

Lecture Music Processing

Beethoven, Bach, and Billions of Bytes

New Alliances between Music and Computer Science

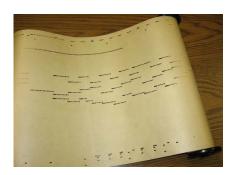
Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Music Processing

Music Film (Video)

MusicXML (Text)


Music Literature (Text)

Research Goals

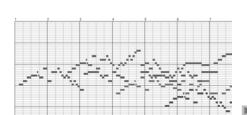
- Music Information Retrieval (MIR) → ISMIR
- Analysis of music signals (harmonic, melodic, rhythmic, motivic aspects)
- Design of musically relevant audio features
- Tools for multimodal search and interaction

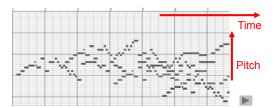
Piano Roll Representation

Player Piano (1900)

Piano Roll Representation (MIDI)

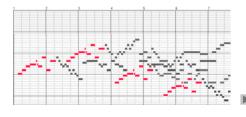
J.S. Bach, C-Major Fuge (Well Tempered Piano, BWV 846)




Piano Roll Representation (MIDI)

Query:

Goal: Find all occurrences of the query


Piano Roll Representation (MIDI)

Query:

Goal: Find all occurrences of the query

Matches:

Audio Data

Various interpretations – Beethoven's Fifth

Bernstein	
Karajan	>
Scherbakov (piano)	>
MIDI (piano)	>

Audio Data (Memory Requirements)

1 Bit = 1: on, 0: off 1 Byte = 8 Bits

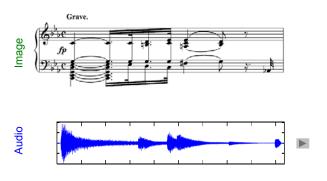
1 Kilobyte (KB) = 1 Thousand Bytes 1 Megabyte (MB) = 1 Million Bytes 1 Gigabyte (GB) = 1 Billion Bytes 1 Terabyte (TB) = 1000 Billion Bytes

Two audio CDs > 1 Billion Bytes
1000 audio CDs ≃ Billions of Bytes

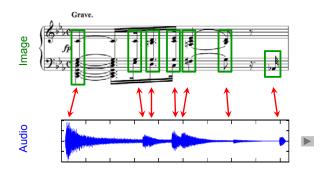
12.000 MIDI files < 350 MB

Music Synchronization: Audio-Audio

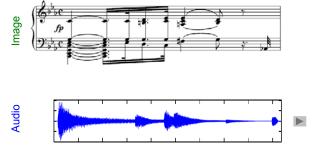
Beethoven's Fifth


Music Synchronization: Audio-Audio Beethoven's Fifth Orchester (Karajan) Piano (Scherbakov)

Music Synchronization: Audio-Audio Beethoven's Fifth Orchester (Karajan) Piano (Scherbakov)


Application: Interpretation Switcher

Music Synchronization: Image-Audio



Music Synchronization: Image-Audio

How to make the data comparable?

Grave.

How to make the data comparable? Image Processing: Optical Music Recognition

How to make the data comparable? Image Processing: Optical Music Recognition Audio Processing: Fourier Analyse

Image Processing: Optical Music Recognition Optical Music Recognition Audio Processing: Fourier Analyse

Music Processing

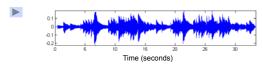
Coarse Level	Fine Level
What do different versions have in common?	What are the characteristics of a specific version?

Music Processing

Coarse Level	Fine Level
What do different versions have in common?	What are the characteristics of a specific version?
What makes up a piece of music?	What makes music come alive?

Music Processing

Coarse Level	Fine Level
What do different versions have in common?	What are the characteristics of a specific version?
What makes up a piece of music?	What makes music come alive?
Identify despite of differences	Identify the differences

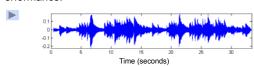

Music Processing

Coarse Level	Fine Level
What do different versions have in common?	What are the characteristics of a specific version?
What makes up a piece of music?	What makes music come alive?
Identify despite of differences	Identify the differences
Example tasks: Audio Matching Cover Song Identification	Example tasks: Tempo Estimation Performance Analysis

Performance Analysis

Schumann: Träumerei

Performance:

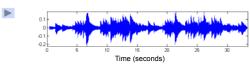


Performance Analysis

Schumann: Träumerei

Score (reference):

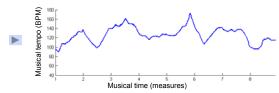
Performance:


Performance Analysis

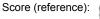
Schumann: Träumerei

Strategy: Compute score-audio synchronization and derive tempo curve

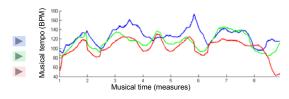
Performance:



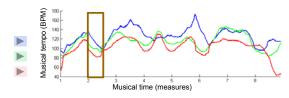
Performance Analysis


Schumann: Träumerei

Tempo Curve:

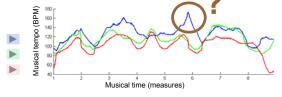


Performance Analysis Schumann: Träumerei


Tempo Curves:

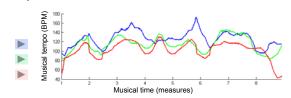
Performance Analysis

Tempo Curves:



Performance Analysis

Schumann: Träumerei



Performance Analysis

Schumann: Träumerei

What can be done if no reference is available?

Tempo Curves:

Music Processing

Relative	Absolute
Given: Several versions	Given: One version

Music Processing

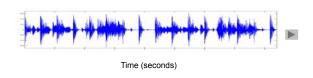
Relative	Absolute
Given: Several versions	Given: One version
Comparison of extracted parameters	Direct interpretation of extracted parameters

Music Processing

Relative	Absolute
Given: Several versions	Given: One version
Comparison of extracted parameters	Direct interpretation of extracted parameters
Extraction errors have often no consequence on final result	Extraction errors immediately become evident

Music Processing

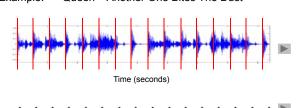
Relative	Absolute
Given: Several versions	Given: One version
Comparison of extracted parameters	Direct interpretation of extracted parameters
Extraction errors have often no consequence on final result	Extraction errors immediately become evident
Example tasks: Music Synchronization Genre Classification	Example tasks: Music Transcription Tempo Estimation


Tempo Estimation and Beat Tracking

Basic task: "Tapping the foot when listening to music"

Tempo Estimation and Beat Tracking

Basic task: "Tapping the foot when listening to music"


Example: Queen – Another One Bites The Dust

Tempo Estimation and Beat Tracking

Basic task: "Tapping the foot when listening to music"

Example: Queen – Another One Bites The Dust

Tempo Estimation and Beat Tracking

Example: Happy Birthday to you

Pulse level: Measure

Tempo Estimation and Beat Tracking

Example: Happy Birthday to you

Pulse level: Tactus (beat)

Tempo Estimation and Beat Tracking

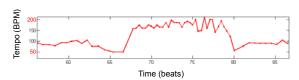
Example: Happy Birthday to you
Pulse level: Tatum (temporal atom)

Tempo Estimation and Beat Tracking

Example: Chopin – Mazurka Op. 68-3

Pulse level: Quarter note

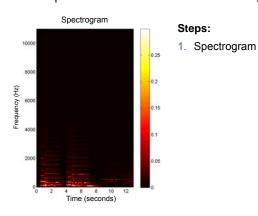
Tempo: ???

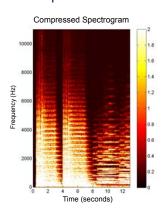

Tempo Estimation and Beat Tracking

Example: Chopin – Mazurka Op. 68-3

Pulse level: Quarter note

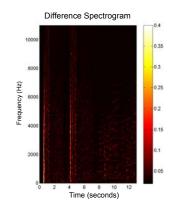
Tempo: 50-200 BPM


Tempo curve


Tempo Estimation and Beat Tracking

- Which temporal level?
- Local tempo deviations
- Sparse information (e.g., only note onsets available)
- Vague information (e.g., extracted note onsets corrupt)

Tempo Estimation and Beat Tracking

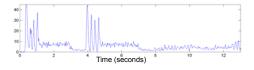

Tempo Estimation and Beat Tracking

Steps:

- 1. Spectrogram
- 2. Log Compression

Tempo Estimation and Beat Tracking

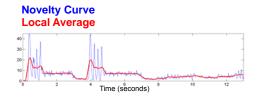
Steps:


- 1. Spectrogram
- 2. Log Compression
- 3. Differentiation

Tempo Estimation and Beat Tracking

Steps:

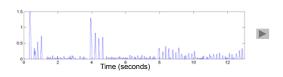
- 1. Spectrogram
- 2. Log Compression
- 3. Differentiation
- 4. Accumulation


Novelty Curve

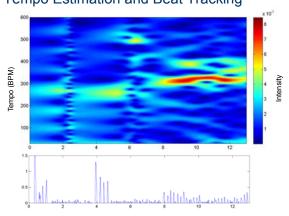
Tempo Estimation and Beat Tracking

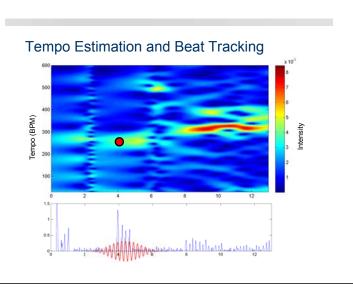
Steps:

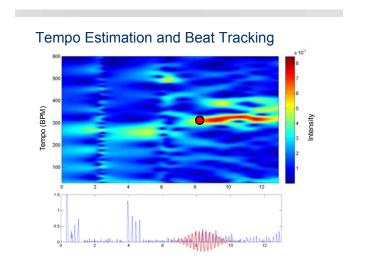
- 1. Spectrogram
- 2. Log Compression
- 3. Differentiation
- 4. Accumulation

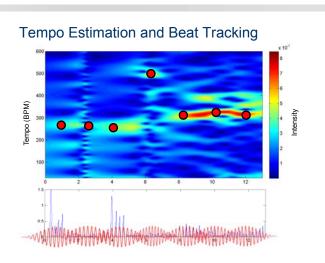


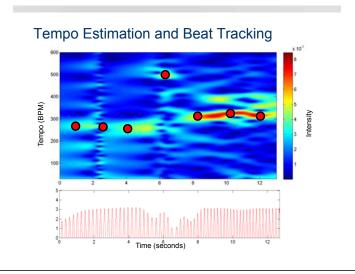
Tempo Estimation and Beat Tracking

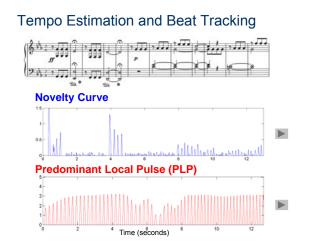

Steps:


- 1. Spectrogram
- 2. Log Compression
- 3. Differentiation
- 4. Accumulation
- 5. Normalization


Novelty Curve




Tempo Estimation and Beat Tracking



Motivic Similarity

Beethoven's Fifth (1st Mov.)

Motivic Similarity

Beethoven's Fifth (1st Mov.)

Beethoven's Fifth (3rd Mov.)

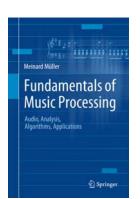
Motivic Similarity

Beethoven's Fifth (1st Mov.)

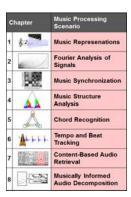
Beethoven's Fifth (3rd Mov.)

Beethoven's Appassionata

Motivic Similarity



Motivic Similarity


Book: Fundamentals of Music Processing

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de