

Book: Fundamentals of Music Processing

Meinard Müller

Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing

с	hapter	Music Processing Scenario
1	<u>ئەر</u>	Music Represenations
2		Fourier Analysis of Signals
3	100	Music Synchronization
4		Music Structure Analysis
5	Å	Chord Recognition
6	≱+++⊦	Tempo and Beat Tracking
7		Content-Based Audio Retrieval
8		Musically Informed Audio Decomposition

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Chapter 4: Music Structure Analysis

- 4.1 General Principles
- 4.2 Self-Similarity Matrices
- 4.3 Audio Thumbnailing4.4 Novelty-Based Segmentation
- 4.5 Evaluation
- 4.6 Further Notes

In Chapter 4, we address a central and well-researched area within MIR known as music structure analysis. Given a music recording, the objective is to identify important structural elements and to temporally segment the recording according to these elements. Within this scenario, we discuss fundamental segmentation principles based on repetitions, homogeneity, and novelty principles that also apply to other types of multimedia beyond music. As an important technical tool, we study in detail the concept of self-similarity matrices and discuss their structural properties. Finally, we briefly touch the topic of evaluation, introducing the notions of precision, recall, and F-measure.

Music Structure Analysis

Example: Zager & Evans "In The Year 2525"

Music Structure Analysis

Example: Zager & Evans "In The Year 2525"

Music Structure Analysis

Music Structure Analysis

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Music Structure Analysis

Example: Weber, Song (No. 4) from "Der Freischütz"

Music Structure Analysis

Example: Folk Song Field Recording (Nederlandse Liederenbank)

Music Structure Analysis

General goal: Divide an audio recording into temporal segments corresponding to musical parts and group these segments into musically meaningful categories.

Examples:

- Stanzas of a folk song
- Intro, verse, chorus, bridge, outro sections of a pop song
- Exposition, development, recapitulation, coda of a sonata
- Musical form ABACADA ... of a rondo

Music Structure Analysis

General goal: Divide an audio recording into temporal segments corresponding to musical parts and group these segments into musically meaningful categories.

Challenge: There are many different principles for creating relationships that form the basis for the musical structure.

- Homogeneity: Consistency in tempo, instrumentation, key, ...
- Novelty: Sudden changes, surprising elements ...
- Repetition: Repeating themes, motives, rhythmic patterns,...

Music Structure Analysis

Repetition

Overview

- Introduction
- Feature Representations
- Self-Similarity Matrices
- Audio Thumbnailing
- Novelty-based Segmentation

Thanks:

- Clausen, Ewert, Kurth, Grohganz, ...
- Dannenberg, Goto
- Grosche, Jiang
- Paulus, Klapuri
- Peeters, Kaiser, ...Serra, Gómez, ...
- Smith, Fujinaga, ...
- Wiering, …
- Wand, Sunkel, Jansen
- ...

Overview

- Introduction
- Feature Representations
- Self-Similarity Matrices
- Audio Thumbnailing
- Novelty-based Segmentation

Thanks:

- Clausen, Ewert, Kurth, Grohganz, …
- Dannenberg, GotoGrosche, Jiang
- Paulus, Klapuri
- Peeters, Kaiser, ...
- Serra, Gómez, …
- Smith, Fujinaga, ...Wiering, ...
- Wand, Sunkel,
- Jansen

Feature Representation

General goal: Convert an audio recording into a mid-level representation that captures certain musical properties while supressing other properties.

- Timbre / Instrumentation
- Tempo / Rhythm
- Pitch / Harmony

Feature Representation

General goal: Convert an audio recording into a mid-level representation that captures certain musical properties while supressing other properties.

- Timbre / Instrumentation
- Tempo / Rhythm
- Pitch / Harmony

Overview

- Introduction
- Feature Representations
- Self-Similarity Matrices
- Audio Thumbnailing
- Novelty-based Segmentation

Self-Similarity Matrix (SSM)

General idea: Compare each element of the feature sequence with each other element of the feature sequence based on a suitable similarity measure.

→ Quadratic self-similarity matrix

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

1 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.3 0.2

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Blocks:HomogeneityPaths:RepetitionCorners:Novelty

Block Enhancement

- Feature smoothing ÷. Coarsening .

n e 0.5 0.4 0.3

0.2

0.1

SSM Enhancement

Block Enhancement

- Feature smoothing х. . Coarsening

SSM Enhancement

Block Enhancement

- Feature smoothing
- Coarsening

SSM Enhancement

Challenge: Presence of musical variations

- Fragmented paths and gaps
- Paths of poor quality
- Regions of constant (high) similarity
- Curved paths

Idea: Enhancement of path structure

SSM Enhancement

Shostakovich Waltz 2, Jazz Suite No. 2 (Chailly)

SSM Enhancement

Shostakovich Waltz 2, Jazz Suite No. 2 (Chailly)

0.3

SSM Enhancement

Shostakovich Waltz 2, Jazz Suite No. 2 (Chailly)

SSM Enhancement

Shostakovich Waltz 2, Jazz Suite No. 2 (Chailly)

Enhanced SSM

Filtering along main diagonal

SSM Enhancement

Idea: Usage of contextual information (Foote 1999)

$$\mathbf{S}_L(n,m) := \frac{1}{L} \sum_{\ell=0}^{L-1} \mathbf{S}(n+\ell,m+\ell)$$

- Comparison of entire sequences
- L = length of sequences
- S_L = enhanced SSM

→ smoothing effect

SSM Enhancement

SSM S

SSM Enhancement

Enhanced SSM S_L with L = 20Filtering along main diagonal

SSM Enhancement

Enhanced SSM $S_{L,\Theta}$ with L = 20Filtering along 8 different directions and minimizing

SSM Enhancement

Idea: Smoothing along various directions and minimizing over all directions

$$\Theta = \{0.66, 0.81, 1.00, 1.22, 1.50\}$$

$$\mathbf{S}_{L,\theta}(n,m) := \frac{1}{L} \sum_{\ell=0}^{L-1} \mathbf{S}(n+\ell,m+[\ell \cdot \boldsymbol{\theta}])$$

$$\mathbf{S}_{L,\Theta}(n,m) := \max_{\theta \in \Theta} \mathbf{S}_{L,\theta}(n,m)$$

→ Tempo changes of -50 to +50 percent

SSM Enhancement

Path Enhancement

SSM Enhancement

- Path Enhancement
- Diagonal smoothing

SSM Enhancement

Path Enhancement

- Diagonal smoothing ÷
- Multiple filtering

SSM Enhancement

SSM Enhancement

Path Enhancement

- Diagonal smoothing .
- Multiple filtering .
- Thresholding (relative) Scaling & penalty

Further Processing

3 V4 V5 V6 V7 B V8 O

SSM Enhancement

Example: Zager & Evans "In The Year 2525" Idea: Cyclic shift of one of the chroma sequences

One semitone up

SSM Enhancement

Similarity Matrix Toolbox

Meinard Müller, Nanzhu Jiang, Harald Grohganz SM Toolbox: MATLAB Implementations for Computing and Enhancing Similarity Matrices

http://www.audiolabs-erlangen.de/resources/MIR/SMtoolbox/

SSM Enhancement

Example: Zager & Evans "In The Year 2525" Idea: Cyclic shift of one of the chroma sequences

Two semitones up

SSM Enhancement

Example: Zager & Evans "In The Year 2525" Note: Order of enhancement steps important!

Maximization

Smoothing & Maximization

Overview

- Introduction
- Feature Representations
- Self-Similarity Matrices
- Audio Thumbnailing
- Novelty-based Segmentation

Thanks:

- Jiang, Grosche
- PeetersCooper
 - Cooper, Foote Goto
- Levy, Sandler
- Mauch
- Sapp

Audio Thumbnailing

Main idea: Do both path extraction and grouping jointly

- For each audio segment we define a fitness value
- This fitness value expresses "how well" the segment explains the entire audio recording
- The segment with the highest fitness value is considered to be the thumbnail
- As main technical concept we introduce the notion of a path family

Fitness Measure

Enhanced SSM

Fitness Measure

Path over segment

- Consider a fixed segment
- Path over segment
- Induced segment
- Score is high

Fitness Measure

Path over segment

Consider a fixed segment

Fitness Measure

Path family

- Consider a fixed segment
- A path family over a segment is a family of paths such that the induced segments do not overlap.

Fitness Measure

Path family

- Consider a fixed segment
- A path family over a segment is a family of paths such that the induced segments do not overlap.

This is not a path family!

Fitness Measure

Path family

- Consider a fixed segment
- A path family over a segment is a family of paths such that the induced segments do not overlap.

This is a path family! (Even though not a good one)

Fitness Measure

Optimal path family

- Consider a fixed segment
- -0

Example: Zager & Evans "In The Year 2525"

Overview

- Introduction
- Feature Representations
- Self-Similarity Matrices
- Audio Thumbnailing
- Novelty-based Segmentation

Thanks:

- Foote
- Serra, Grosche, Arcos
- GotoTzanetakis, Cook

Novelty-based Segmentation

General goals:

- Find instances where musical changes occur.
- Find transition between subsequent musical parts.

Idea (Foote):

Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.

Novelty-based Segmentation

Idea (Foote):

Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.

Novelty-based Segmentation

Idea (Foote):

Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.

Novelty-based Segmentation

Idea (Foote):

Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.

Novelty-based Segmentation

Idea (Foote):

Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.

Novelty-based Segmentation

Idea (Foote):

Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.

Novelty function using

Novelty-based Segmentation

Idea (Foote):

Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.

Novelty function using

ion using

Novelty function using

Novelty-based Segmentation

Idea:

- Find instances where structural changes occur.
- Combine global and local aspects within a unifying framework

Structure features

Novelty-based Segmentation

Example: Chopin Mazurka Op. 24, No. 1

Novelty-based Segmentation

Example: Chopin Mazurka Op. 24, No. 1

Conclusions

- Combined Approaches
- Hierarchical Approaches
- Evaluation

Explaining Structure

Links

- SM Toolbox (MATLAB) http://www.audiolabs-erlangen.de/resources/MIR/SMtoolbox/
- MSAF: Music Structure Analysis Framework (Python) https://github.com/urinieto/msaf
- SALAMI Annotation Data http://ddmal.music.mcgill.ca/research/salami/annotations
- LibROSA (Python) https://librosa.github.io/librosa/
- Evaluation: mir_eval (Python) https://craffel.github.io/mir_eval/
- Deep Learning: Boundary Detection Jan Schlüter (PhD thesis)