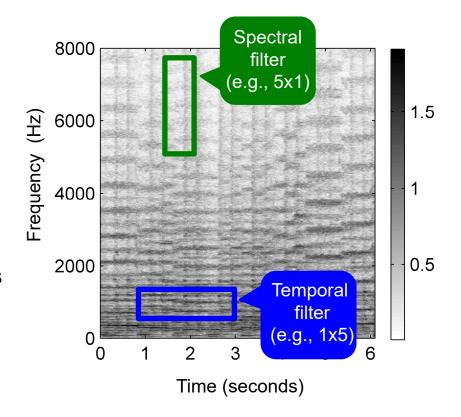






### **Deep Learning Approaches:**

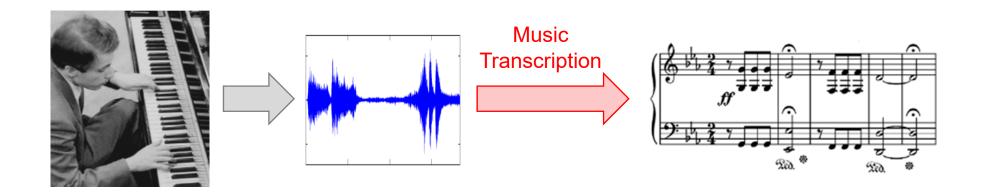
- End-to-end approach
  - Input: Short audio snippets
  - Output: Tempo value
- DL architecture inspired by traditional engineering
  - Layers and activation functions
  - Shape of convolutional kernels



Schreiber, Müller: A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network, ISMIR 2018.

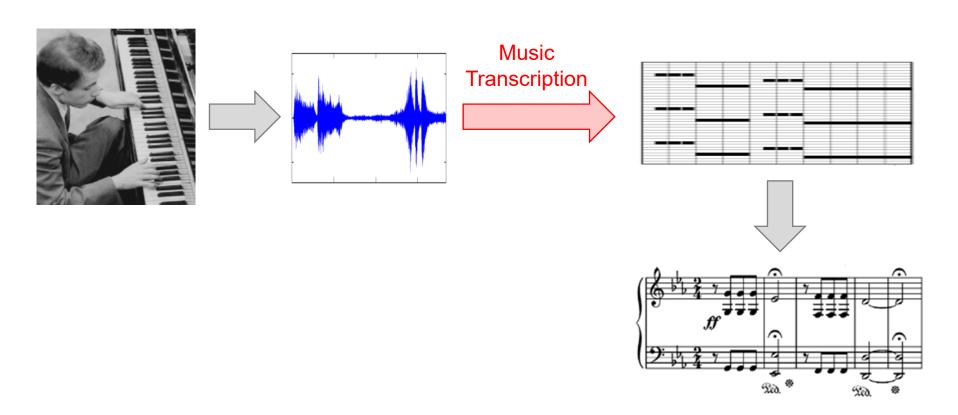
## **Automatic Music Transcription**

Task: Convert a music recording into sheet music



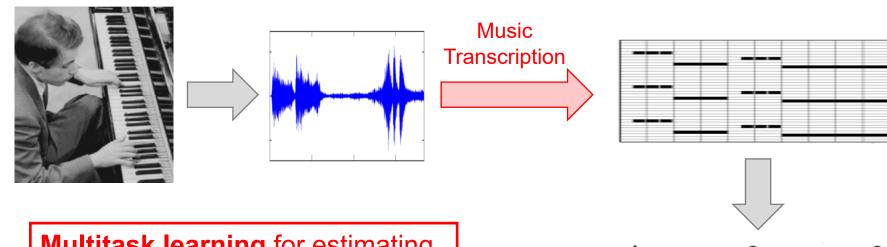
### **Automatic Music Transcription**

Task: Convert a music recording into sheet music (or another symbolic music representation)



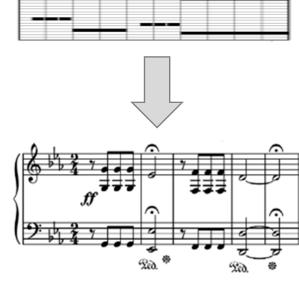
### **Automatic Music Transcription**

Task: Convert a music recording into sheet music (or another symbolic music representation)



#### **Multitask learning** for estimating

- pitches,
- note onsets & offsets,
- beat & measure positions,
- musical voices & instrumentation,
- pedalling, dynamics, ...



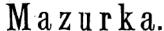
## Why is Music Processing Challenging?

**Example:** Chopin, Mazurka Op. 63 No. 3

Ted.



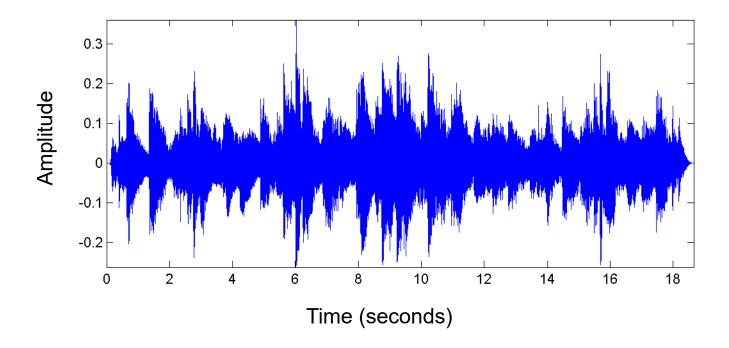






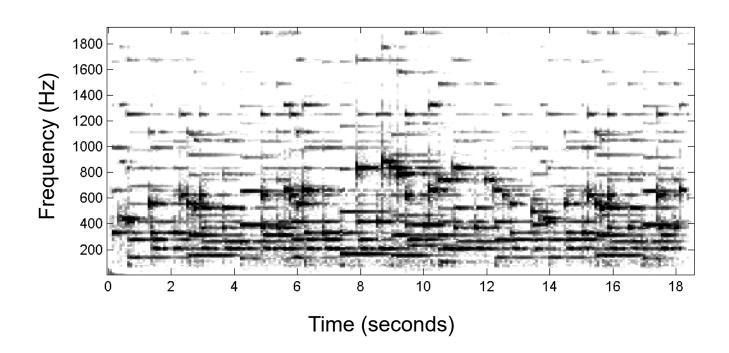
**Example:** Chopin, Mazurka Op. 63 No. 3

Waveform



**Example:** Chopin, Mazurka Op. 63 No. 3

Waveform / Spectrogram



**Example:** Chopin, Mazurka Op. 63 No. 3

- Waveform / Spectrogram
- Performance
  - Tempo
  - Dynamics
  - Note deviations
  - Sustain pedal

**Example:** Chopin, Mazurka Op. 63 No. 3

Waveform / Spectrogram

- Performance
  - Tempo
  - Dynamics
  - Note deviations
  - Sustain pedal
- Polyphony



Main Melody

Additional melody line

Accompaniment

#### Source Separation

- Decomposition of audio stream into different sound sources
- Central task in digital signal processing
- "Cocktail party effect"

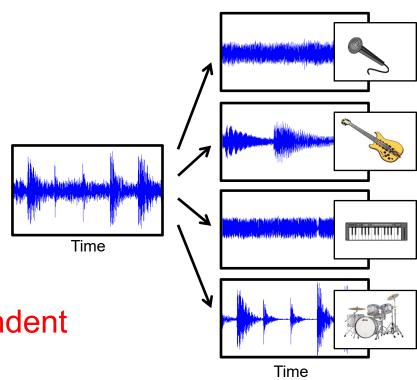


#### Source Separation

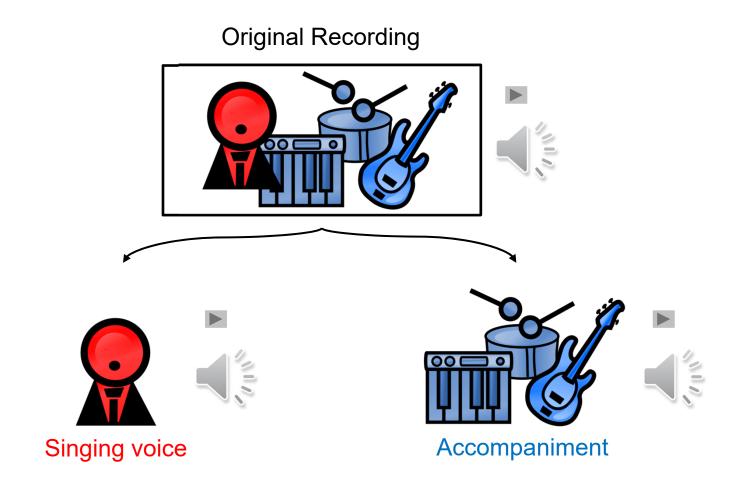
- Decomposition of audio stream into different sound sources
- Central task in digital signal processing
- "Cocktail party effect"
- Several input signals
- Sources are assumed to be statistically independent

### Source Separation (Music)

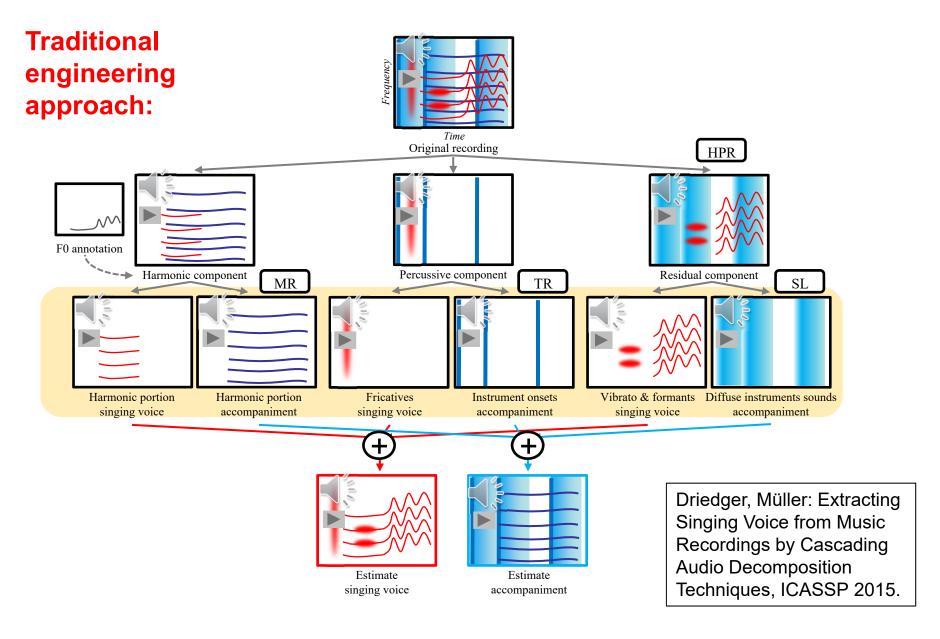
- Main melody, accompaniment, drum track
- Instrumental voices
- Individual note events
- Only mono or stereo
- Sources are often highly dependent



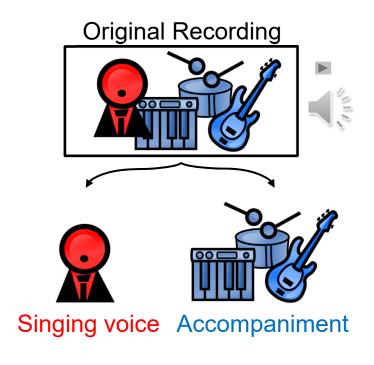
# Singing Voice Extraction



## Singing Voice Extraction



### Singing Voice Extraction



Deep learning has lead to breakthrough

Lecture 5:
Music
Source
Separation

Reference voices:





Engineering approach:



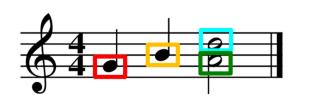
Deep learning approach:

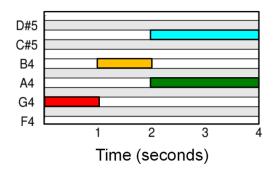


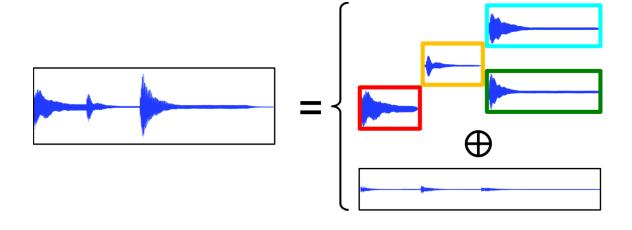


Stöter, Uhlich Luitkus, Mitsufuji: Open-Unmix – A Reference Implementation for Music Source Separation, JOSS 2019.

#### Exploit musical score to support decomposition process

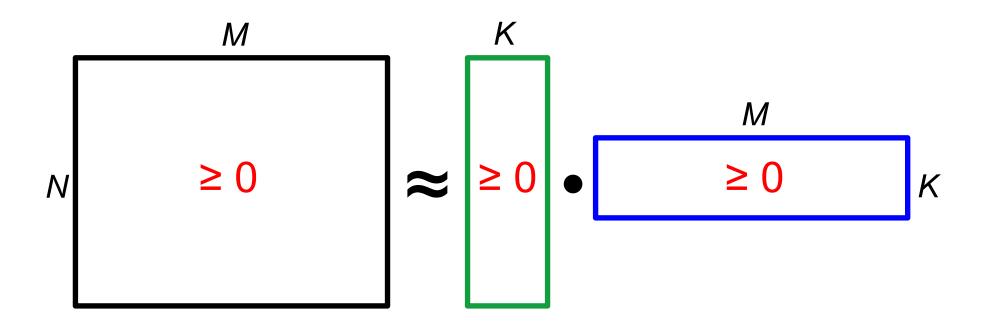




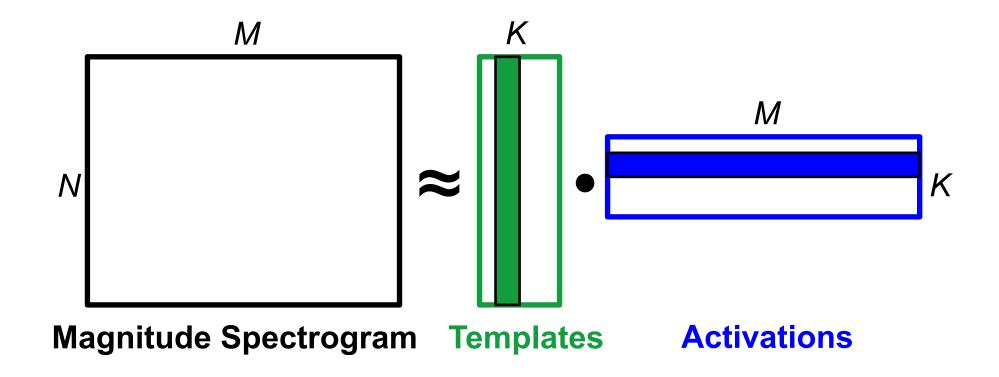


Ewert, Pardo, Müller, Plumbley: Score-Informed Source Separation for Musical Audio Recordings, IEEE SPM, 2014.

# NMF (Nonnegative Matrix Factorization)



### NMF (Nonnegative Matrix Factorization)



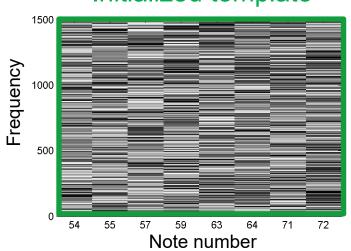
**Templates:** Pitch + Timbre

**Activations: Onset time + Duration** 

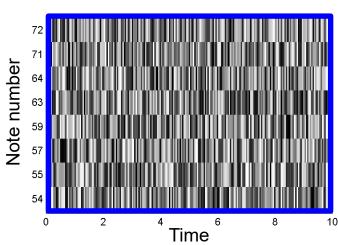
"How does it sound"

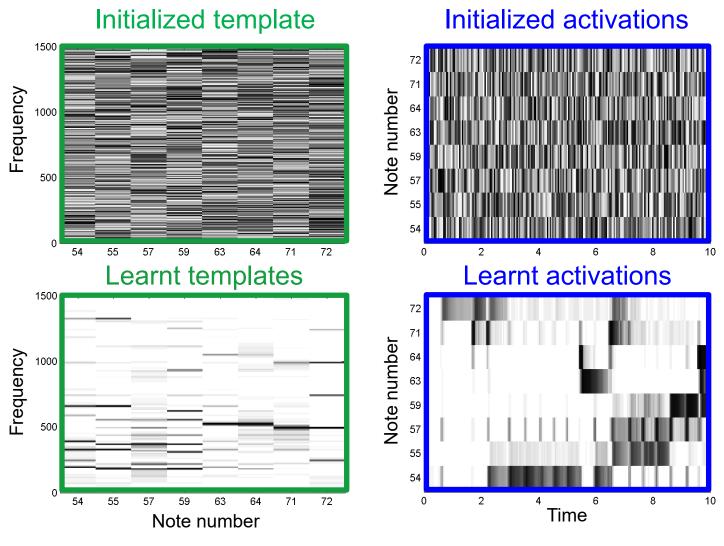
"When does it sound"

#### Initialized template



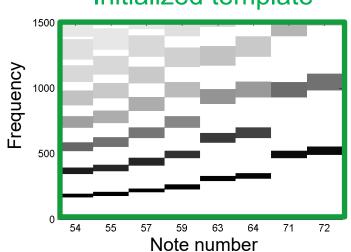
#### Initialized activations



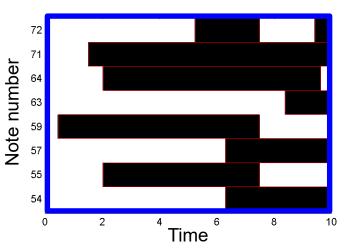


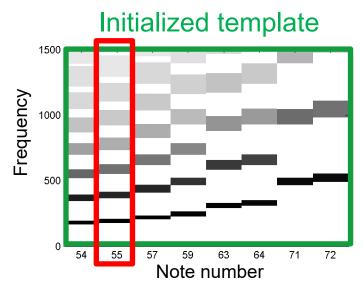
Random initialization -> No semantic meaning





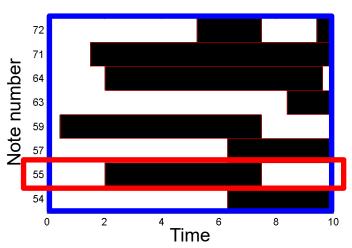
#### Initialized activations



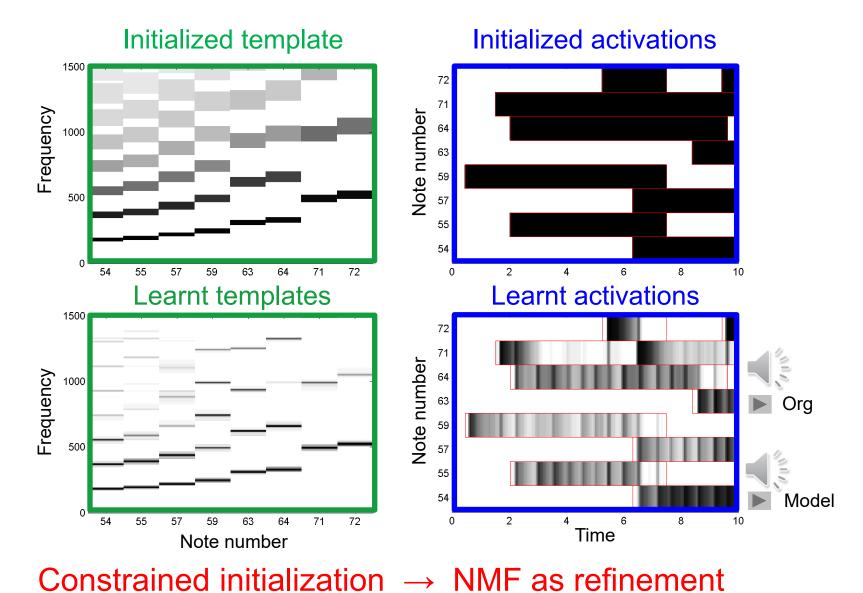


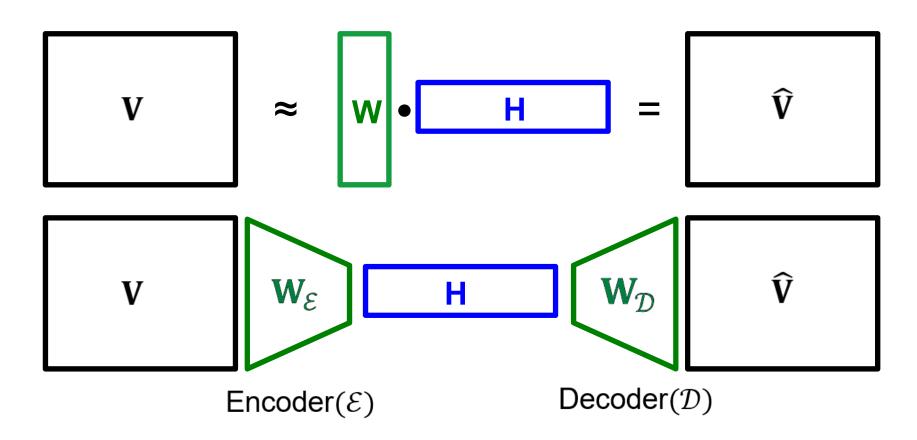
Template constraint for p=55

#### Initialized activations



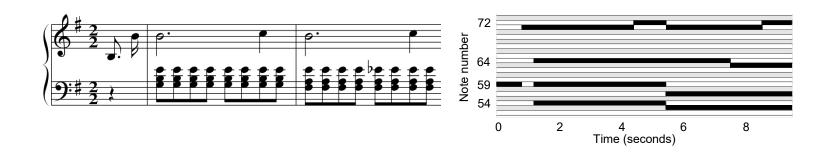
Activation constraints for p=55



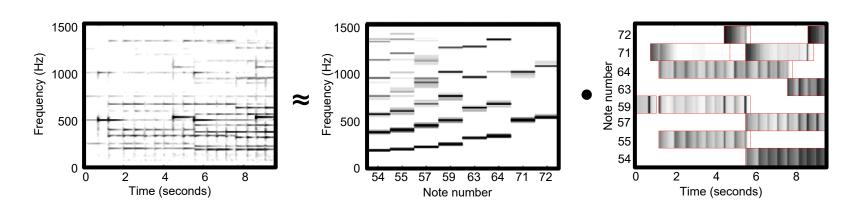


Smaragdis, Venkataramani: A Neural Network Alternative to Non-Negative Audio Models, ICASSP 2017. Lecture 6: Nonnegative Autoencoders with Applications to Music Audio Decomposing

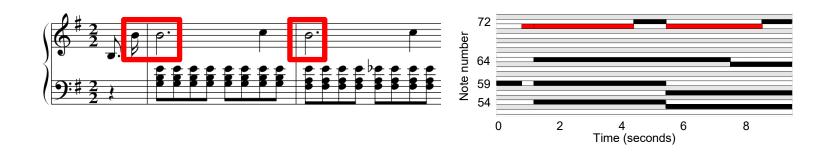
Exploit musical score to support decomposition process



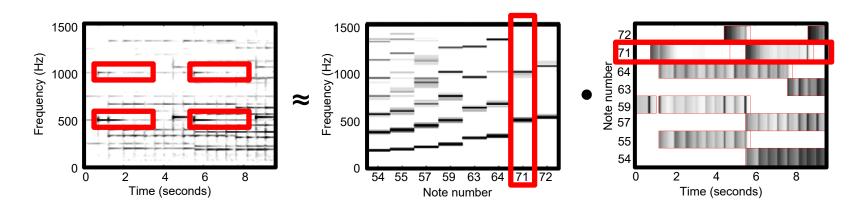
#### NMF-based spectrogram decomposition



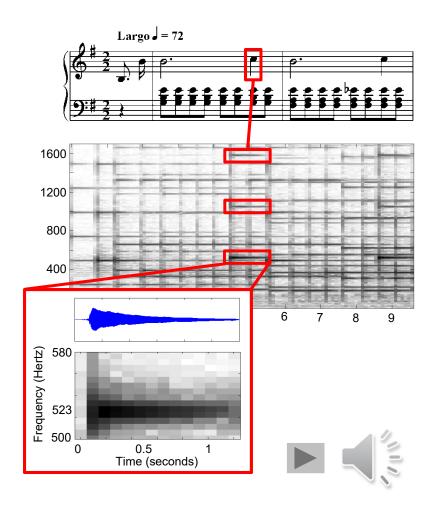
Exploit musical score to support decomposition process

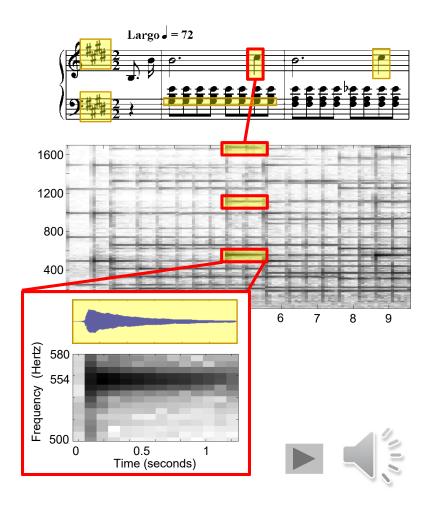


#### NMF-based spectrogram decomposition



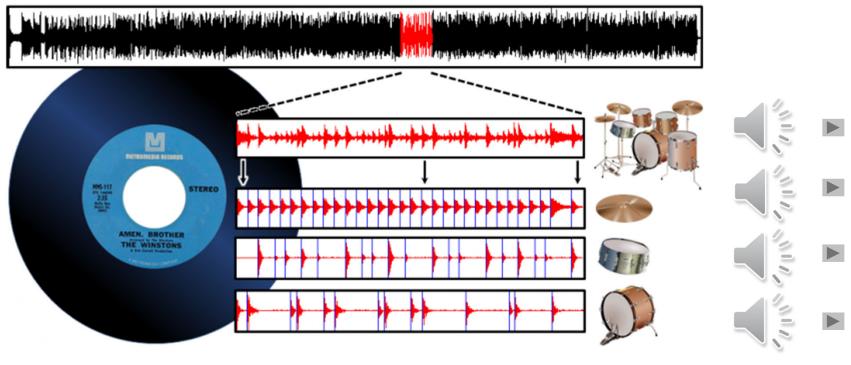
#### Application: Audio editing





### Informed Drum-Sound Decomposition





Remix:





Dittmar, Müller: Reverse Engineering the Amen Break – Score-Informed Separation and Restoration Applied to Drum Recordings, IEEE/ACM TASLP, 2016.

### Informed Drum-Sound Decomposition



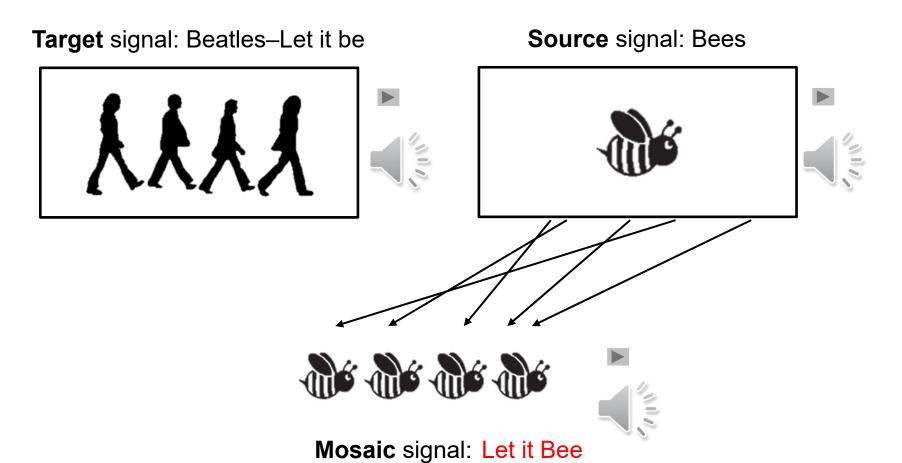
Major challenge: Reconstructed sound events often have artifacts

#### Approaches:

- Resynthesize certain sound components
- Differentiable Digital Signal Processing (DDSP) combines classical DSP and deep learning
- Generative adversarial networks may help to reduce the artifacts

Lecture 8: Recurrent and Generative Adversarial Network Architectures for Text-to-Speech

### **Audio Mosaicing**

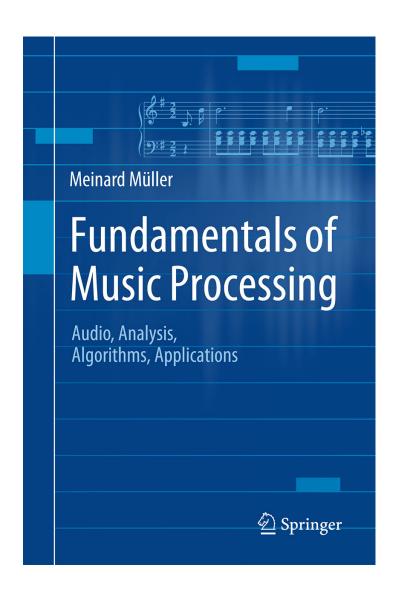


Driedger, Prätzlich, Müller: Let It Bee – Towards NMF-Inspired Audio Mosaicing, ISMIR 2015..

# Selected Topics in Deep Learning for Audio, Speech, and Music Processing

- 1. Introduction to Audio and Speech Processing
- Introduction to Music Processing
- 3. Permutation Invariant Training Techniques for Speech Separation
- 4. Deep Clustering for Single-Channel Ego-Noise Suppression
- 5. Music Source Separation
- 6. Nonnegative Autoencoders with Applications to Music Audio Decomposing
- 7. Attention in Sound Source Localization and Speaker Extraction
- Recurrent and Generative Adversarial Network Architectures for Textto-Speech
- Connectionist Temporal Classification (CTC) Loss with Applications to Theme-Based Music Retrieval
- 10. From Theory to Practise

### Book: Fundamentals of Music Processing



Meinard Müller
Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
483 p., 249 illus., hardcover
ISBN: 978-3-319-21944-8
Springer, 2015

Accompanying website: www.music-processing.de

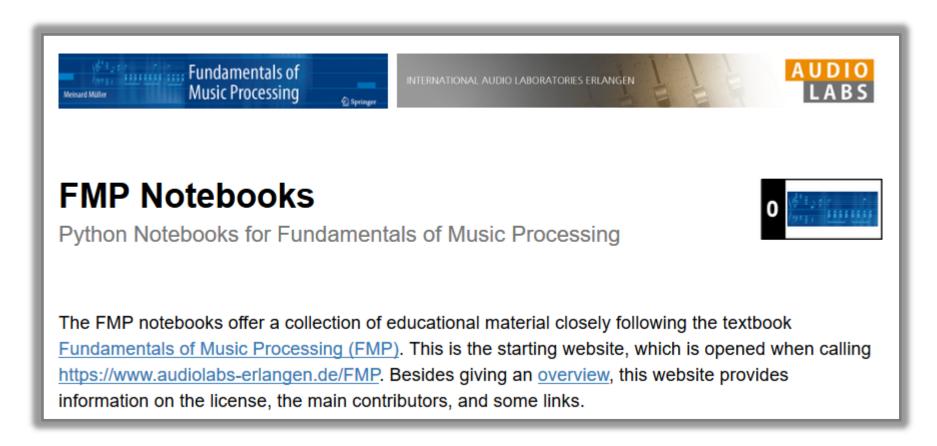
### Book: Fundamentals of Music Processing

| Chapter |   | Music Processing<br>Scenario              |
|---------|---|-------------------------------------------|
| 1       |   | Music Represenations                      |
| 2       |   | Fourier Analysis of<br>Signals            |
| 3       |   | Music Synchronization                     |
| 4       |   | Music Structure<br>Analysis               |
| 5       |   | Chord Recognition                         |
| 6       | 1 | Tempo and Beat<br>Tracking                |
| 7       |   | Content-Based Audio<br>Retrieval          |
| 8       |   | Musically Informed<br>Audio Decomposition |

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

#### Software & Audio: FMP Notebooks



https://www.audiolabs-erlangen.de/FMP