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Chapter 3: Music Synchronization

3.1 Audio Features |
3.2 Dynamic Time Warping i
3.3 Applications | I
3.4  Further Notes g

As a first music processing task, we study in Chapter 3 the problem of music
synchronization. The objective is to temporally align compatible
representations of the same piece of music. Considering this scenario, we
explain the need for musically informed audio features. In particular, we
introduce the concept of chroma-based music features, which capture
properties that are related to harmony and melody. Furthermore, we study an
alignment technique known as dynamic time warping (DTW), a concept that is
applicable for the analysis of general time series. For its efficient computation,
we discuss an algorithm based on dynamic programming—a widely used
method for solving a complex problem by breaking it down into a collection of
simpler subproblems.

Music Data

Allegra con brio( J
~

~
e
i
- o)
! [
2 O =N
e T E_TP
i ® @
s " . = -
o
I. " o
-as . " - " "
o 1 2 3 4 5 & 7 »
>




Music Data

Various interpretations — Beethoven's Fifth

Bernstein >
Karajan >
Scherbakov (piano) >
MIDI (piano) >

Music Synchronization: Audio-Audio

Given: Two different audio recordings of
the same underlying piece of music.

Goal: Find for each position in one audio recording
the musically corresponding position
in the other audio recording.

Music Synchronization: Audio-Audio
Beethoven’s Fifth

Karajan > o-w—.—.”—
Scherbakov ~ » 0 H

Music Synchronization: Audio-Audio
Beethoven'’s Fifth

Karajan > o-w—.—.”—
Scherbakov ~ » 0 H

Synchronization: Karajan — Scherbakov #»

Music Synchronization: Audio-Audio

Application: Interpretation Switcher

Interpretation Switcher
Beveen, Gp0T.1_ymphern

Music Synchronization: Audio-Audio

Two main steps:

1.) Audio features

= Robust but discriminative

= Chroma features

= Robust to variations in instrumentation, timbre, dynamics
= Correlate to harmonic progression

2.) Alignment procedure

= Deals with local and global tempo variations
= Needs to be efficient




Music Synchronization: Audio-Audio

Beethoven'’s Fifth

Music Synchronization: Audio-Audio

Beethoven’s Fifth
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Music Synchronization: Audio-Audio

Cost matrix
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Music Synchronization: Audio-Audio
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Music Synchronization: Audio-Audio

Cost-minimizing alignment path
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Music Synchronization: Audio-Audio
Beethoven'’s Fifth
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Music Synchronization: Audio-Audio Dynamic Time Warping

How to compute the alignment?
=+ Cost matrices
= Dynamic programming

= Dynamic Time Warping (DTW)

= Well-known technique to find an optimal alignment
between two given (time-dependent) sequences
under certain restrictions.

= [ntuitively, sequences are warped in a non-linear
fashion to match each other.

= Originally used to compare different speech
patterns in automatic speech recognition




Dynamic Time Warping

Sequence X |><1 |Xz |X3 |X4 |X5 |Xe |x7 |XB|X9|

Sequence Y |y1|yZ|Y3|YA|Y5|Ve|Y7|

Dynamic Time Warping

Sequence X |><1 Xz Xa X4 x5 Xe x7 Xs Xg

i

Sequence Y |y1 |yz |Y3 |YA |V5 |Ys |Y7

Time alignment of two time-dependent sequences,
where the aligned points are indicated by the arrows.

Dynamic Time Warping
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Sequence Y |y1|yZ|Y3|YA|Y5|Ve|Y7 2‘
1
1234567
Sequence Y

Time alignment of two time-dependent sequences,
where the aligned points are indicated by the arrows.

Dynamic Time Warping

The objective of DTW is to compare two (time-dependent)
sequences

of length NV € ¥ and
Y o= (y1.y2. ..., Yar)
of length A € M. Here,
Tn,Ym EF, nE[1: N, me[l: M],

are suitable features that are elements from a given
feature space denoted by F .

Dynamic Time Warping

To compare two different features .y € F
one needs a local cost measure which is defined
to be a function

c: FxF =Ry
Typically, ¢(ax.y) is small (low cost) if & and y

are similar to each other, and otherwise (. i)
is large (high cost).

Dynamic Time Warping

Evaluating the local cost measure for each pair of
elements of the sequences X and Y’ one obtains the
cost matrix

o= R.\'x_‘-f
denfined by
C(n,m) 1= e(2n, Ym).

Then the goal is to find an alignment between X and V'
having minimal overall cost. Intuitively, such an optimal
alignment runs along a “valley” of low cost within the
cost matrix .




Dynamic Time Warping

Cost matrix C

Time (indices)
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Dynamic Time Warping

Cost matrix C
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Cost matrix C

Cost matrix C

Dynamic Time Warping

The next definition formalizes the notion of an alignment.

Awarping path is a sequence p = (p1..... pr) with
pe = (ng,me) € [1: N] x[1: M]

for ( € [l : L]satisfying the following three conditions:

= Boundary condition:

= Monotonicity condition:

= Step size condition:

pr=(1.1) and pr = (N.M)
m<ns<...<ng; and
mp<me <...<ing

Pes1 —pe € {(1,0),(0,1),(1,1)}
for te[l:L—1]

Dynamic Time Warping
Warping path

py = (1.1)

Sequence X
AN WA OO N ©

123 4 5 6 7
Sequence Y

. Each matrix entry
(cell) corresponds to
a pair of indices.

H Cell = (6,3)

Boundary cells:

pL=(N.M) =(9,7)




Dynamic Time Warping
Warping path

Dynamic Time Warping
Warping path
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The total cost ¢,(X.Y') of a warping path p between X
and Y with respect to the local cost measure ¢ is
defined as L

r'p( XX )= Z "'{-ru, s Umy ]

=1

Furthermore, an optimal warping path between X" and Y’
is a warping path p* having minimal total cost among all
possible warping paths. The DTW distance DTW(X.Y')
between X and Y is then defined as the total cost o p*

DTW(X.Y) = ¢p(X.Y)
= min{e,(X.Y) | pis a warping path}

= The warping path p* is not unique (in general).

= DTW does (in general) not definne a metric since it
may not satisfy the triangle inequality.

= There exist exponentially many warping paths.

= How can p* be computed efficiently?




Dynamic Time Warping

Notation: X (1:n) = (x.....: rn), 1<n<N
Y(1:m) = (y1.....¥m), 1<m<M
D(n.m) = DTW(X(1:n),Y(l:m))

The matrix D) is called the accumulated cost matrix.

The entry D(n.m) specifies the cost of an optimal
warping path that aligns X (1 :n) with Y (1 :m).

Dynamic Time Warping
Lemma:

(i) D(N,M) = DTW(X,Y)

(it)  D(1.1) = C(L,1)
(iti) D(n.1) = by C(k1)
D(l,m) = Y, CLk)
Din—=1.m-=1)
(iv) Din.m) = min| Din-1.m) ) + (n.m)
Din,m—1)

forn>1,m>1

Proof: (i) — (iii) are clear by definition

Dynamic Time Warping
Proof of (iv): Induction vian.m :
Let n>1, m>1and g=I(q..... PrL—1.pL) be

an optimal warping path for X (1:n)) and Y(1:m)).
Then ¢, = (n.m) (boundary condition).

Let g;—1 = (a.b) . The step size condition implies
(a.b) e {(n—-1.m—1),(n—1.m),(n,m— 1)}

The warping path (qi..... qr—1) must be optimal for
X(1:a), Y(1:Db). Thus,

D(n.m) =¢e(g...q_(X(1:a),Y(1:0)+C(n,m)

Dynamic Time Warping

Accumulated cost matrix

Given the two feature sequences X and Y, the matrix [D
is computed recursively.

= Initialize D using (ii) and (iii) of the lemma.
= Compute D{n,m) for n =1, m > 1 using (iv).
= DTW(X.Y) = D(N. M) using (i).

Note:

= Complexity O(NM).
= Dynamic programming: “overlapping-subproblem property”

|
Dynamic Time Warping Dynamic Time Warping
Optimal warping path Cost matrix ' "
Given to the algorithm is the accumulated cost matrix 1. |:‘.
The optimal path p* = (p1..... pr) is computed in reverse
order of the indices starting with p; = (N, M) .
Suppose ¢ = (1.1m) has been computed. In case
(n,m)=1{(1.1), one must have f = 1 and we are done.
Otherwise,
(Lm—1), ifn=1 Accumulated -
L) (=1L, ifm =1 cost martrix D -
Pe-1 ¢ argmin{D(n — 1,m — 1), B
D(n—1.m), D(n.m—1)}. otherwise.

where we take the lexicographically smallest pair in case
“argmin” is not unique.




Dynamic Time Warping Dynamic Time Warping
Cost matrix
Optimal warping path 1J1]1]7]e]1 [<] [10]10[11]14]13] o
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Dynamic Time Warping Dynamic Time Warping
Variation of step size condition
= Computation via dynamic programming
. } = Memory requirements and running time: O(NM)
It I = Problem: Infeasible for large N and M
f = Example: Feature resolution 10 Hz, pieces 15 min
_ prerel | |
(n—1,m—3) o [T 11 = N,M ~ 10,000
= N-M ~ 100,000,000




Dynamic Time Warping

Strategy: Global constraints

Dynamic Time Warping

Strategy: Global constraints

Sakoe-Chiba band Itakura parallelogram Sakoe-Chiba band Itakura parallelogram
Problem: Optimal warping path not in constraint region
Dynamic Time Warping Dynamic Time Warping

Strategy: Multiscale approach

Compute optimal warping path on coarse level

Strategy: Multiscale approach

Project on fine level

Dynamic Time Warping
Strategy: Multiscale approach

Specify constraint region

Dynamic Time Warping
Strategy: Multiscale approach

Compute constrained optimal warping path




Dynamic Time Warping
Strategy: Multiscale approach

= Suitable features?
= Suitable resolution levels?
= Size of constraint regions?

Good trade-off between efficiency and robustness?

Suitable parameters depend very much on application!

Music Synchronization: Audio-Audio

= Transform audio recordings e —
into chroma vector sequences T i
~ X o= (1, 22.....0 ry) e

~ Y = (p.y2.oyar)

= Compute cost matrix
Cin,m) =c(2n.Ym)
with respect to local
cost measure

Wiz ta 6 &
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Music Synchronization: Audio-Audio

= Transform audio recordings — i m
into chroma vector sequences T i
~ XNoi= (g, 20,0 ry)

~ Y = (p.y2.oyar)

= Compute cost matrix
Clnom) = ey hm)
with respect to local
cost measure «

= Compute cost-minimizing
warping path from ('

Music Synchronization: MIDI-Audio
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Audio

Time

MIDI
v
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Music Synchronization: MIDI-Audio

MIDI = meta data
Automated annotation

Audio recording

Sonification of annotations > >

Music Synchronization: MIDI-Audio

MIDI = reference (score)
Tempo information

Audio recording




Performance Analysis: Tempo Curves
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Performance Analysis: Tempo Curves

Schumann: Traumerei

Performance:
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Performance Analysis: Tempo Curves
Schumann: Traumerei

Score (reference):

Performance:
>
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Performance Analysis: Tempo Curves
Schumann: Traumerei

Score (reference):

Strategy: Compute score-audio synchronization
and derive tempo curve
Performance:
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Performance Analysis: Tempo Curves
Schumann: Traumerei
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Performance Analysis: Tempo Curves

Schumann: Traumerei

Score (reference): [sé*t:'if'_—_'-
5 53

Tempo curves:
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Performance Analysis: Tempo Curves
Schumann: Traumerei

Score (reference): {#*t:'tf'_—_'-‘s"-’?

Tempo curves:

v
Musical tempo (BPM)

a a4 L
Musical time (measures)

Performance Analysis: Tempo Curves

Schumann: Traumerei

Score (reference): {#*t:tf'_—_'-‘r

Tempo curves:

v
Musical tempo (BPM)

a a4 L
Musical time (measures)

Performance Analysis: Tempo Curves

Schumann: Traumerei

What can be done if no reference is available?

Tempo curves:

v
Musical tempo (BPM)

3 'l 5
Musical time (measures)

Music Synchronization: MIDI-Audio
Applications

= Automated audio annotation
= Accurate audio access after MIDI-based retrieval

= Automated tracking of MIDI note parameters
during audio playback

= Performance Analysis

Music Synchronization: Image-Audio
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Music Synchronization: Image-Audio
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Music Synchronization: Image-Audio
Convert data into common mid-level feature representation

Grave,

Image

Audio

Music Synchronization: Image-Audio

Image Processing: Optical Music Recognition

Image

Audio

Music Synchronization: Image-Audio

Image Processing: Optical Music Recognition

Image

Audio

Audio Processing: Fourier Analyse

Music Synchronization: Image-Audio

Image Processing: Optical Music Recognition

Image

Audio

Audio Processing: Fourier Analyse

Music Synchronization: Image-Audio

Application: Score Viewer

Music Synchronization: Lyrics-Audio
Y

10 " 12 13 14 15 18 17 18
Time (seconds)

Difficult task!




Music Synchronization: Lyrics-Audio
Lyrics-Audio — Lyrics-MIDI + MIDI-Audio
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Music Synchronization: Lyrics-Audio
Application: SyncPlayer/LyricsSeeker
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Source Separation

= Decomposition of audio stream into different sound sources
= Central task in digital signal processing

= “Cocktail party effect”

= Sources are often assumed to be statistically independent

= This is often not the case in music

Strategy: Exploit additional information (e.g. musical score)
to support the seperation process

Score-Informed Source Separation

Ty
i

Score-Informed Source Separation
2 )
i \

i s N

L =
i i =
- 8 ~]

Tuma Tama

Score-Informed Source Separation
2 )
%
oL \

i s N

L =
i i =
- 8 ~]

Tuma Tama




Score-Informed Source Separation

Goal: Approximate spectrogram using a parametric model
exploiting availablity of score information
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Original audio recording = Partial energy distribution

= Resonance body properties
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Score-Informed Source Separation
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Model after three iterations

a portion of the spectrogram

Score-Informed Source Separation

Experimental results
for separating left and
right hands for piano

recordings:
Composer Piece EIELE] Results

L R Eq Org
Bach BWV 875, Prelude SMD >
Chopin Op. 28, No. 15 SMD > > > >
Chopin Op. 64, No. 1 European Archive > > > >

Score-Informed Source Separation
Audio editing
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