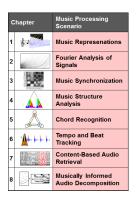


Book: Fundamentals of Music Processing



Meinard Müller

Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

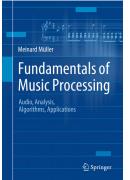
Chapter 2: Fourier Analysis of Signals

The Fourier Transform in a Nutshell 2.1 2.2 Signals and Signal Spaces

- 2.3 Fourier Transform 2.4
 - Discrete Fourier Transform (DFT) Short-Time Fourier Transform (STFT)
- 2.5 2.6 Further Notes

Important technical terminology is covered in Chapter 2. In particular, we approach the Fourier transform—which is perhaps the most fundamental tool in signal processing—from various perspectives. For the reader who is more interested in the musical aspects of the book, Section 2.1 provides a summary of the most important facts on the Fourier transform. In particular, the notion of a spectrogram, which yields a time-frequency representation of an audio signal, is introduced. The remainder of the chapter treats the Fourier transform in greater mathematical depth and also includes the fast Fourier transform (FFT)-an algorithm of great beauty and high practical relevance.

Book: Fundamentals of Music Processing

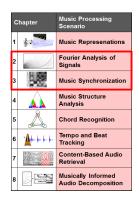


Meinard Müller

Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing



Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

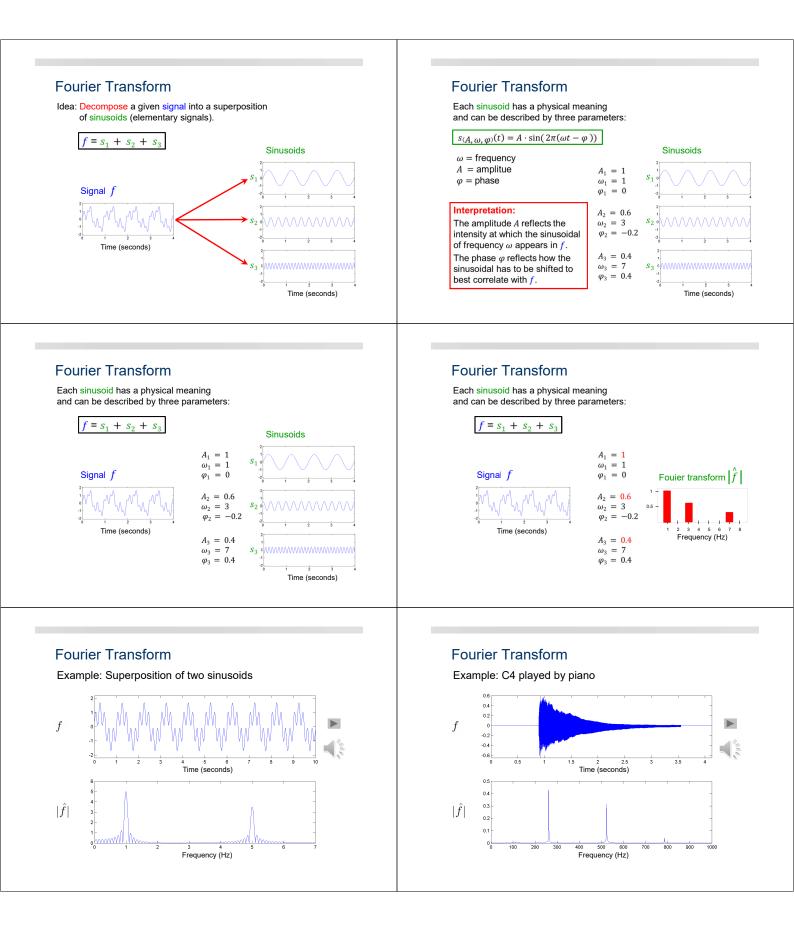
Accompanying website: www.music-processing.de

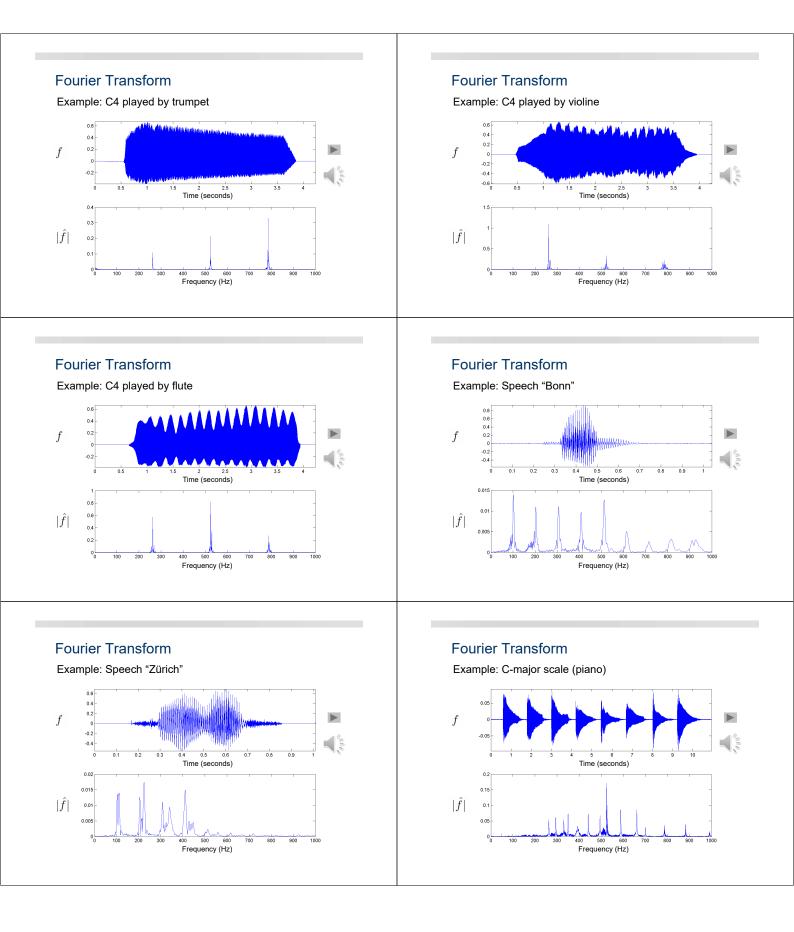
Chapter 3: Music Synchronization

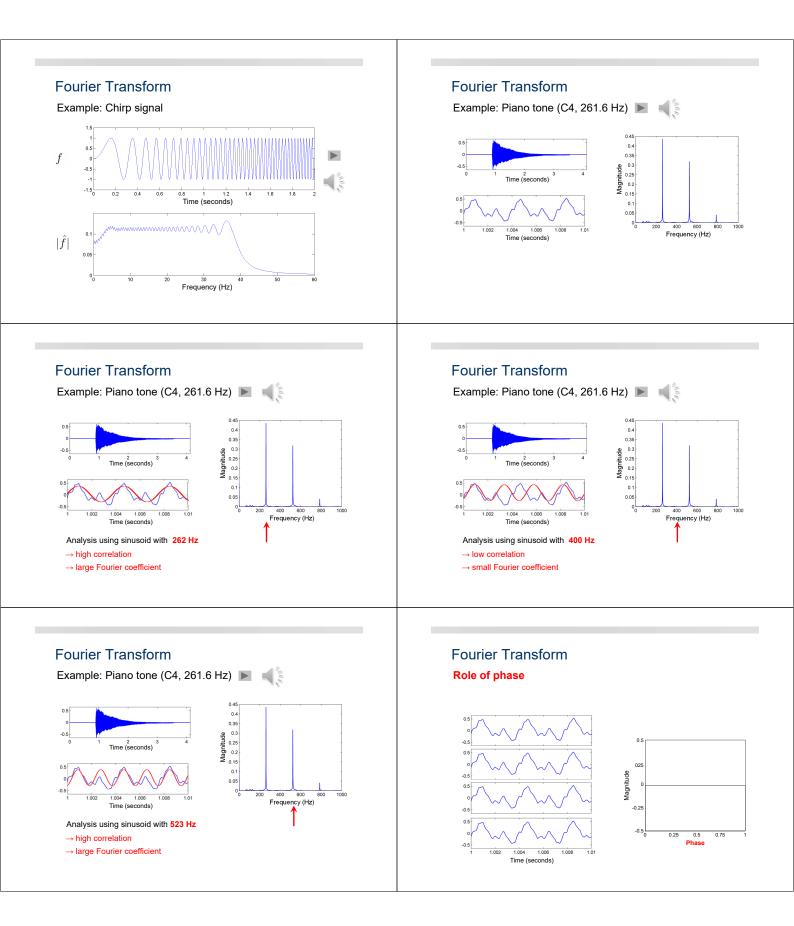
Audio Features 3.1

- 3.2 Dynamic Time Warping
- 3.3 Applications 34 Further Notes

As a first music processing task, we study in Chapter 3 the problem of music synchronization. The objective is to temporally align compatible representations of the same piece of music. Considering this scenario, we explain the need for musically informed audio features. In particular, we introduce the concept of chroma-based music features, which capture properties that are related to harmony and melody. Furthermore, we study an alignment technique known as dynamic time warping (DTW), a concept that is applicable for the analysis of general time series. For its efficient computation, we discuss an algorithm based on dynamic programming—a widely used method for solving a complex problem by breaking it down into a collection of simpler subproblems



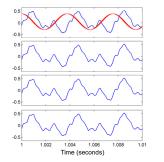


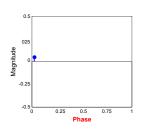


Fourier Transform

Role of phase

Analysis with sinusoid having frequency 262 Hz and phase $\varphi = 0.05$

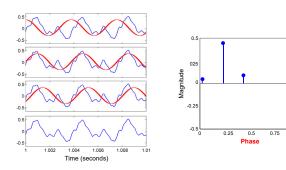




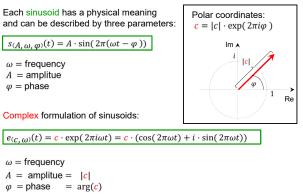
Fourier Transform

Role of phase

Analysis with sinusoid having frequency 262 Hz and phase $\varphi = 0.45$



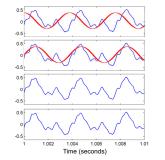
Fourier Transform

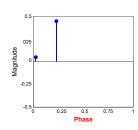


Fourier Transform

Role of phase

Analysis with sinusoid having frequency 262 Hz and phase $\varphi = 0.24$

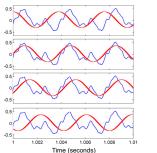


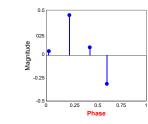


Fourier Transform

Role of phase

Analysis with sinusoid having frequency 262 Hz and phase $\varphi = 0.6$





Fourier Transform

Signal	f	$: \mathbb{R} \rightarrow$	$\cdot \mathbb{R}$
Fourier representatio	on f	(t) =	$\int_{\omega\in\mathbb{R}}c_{\omega}\exp(2\pi i\omega t)d\omega$
Fourier transform	$c_{\omega} = \hat{f}($	<i>ω</i>) =	$\int_{t\in\mathbb{R}}f(t)\exp(-2\pi i\omega t)dt$

Fourier Transform

Signal

 $f: \mathbb{R} \to \mathbb{R}$

Fourier representation

 $f(t) = \int_{\omega \in \mathbb{R}} c_{\omega} \exp(2\pi i \omega t) d\omega$

Fourier transform

 $c_{\boldsymbol{\omega}} = \hat{f}(\boldsymbol{\omega}) = \int_{t \in \mathbb{R}} f(t) \exp(-2\pi i \boldsymbol{\omega} t) dt$

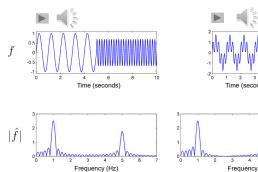
- Tells which frequencies occur, but does not tell when the frequencies occur.
- Frequency information is averaged over the entire time interval.
- Time information is hidden in the phase

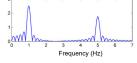
Short Time Fourier Transform

Idea (Dennis Gabor, 1946):

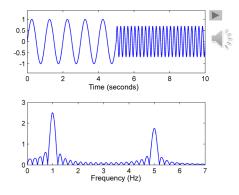
- Consider only a small section of the signal for the spectral analysis
 - → recovery of time information
- Short Time Fourier Transform (STFT)
- Section is determined by pointwise multiplication of the signal with a localizing window function

Fourier Transform

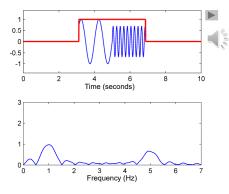




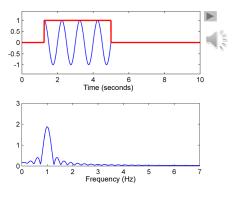
Short Time Fourier Transform

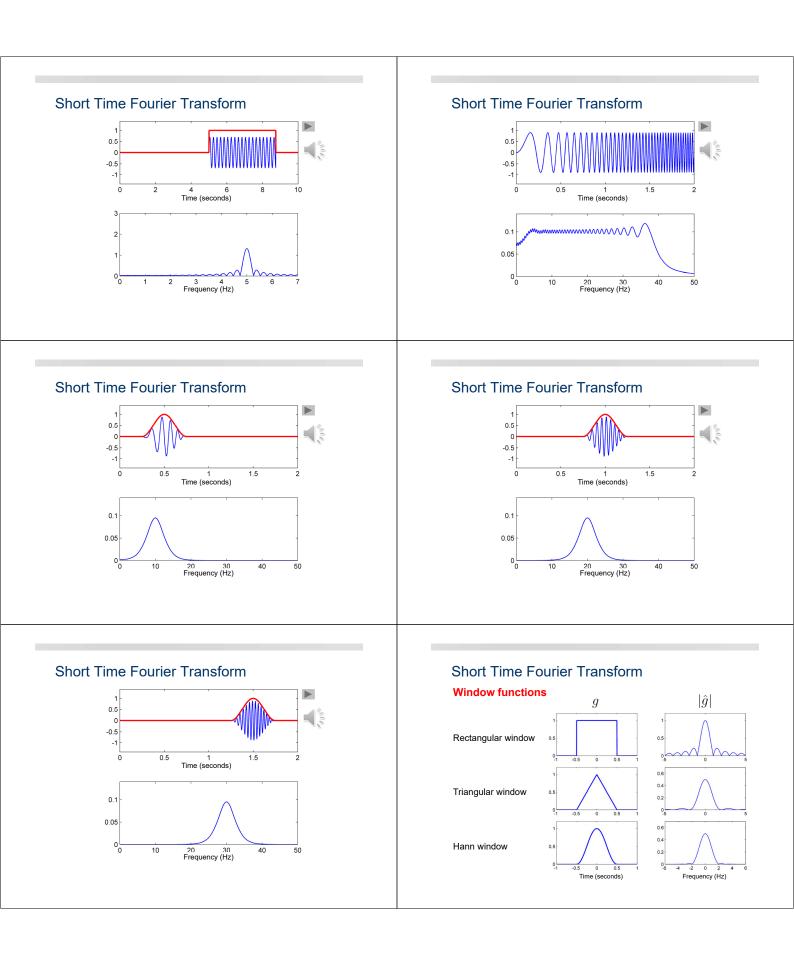


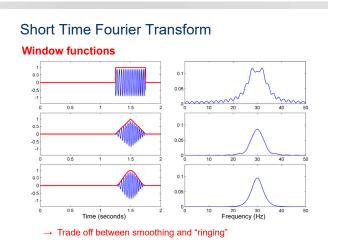
Short Time Fourier Transform



Short Time Fourier Transform







Short Time Fourier Transform

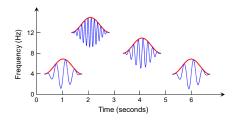
Definition

- Signal $f: \mathbb{R} \to \mathbb{R}$
- Window function $\,g:\mathbb{R} o\mathbb{R}\,$ ($g\in L^2(\mathbb{R})$, $\|g\|_2
 eq 0$)
- STFT $\widetilde{f}_g(t,\omega) = \int_{u \in \mathbb{R}} f(u)\overline{g}(u-t)\exp(-2\pi i\omega u)du = \langle f|g_{t,\omega} \rangle$
 - with $g_{t,\omega}(u) = \exp(2\pi i\omega(u-t))g(u-t)$ for $u \in \mathbb{R}$

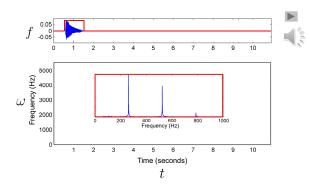
Short Time Fourier Transform

Intuition:

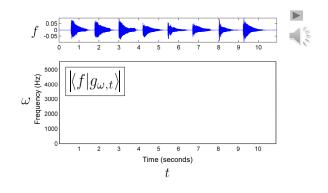
- $g_{t,\omega}$ is "musical note" of frequency ω centered at time t
- Inner product $\langle f | g_{t,\omega} \rangle$ measures the correlation between the musical note $g_{t,\omega}$ and the signal f



Time-Frequency Representation Spectrogram

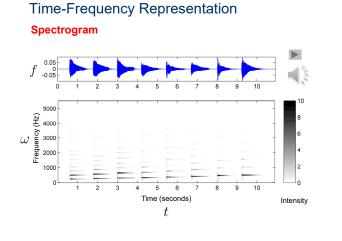


Time-Frequency Representation Spectrogram

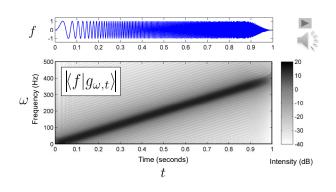


Time-Frequency Representation Spectrogram



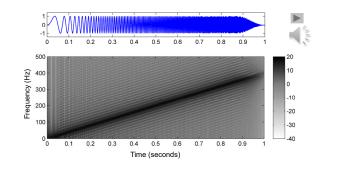


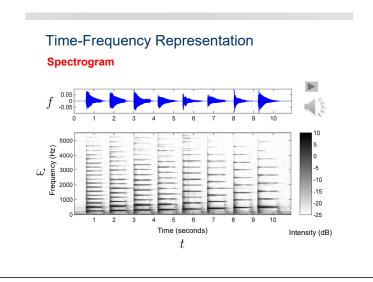
Time-Frequency Representation Spectrogram



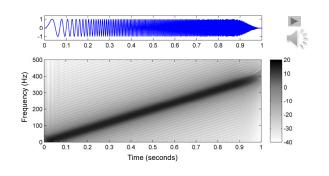
Time-Frequency Representation

Chirp signal and STFT with box window of length 50 ms





Time-Frequency Representation



Time-Frequency Representation

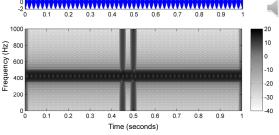
Time-Frequency Localization

 Size of window constitutes a trade-off between time resolution and frequency resolution:

Large window :	poor time resolution
	good frequency resolution
Small window :	good time resolution
	poor frequency resolution
Heisenberg Unc	ertainty Principle: there is no

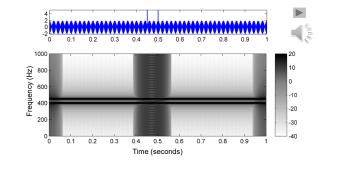
 Heisenberg Uncertainty Principle: there is no window function that localizes in time and frequency with arbitrary precision.

Time-Frequency Representation Signal and STFT with Hann window of length 20 ms

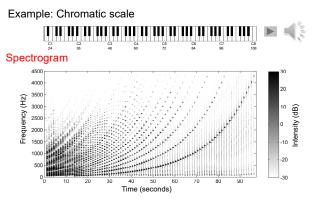


Time-Frequency Representation

Signal and STFT with Hann window of length 100 ms



Audio Features



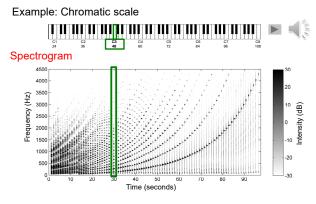
Audio Features

Model assumption:	Equal-tempered scale		
MIDI pitches:	$p \in [1:128]$		
 Piano notes: 	p = 21 (A0) to $p = 108$ (C8)		
 Concert pitch: 	<i>p</i> = 69 (A4)		
Center frequency:	$F_{\text{pitch}}(p) = 2^{(p-69)/12} \cdot 440 \text{ Hz}$		

 \rightarrow Logarithmic frequency distribution

Octave: doubling of frequency

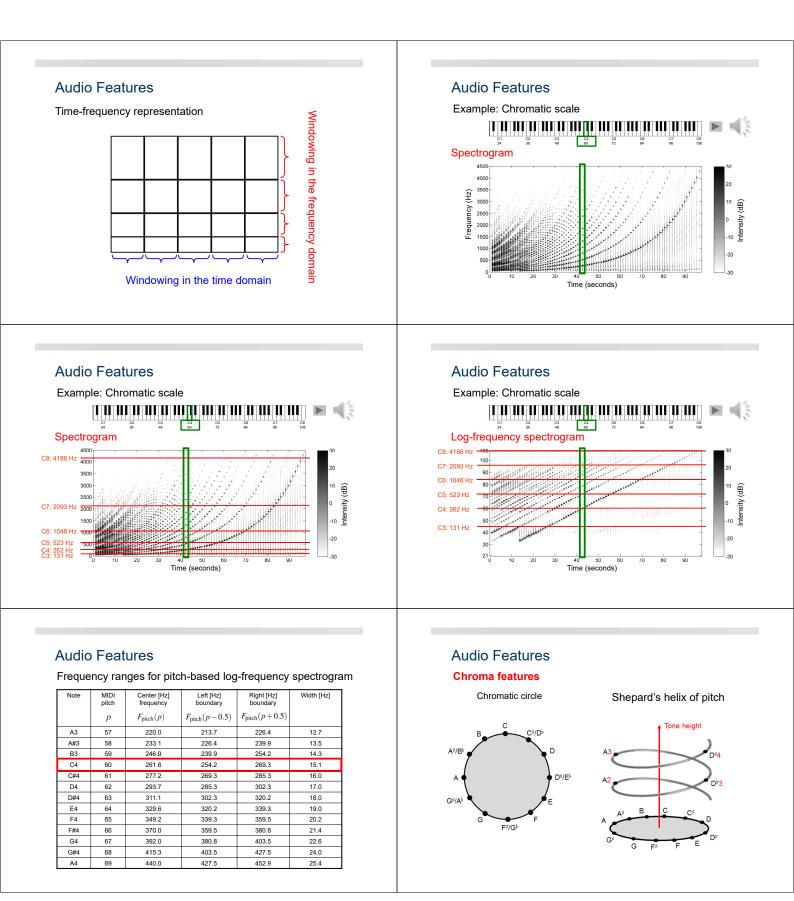
Audio Features

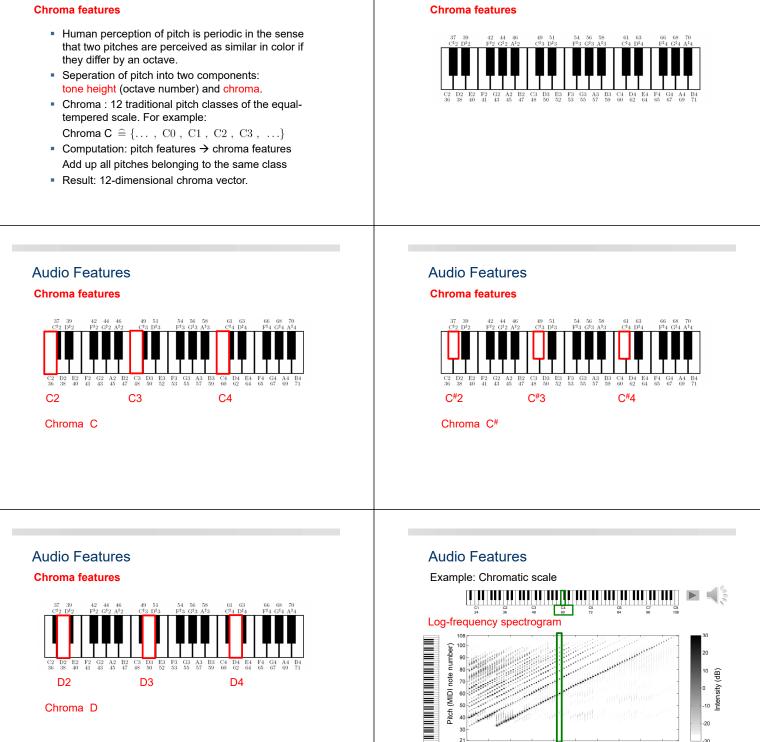


Audio Features

Idea: Binning of Fourier coefficients

Divide up the fequency axis into logarithmically spaced "pitch regions" and combine spectral coefficients of each region to a single pitch coefficient.



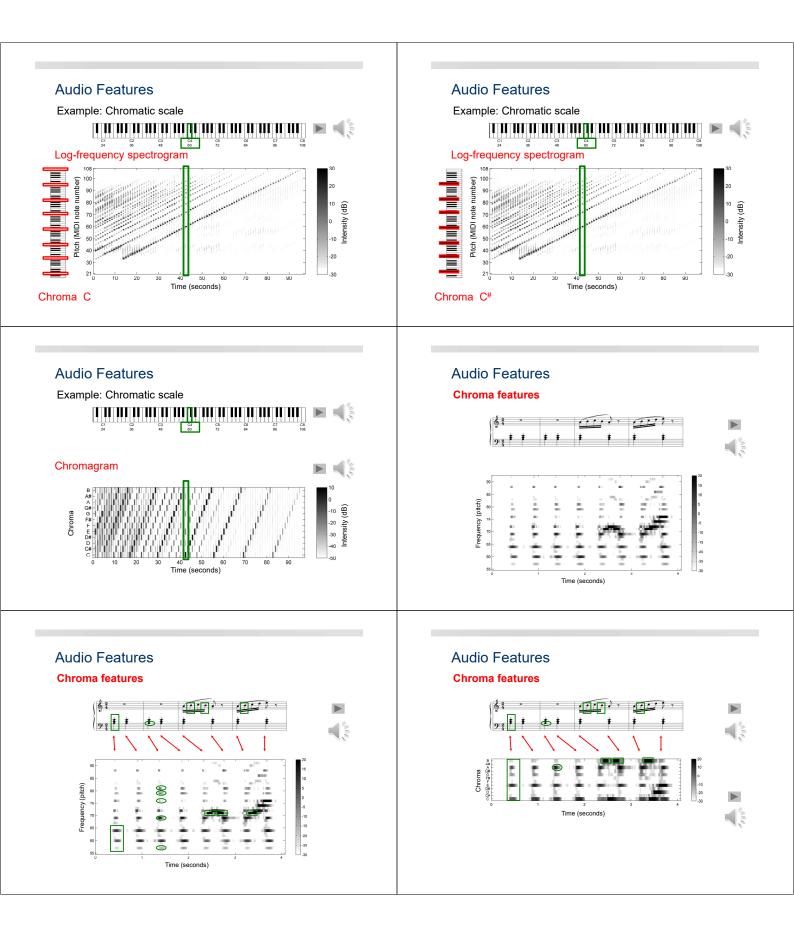


Pitch

Time (seconds)

Audio Features

Audio Features



Audio Features

Chroma features

- Sequence of chroma vectors correlates to the harmonic progression
- Normalization x → x/||x|| makes features invariant to changes in dynamics
- Further denoising and smoothing
- Taking logarithm before adding up pitch coefficients accounts for logarithmic sensation of intensity

Audio Features

Logarithmic compression

For a positive constant $\gamma \in \mathbb{R}_{>0}$ the logarithmic compression

 $\Gamma_{\gamma}:\mathbb{R}_{>0}\to\mathbb{R}_{>0}$

is defined by $\varGamma_{\gamma}(\nu):=\log(1+\gamma\cdot\nu)$

A value $v \in \mathbb{R}_{>0}$ is replaced by a compressed value $arGamma_{\gamma}(v)$

Audio Features

Logarithmic compression

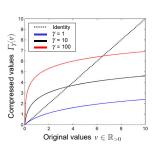
For a positive constant $\ \gamma \in \mathbb{R}_{>0}$ the logarithmic compression

 $\Gamma_{\gamma}:\mathbb{R}_{>0}\to\mathbb{R}_{>0}$

is defined by

 $\Gamma_{\gamma}(v) := \log(1 + \gamma \cdot v)$

A value $v \in \mathbb{R}_{>0}$ is replaced by a compressed value $\Gamma_{\gamma}(v)$



The higher $\ \gamma \in \mathbb{R}_{>0}$ the stronger the compression

Audio Features

Replace a vector by the normalized vector $x/\|x\|$

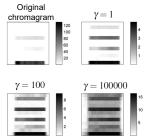
using a suitable norm $\left\|\cdot\right\|$

Example: Chroma vector $x \in \mathbb{R}^{12}$ Euclidean norm

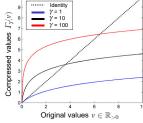
$$||x|| := \left(\sum_{i=0}^{11} |x(i)|^2\right)^{1/2}$$

Audio Features

Logarithmic compression



A value $v \in \mathbb{R}_{>0}$ is replaced by a compressed value $arGamma_{\gamma}(v)$



The higher $\ \gamma \in \mathbb{R}_{>0}$ the stronger the compression

Audio Features

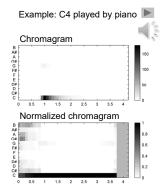
Normalization

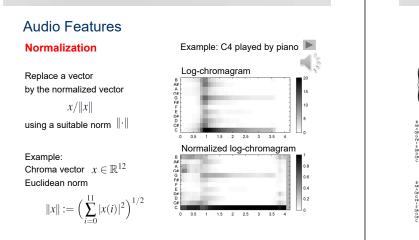
Replace a vector by the normalized vector

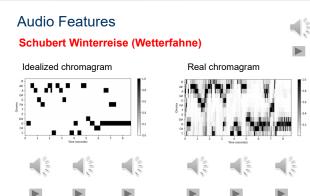
 $x/\|x\|$ using a suitable norm $\|\cdot\|$

Example: Chroma vector $x \in \mathbb{R}^{12}$ Euclidean norm

$$|x|| := \left(\sum_{i=0}^{11} |x(i)|^2\right)^{1/2}$$

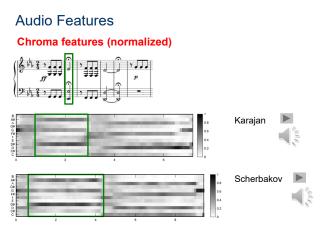




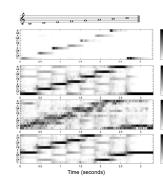


Audio Features

- There are many ways to implement chroma features
- Properties may differ significantly
- Appropriateness depends on respective application
- Chroma Toolbox (MATLAB)
 https://www.audiolabs-erlangen.de/resources/MIR/chromatoolbox
- LibROSA (Python) https://librosa.github.io/librosa/
- Feature learning: "Deep Chroma" [Korzeniowski/Widmer, ISMIR 2016]



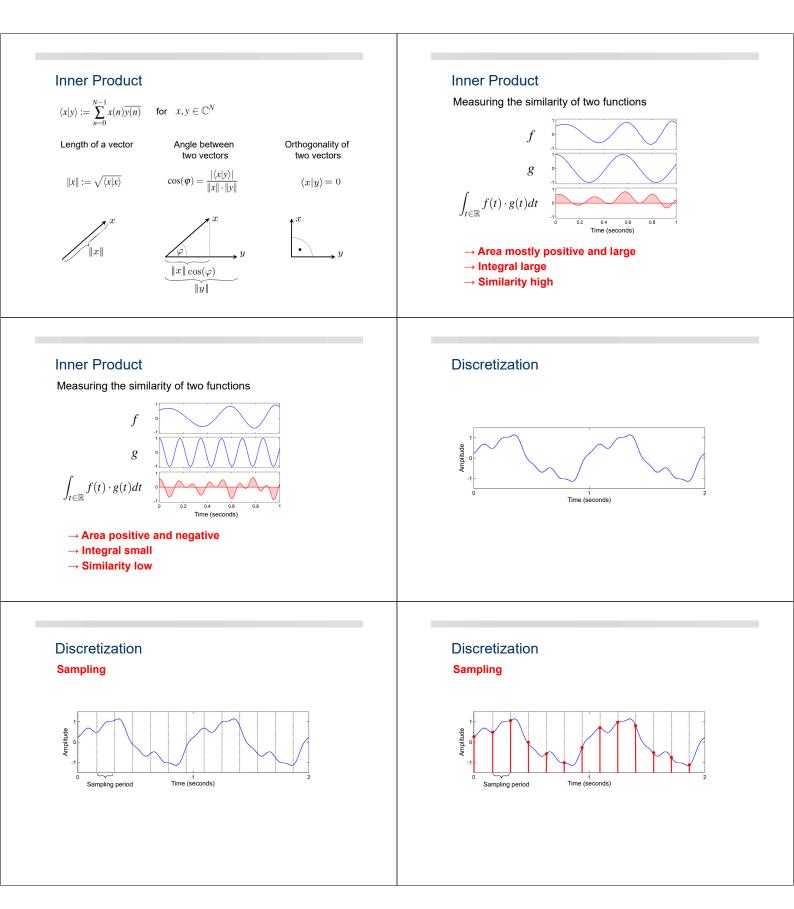
Audio Features Chroma features

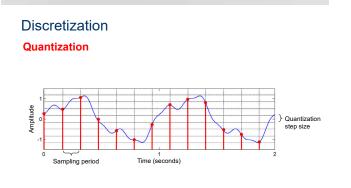


Chromagram

- Chromagram after logarithmic compression and normalization
- Chromagram based on a piano tuned 40 cents upwards
- Chromagram after applying a cyclic shift of four semitones upwards

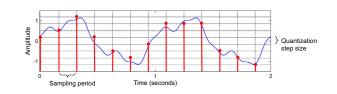
Additional Material





Discretization

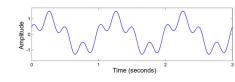
Quantization



Discretization Sampling

$f \colon \mathbb{R} \to \mathbb{R}$	CT-signal
T > 0	Sampling period
$x(n) := f(n \cdot T)$	Equidistant sampling, $n\in\mathbb{Z}$
$x\colon \mathbb{Z} \to \mathbb{R}$	DT-signal
x(n)	Sample taken at time $t = n \cdot T$
$F_{\rm s} := 1/T$	Sampling rate

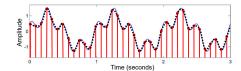
Discretization



Original signal

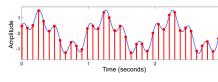
Discretization

Aliasing

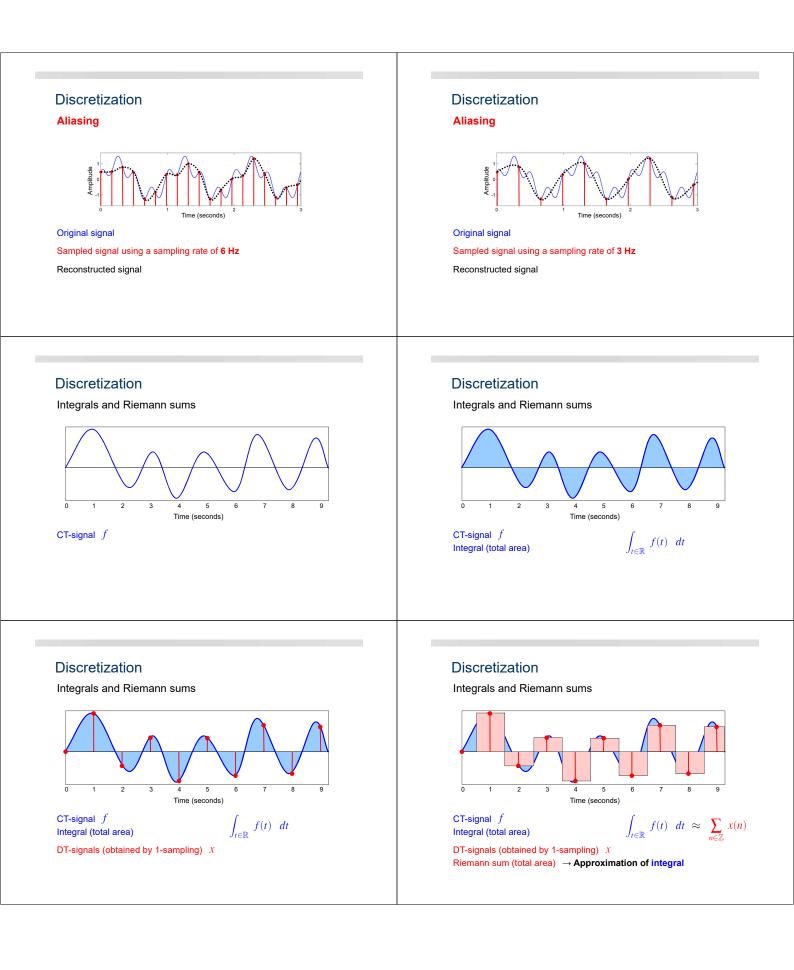


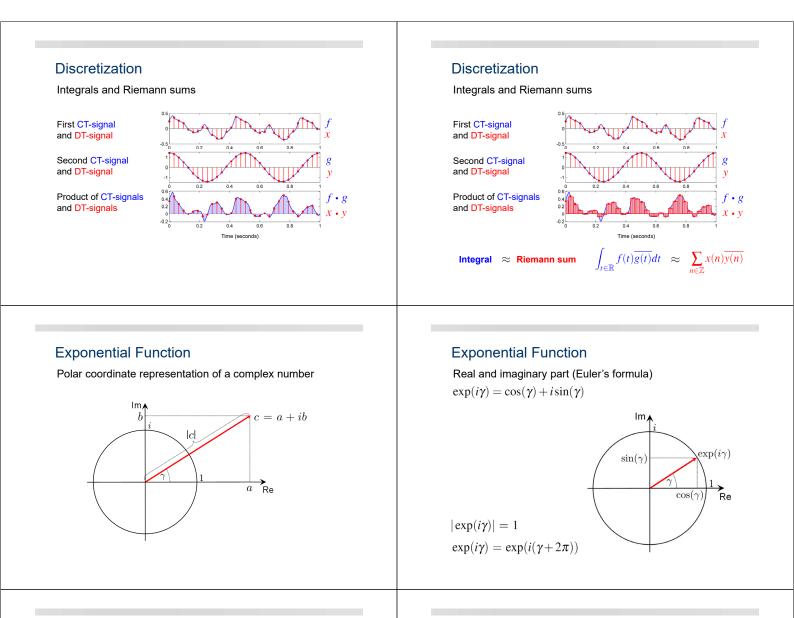
Original signal Sampled signal using a sampling rate of **12 Hz** Reconstructed signal

Discretization Aliasing



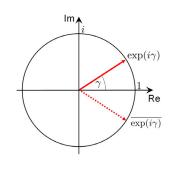
Original signal Sampled signal using a sampling rate of 12 Hz





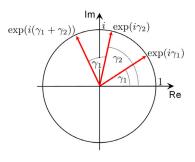
Exponential Function

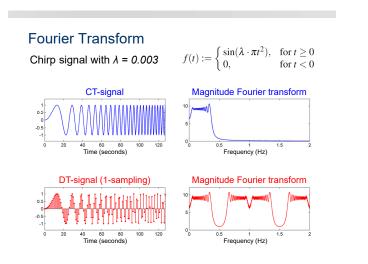
 $\frac{\text{Complex conjugate number}}{\exp(i\gamma)} = \exp(-i\gamma)$

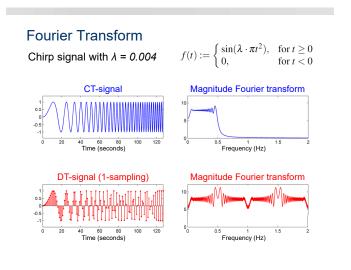


Exponential Function

Additivity property $\exp(i(\gamma_1 + \gamma_2)) = \exp(i\gamma_1)\exp(i\gamma_2)$

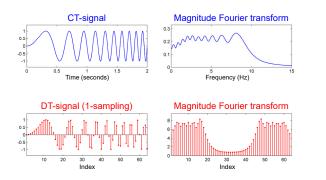






Fourier Transform

DFT approximation of Fourier transform



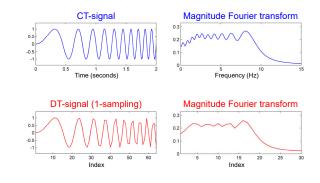
Fourier Transform

Discrete STFT

$$\begin{split} \mathcal{X}(m,k) &:= \sum_{n=0}^{N-1} x(n+mH) w(n) \exp(-2\pi i k n/N) \\ x: \mathbb{Z} \to \mathbb{R} & \text{DT-signal} \\ w: [0:N-1] \to \mathbb{R} & \text{Window function of length } N \in \mathbb{N} \\ H \in \mathbb{N} & \text{Hop size} \\ K &= N/2 & \text{Index corresponding to Nyquist frequency} \\ \mathcal{X}(m,k) & \text{Fourier coefficient for frequency} \\ \text{index } k \in [0:K] \text{ and time frame } m \in \mathbb{Z} \end{split}$$

Fourier Transform

DFT approximation of Fourier transform



Fourier Transform

Discrete STFT

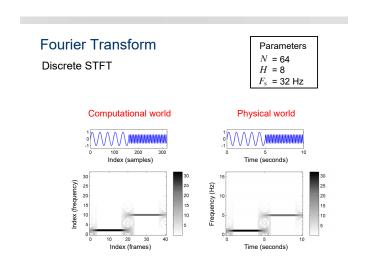
$$\mathcal{X}(m,k) := \sum_{n=0}^{N-1} x(n+mH)w(n) \exp(-2\pi i k n/N)$$

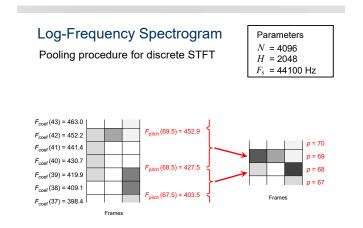
Physical time position associated with $\mathcal{X}(m,k)$:

$$T_{
m coef}(m) := rac{m \cdot H}{F_{
m s}}$$
 (seconds) H = Hop size $F_{
m s}$ = Sampling rate

Physical frequency associated with $\mathcal{X}(m,k)$:

$$F_{\text{coef}}(k) := rac{k \cdot F_{\text{s}}}{N}$$
 (Hertz)





Fast Fourier Transform

Algorithm: FFT				
Input: Output:	The length $N = 2^L$ with N being a power of two The vector $(x(0), \dots, x(N-1))^\top \in \mathbb{C}^N$ The vector $(X(0), \dots, X(N-1))^\top = \text{DFT}_N \cdot (x(0), \dots, x(N-1))^\top$			
	re: Let $(X(0), \dots, X(N-1)) = FFT(N, x(0), \dots, x(N-1))$ denote the general form T algorithm.			
If $N = 1$	then			
	X(0) = x(0). se compute recursively:			
	$(A(0), \dots, A(N/2 - 1)) = FFT(N/2, x(0), x(2), x(4), \dots, x(N - 2)),$			
	$(B(0),\ldots,B(N/2-1)) = FFT(N/2,x(1),x(3),x(5),\ldots,x(N-1)),$			
	$C(k) = \omega_N^k \cdot B(k)$ for $k \in [0: N/2 - 1]$,			
	$X(k) = A(k) + C(k)$ for $k \in [0: N/2 - 1]$,			
	$X(N/2+k) = A(k) - C(k)$ for $k \in [0: N/2 - 1]$.			

Signal Spaces and Fourier Transforms

Signal space	$L^2(\mathbb{R})$	$L^{2}([0,1))$	$\ell^2(\mathbb{Z})$
Inner product	$\langle f g \rangle = \int_{t \in \mathbb{R}} f(t)\overline{g(t)}dt$	$\langle f g \rangle = \int_{t \in [0,1)} f(t) \overline{g(t)} dt$	$\langle x y \rangle = \sum_{n \in \mathbb{Z}} x(n) \overline{y(n)}$
Norm	$\ f\ _2 = \sqrt{\langle f f\rangle}$	$\ f\ _2 = \sqrt{\langle f f\rangle}$	$\ x\ _2 = \sqrt{\langle x x \rangle}$
Definition	$L^2(\mathbb{R}) :=$ $\{f : \mathbb{R} \to \mathbb{C} \mid f _2 < \infty\}$	$\begin{split} L^2([0,1)) &:= \\ \{f: [0,1) \to \mathbb{C} \mid \ f\ _2 < \infty \} \end{split}$	$\ell^2(\mathbb{Z}) :=$ { $f : \mathbb{Z} \rightarrow \mathbb{C} \mid x _2 < \infty$ }
Elementary frequency function	$ \mathbb{R} \to \mathbb{C} $ $t \mapsto \exp(2\pi i\omega t) $	$[0,1) \rightarrow \mathbb{C}$ $t \mapsto \exp(2\pi i k t)$	$\mathbb{Z} \to \mathbb{C}$ $n \mapsto \exp(2\pi i \omega n)$
Frequency parameter	$\omega \in \mathbb{R}$	$k \in \mathbb{Z}$	$\boldsymbol{\omega} \in [0,1)$
Fourier representation	$f(t) = \int_{\omega \in \mathbb{R}} c_{\omega} \exp(2\pi i \omega t) d\omega$	$f(t) = \sum_{k \in \mathbb{Z}} c_k \exp(2\pi i k t)$	$\begin{aligned} x(n) &= \\ \int_{\omega \in [0,1)} c_{\omega} \exp(2\pi i \omega n) d\omega \end{aligned}$
Fourier transform	$\hat{f} : \mathbb{R} \to \mathbb{C}$ $\hat{f}(\omega) = c_{\omega} =$ $\int_{t \in \mathbb{R}} f(t) \exp(-2\pi i \omega t) dt$	$\hat{f} : \mathbb{Z} \to \mathbb{C}$ $\hat{f}(k) = c_k =$ $\int_{t \in [0,1]} f(t) \exp(-2\pi i k t) dt$	$\hat{x} : [0, 1) \to \mathbb{C}$ $\hat{x}(\omega) = c_{\omega} =$ $\sum_{n \in \mathbb{Z}} x(n) \exp(-2\pi i \omega n)$