

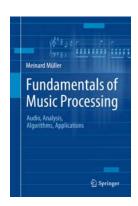
Lecture Music Processing

Music Structure Analysis

Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Book: Fundamentals of Music Processing



Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

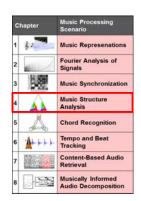
Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing



Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

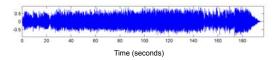
Chapter 4: Music Structure Analysis

- 4.1 General Principles
- 4.2 Self-Similarity Matrices
- 4.3 Audio Thumbnailing4.4 Novelty-Based Segmentation
- 4.5 Evaluation
- 4.6 Further Notes

In Chapter 4, we address a central and well-researched area within MIR known as music structure analysis. Given a music recording, the objective is to identify important structural elements and to temporally segment the recording according to these elements. Within this scenario, we discuss fundamental segmentation principles based on repetitions, homogeneity, and novelty—principles that also apply to other types of multimedia beyond music. As an important technical tool, we study in detail the concept of self-similarity matrices and discuss their structural properties. Finally, we briefly touch the topic of evaluation, introducing the notions of precision, recall, and F-measure.

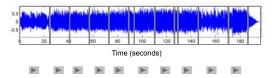
Music Structure Analysis

Example: Zager & Evans "In The Year 2525"



Music Structure Analysis

Example: Zager & Evans "In The Year 2525"



Music Structure Analysis

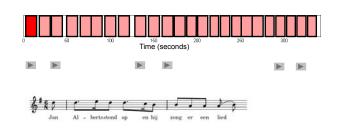
Example: Zager & Evans "In The Year 2525"

Music Structure Analysis

Example: Brahms Hungarian Dance No. 5 (Ormandy)

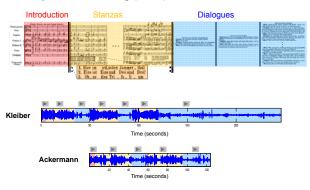
Music Structure Analysis

Example: Folk Song Field Recording (Nederlandse Liederenbank)



Music Structure Analysis

Example: Weber, Song (No. 4) from "Der Freischütz"



Music Structure Analysis

General goal: Divide an audio recording into temporal segments corresponding to musical parts and group these segments into musically meaningful categories.

Examples:

- Stanzas of a folk song
- Intro, verse, chorus, bridge, outro sections of a pop song
- Exposition, development, recapitulation, coda of a sonata
- Musical form ABACADA ... of a rondo

Music Structure Analysis

General goal: Divide an audio recording into temporal segments corresponding to musical parts and group these segments into musically meaningful categories.

Challenge: There are many different principles for creating relationships that form the basis for the musical structure.

• Homogeneity: Consistency in tempo, instrumentation, key, ...

Novelty: Sudden changes, surprising elements ...

Repetition: Repeating themes, motives, rhythmic patterns,...

Music Structure Analysis

Novelty

Homogeneity

Repetition

Overview

- Introduction
- Feature Representations
- Self-Similarity Matrices
- Audio Thumbnailing
- Novelty-based Segmentation

Thanks:

- Clausen, Ewert, Kurth, Grohganz, ...
- Dannenberg, Goto
- Grosche, Jiang
- Paulus, Klapuri
- Peeters, Kaiser, ...
- Serra, Gómez, ...
- Smith, Fujinaga, ...
- Wiering, ...
- Wand, Sunkel, Jansen
- .

Overview

- Introduction
- Feature Representations
- Self-Similarity Matrices
- Audio Thumbnailing
- Novelty-based Segmentation

Thanks:

- Clausen, Ewert, Kurth, Grohganz, ...
- Dannenberg, Goto
- Grosche, Jiang
- Paulus, Klapuri
- Peeters, Kaiser, ...Serra, Gómez, ...
- Seria, Goinez, ...Smith, Fujinaga, ...
- Wiering, ...
- Wand, Sunkel, Jansen
- .

Feature Representation

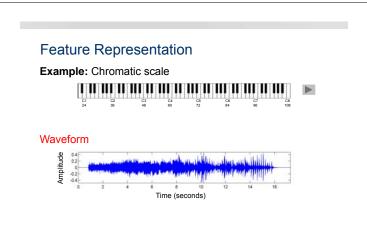
General goal: Convert an audio recording into a mid-level representation that captures certain musical properties while supressing other properties.

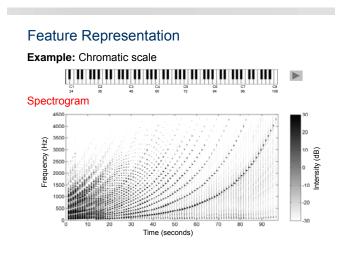
- Timbre / Instrumentation
- Tempo / Rhythm
- Pitch / Harmony

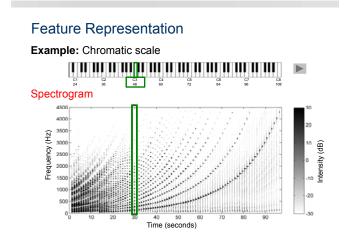
Feature Representation

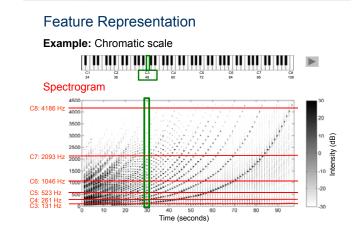
General goal: Convert an audio recording into a mid-level representation that captures certain musical properties while supressing other properties.

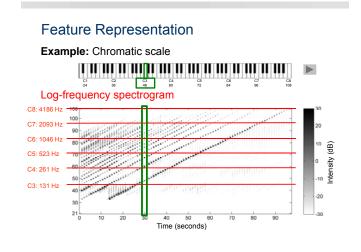
- Timbre / Instrumentation
- Tempo / Rhythm
- Pitch / Harmony

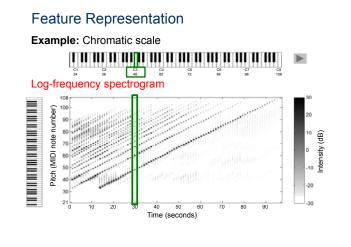


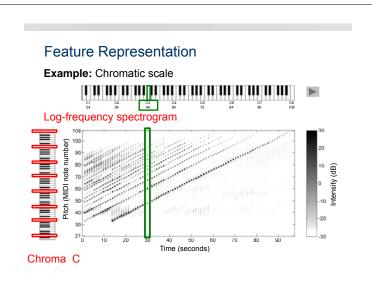


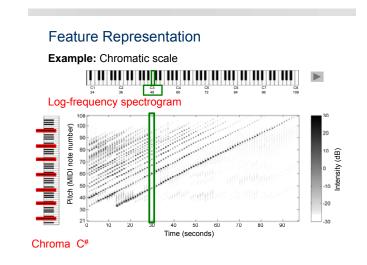


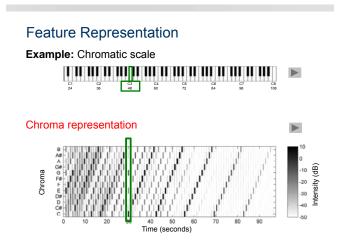


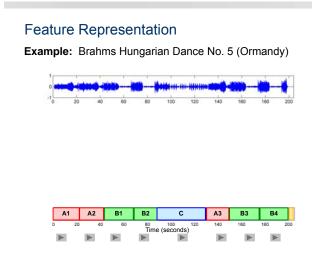


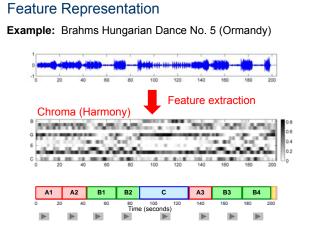


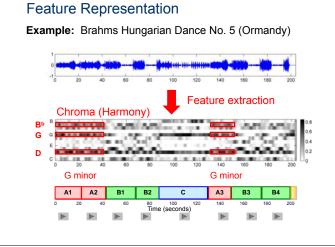






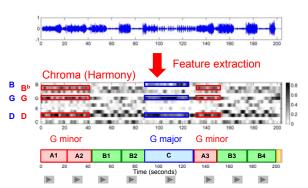






Feature Representation

Example: Brahms Hungarian Dance No. 5 (Ormandy)



Overview

- Introduction
- Feature Representations
- Self-Similarity Matrices
- Audio Thumbnailing
- Novelty-based Segmentation

Self-Similarity Matrix (SSM)

General idea: Compare each element of the feature sequence with each other element of the feature sequence based on a suitable similarity measure.

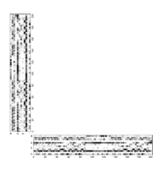
→ Quadratic self-similarity matrix

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

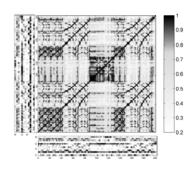
Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)



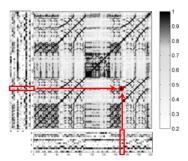
Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)



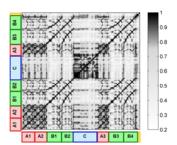
Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)



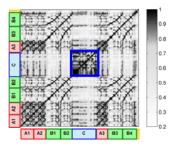
Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)



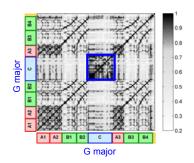
Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)



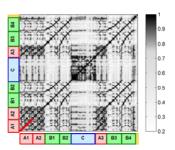
Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)



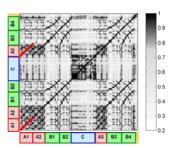
Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)



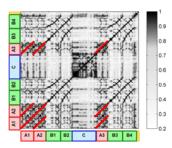
Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)



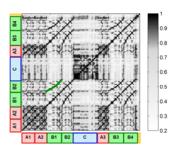
Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)



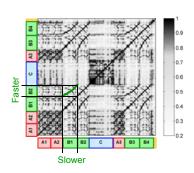
Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)



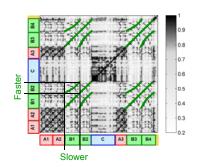
Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)



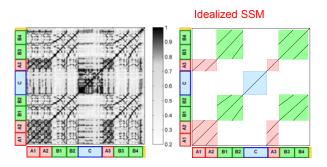
Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)



Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

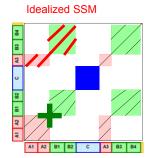


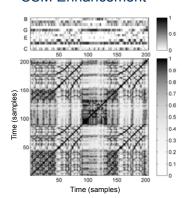
Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Blocks: Homogeneity **Paths:** Repetition

Corners: Novelty

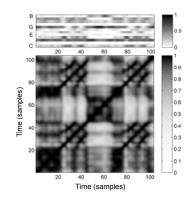




Block Enhancement

- Feature smoothing
- Coarsening

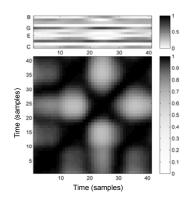
SSM Enhancement



Block Enhancement

- Feature smoothing
- Coarsening

SSM Enhancement



Block Enhancement

- Feature smoothing
- Coarsening

SSM Enhancement

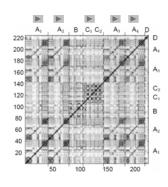
Challenge: Presence of musical variations

- Fragmented paths and gaps
- Paths of poor quality
- Regions of constant (low) cost
- Curved paths

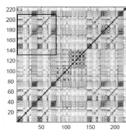
Idea: Enhancement of path structure

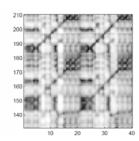
SSM Enhancement

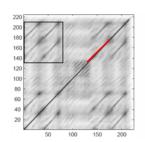
Shostakovich Waltz 2, Jazz Suite No. 2 (Chailly)

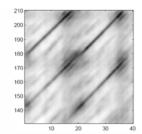


SSM Enhancement









Enhanced cost matrix C_L

Filtering along main diagonal

SSM Enhancement

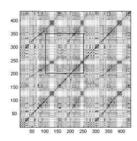
Idea: Usage of contextual information (Foote 1999)

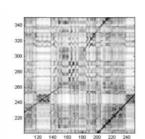
$$C_L(n,m) := \frac{1}{L} \sum_{\ell=0}^{L-1} c(v_{n+\ell}, v_{m+\ell})$$

- Comparison of entire sequences
- L = length of sequences
- $C_L = \text{enhanced cost matrix}$

→ smoothing effect

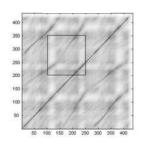
SSM Enhancement

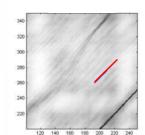




Cost matrix C

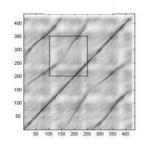
SSM Enhancement

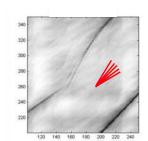




Cost matrix C_L with L=20Filtering along main diagonal

SSM Enhancement





Cost matrix $\,C_L^{\rm min}\,$ with $\,L=20$

Filtering along 8 different directions and minimizing

SSM Enhancement

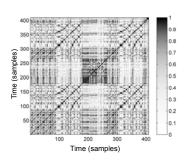
Idea: Smoothing along various directions and minimizing over all directions

$$C_L^{\min}(n,m) := \ \min_k C_L^{\mathrm{slope}_k}(n,m)$$

- $\begin{tabular}{ll} \circ & slope_k = kth direction of smoothing \\ \circ & $C_L^{slope_k} = $enhanced cost matrix w.r.t. & slope_k$ \\ \end{tabular}$
- Usage of eight slope values

→ tempo changes of -30 to +40 percent

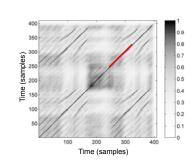
Path Enhancement



SSM Enhancement

Path Enhancement

Diagonal smoothing



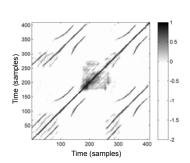
SSM Enhancement

Time (samples)

Path Enhancement

- Diagonal smoothing
- Multiple filtering

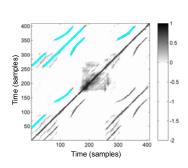
SSM Enhancement



Path Enhancement

- Diagonal smoothing
- Multiple filtering
 Thresholding (relative)
 Scaling & penalty

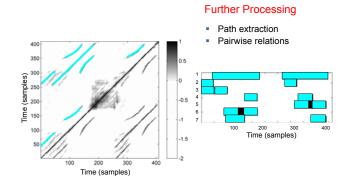
SSM Enhancement



Further Processing

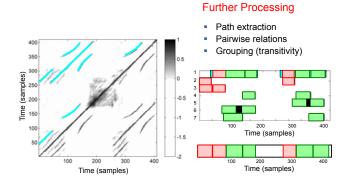
Path extraction

SSM Enhancement



Further Processing Path extraction Pairwise relations Grouping (transitivity) Time (samples)

SSM Enhancement



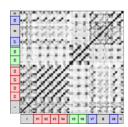
SSM Enhancement

Time (samples)

Example: Zager & Evans "In The Year 2525"

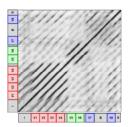
SSM Enhancement

Example: Zager & Evans "In The Year 2525"



SSM Enhancement

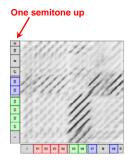
Example: Zager & Evans "In The Year 2525" Missing relations because of transposed sections



SSM Enhancement

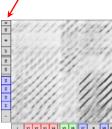
Example: Zager & Evans "In The Year 2525"

Idea: Cyclic shift of one of the chroma sequences



Example: Zager & Evans "In The Year 2525" Idea: Cyclic shift of one of the chroma sequences

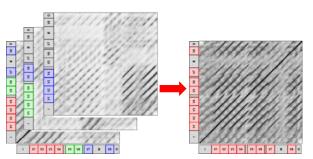
Two semitones up



SSM Enhancement

Example: Zager & Evans "In The Year 2525"

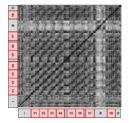
Idea: Overlay & Maximize - Transposition-invariant SSM



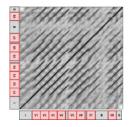
SSM Enhancement

Example: Zager & Evans "In The Year 2525" Note: Order of enhancement steps important!

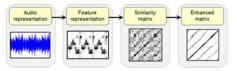
Maximization



Smoothing & Maximization



Similarity Matrix Toolbox



Meinard Müller, Nanzhu Jiang, Harald Grohganz SM Toolbox: MATLAB Implementations for Computing and **Enhancing Similarity Matrices**

http://www.audiolabs-erlangen.de/resources/MIR/SMtoolbox/

Overview

- Introduction
- Feature Representations
- Self-Similarity Matrices
- Audio Thumbnailing
- Novelty-based Segmentation

Thanks:

- Jiang, Grosche
- Peeters
- Cooper, Foote
- Goto
- Levy, Sandler
- Mauch Sapp

Audio Thumbnailing

General goal: Determine the most representative section ("Thumbnail") of a given music recording.

Example: Zager & Evans "In The Year 2525"

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Thumbnail is often assumed to be the most repetitive segment

Audio Thumbnailing

Two steps

Both steps are problematic!

- 1. Path extraction
- Paths of poor quality (fragmented, gaps)
- Block-like structures
- Curved paths
- 2. Grouping
- Noisy relations (missing, distorted, overlapping)
- Transitivity computation difficult

Main idea: Do both, path extraction and grouping, jointly

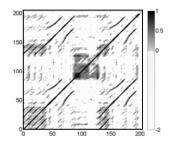
- One optimization scheme for both steps
- Stabilizing effect
- Efficient

Audio Thumbnailing

Main idea: Do both path extraction and grouping jointly

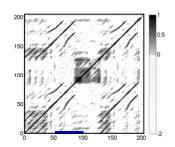
- For each audio segment we define a fitness value
- This fitness value expresses "how well" the segment explains the entire audio recording
- The segment with the highest fitness value is considered to be the thumbnail
- As main technical concept we introduce the notion of a path family

Fitness Measure



Enhanced SSM

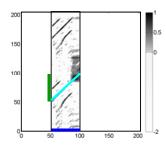
Fitness Measure



Path over segment

Consider a fixed segment

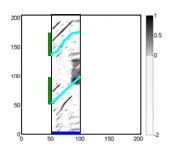
Fitness Measure



Path over segment

- Consider a fixed segment
- Path over segment
- Induced segment
- Score is high

Fitness Measure



Path over segment

- Consider a fixed segment
- Path over segment
- Induced segment
- Score is high
- A second path over segment
- Induced segment
- Score is not so high

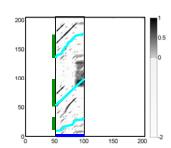
Fitness Measure



Path over segment

- Consider a fixed segment
- Path over segment
- Induced segment
- Score is high
- A second path over segment
- Induced segment
- Score is not so high
- A third path over segment
- Induced segment
- Score is very low

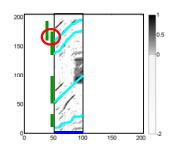
Fitness Measure



Path family

- Consider a fixed segment
- A path family over a segment is a family of paths such that the induced segments do not overlap.

Fitness Measure

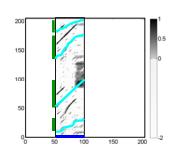


Path family

- Consider a fixed segment
- A path family over a segment is a family of paths such that the induced segments do not overlap.

This is not a path family!

Fitness Measure

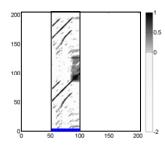


Path family

- Consider a fixed segment
- A path family over a segment is a family of paths such that the induced segments do not overlap.

This is a path family! (Even though not a good one)

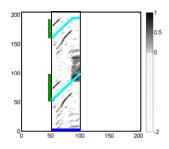
Fitness Measure



Optimal path family

Consider a fixed segment

Fitness Measure



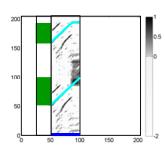
Optimal path family

- Consider a fixed segment
- Consider over the segment the optimal path family, i.e., the path family having maximal overall score.
- Call this value:

Score(segment)

Note: This optimal path family can be computed using dynamic programming.

Fitness Measure



Optimal path family

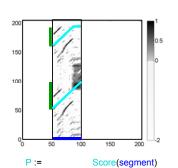
- Consider a fixed segment
- Consider over the segment the optimal path family, i.e., the path family having maximal overall score.
- Call this value:

Score(segment)

- Furthermore consider the amount covered by the induced segments.
- Call this value:

Coverage(segment)

Fitness Measure

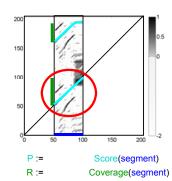


Coverage(segment)

Fitness

Consider a fixed segment

Fitness Measure



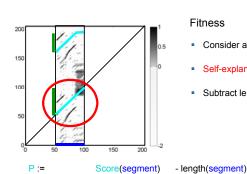
Fitness

- Consider a fixed segment
- Self-explanation are trivial!

Fitness Measure

R :=

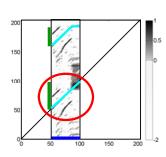
R :=



Fitness

- Consider a fixed segment
- Self-explanation are trivial!
- Subtract length of segment

Fitness Measure

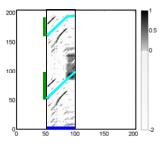


Fitness

- Consider a fixed segment
- Self-explanation are trivial!
- Subtract length of segment
- Normalization

$$\begin{array}{ll} \textbf{P} := \text{Normalize}(\ \text{Score}(\text{segment}) \ \ - \ \text{length}(\text{segment}) \) & \in [0,1] \\ \textbf{R} := \text{Normalize}(\text{Coverage}(\text{segment}) \ \ - \ \text{length}(\text{segment}) \) & \in [0,1] \end{array}$$

Fitness Measure



Fitness

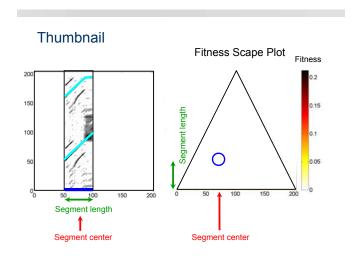
Consider a fixed segment

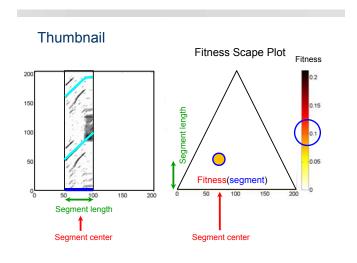
Fitness(segment) $F := 2 \cdot P \cdot R / (P + R)$

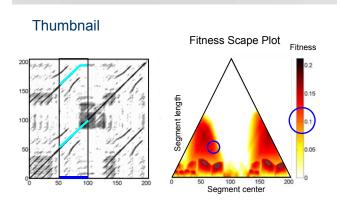
 \in [0,1] P := Normalize(Score(segment) - length(segment))

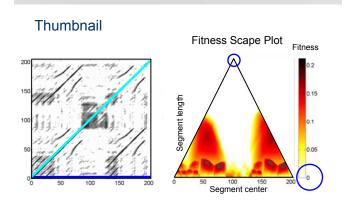
Coverage(segment) - length(segment)

R := Normalize(Coverage(segment) - length(segment)) \in [0,1]

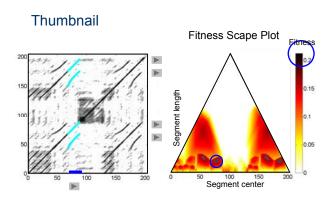




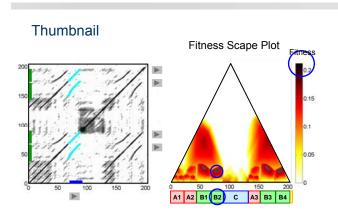




Note: Self-explanations are ignored \rightarrow fitness is zero

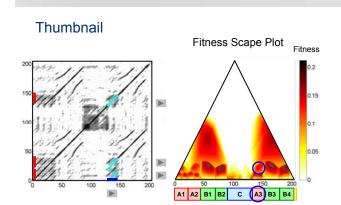


Thumbnail := segment having the highest fitness

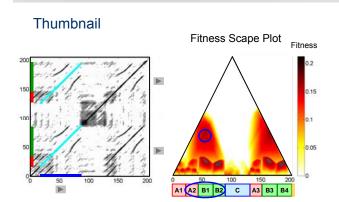


Example: Brahms Hungarian Dance No. 5 (Ormandy)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

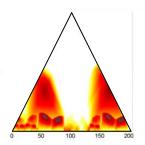


Example: Brahms Hungarian Dance No. 5 (Ormandy)



Example: Brahms Hungarian Dance No. 5 (Ormandy)

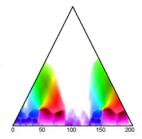
Scape Plot



Example: Brahms Hungarian Dance No. 5 (Ormandy)

Scape Plot

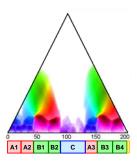
Coloring according to clustering result (grouping)



Example: Brahms Hungarian Dance No. 5 (Ormandy)

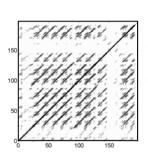
Scape Plot

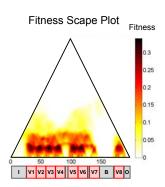
Coloring according to clustering result (grouping)



Example: Brahms Hungarian Dance No. 5 (Ormandy)

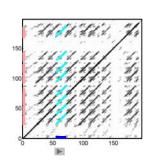
Thumbnail

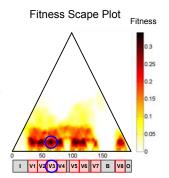




Example: Zager & Evans "In The Year 2525"

Thumbnail





Example: Zager & Evans "In The Year 2525"

Overview

- Introduction
- Feature Representations
- Self-Similarity Matrices
- Audio Thumbnailing
- Novelty-based Segmentation

Thanks:

- Foote
- Serra, Grosche, Arcos
- Goto
- Tzanetakis, Cook

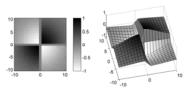
Novelty-based Segmentation

General goals:

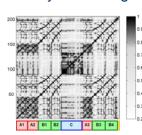
- Find instances where musical changes occur.
- Find transition between subsequent musical parts.

Idea (Foote):

Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.



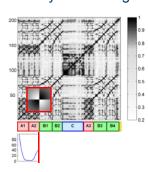
Novelty-based Segmentation



Idea (Foote):

Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.

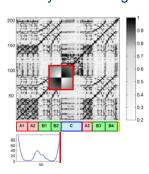
Novelty-based Segmentation



Idea (Foote):

Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.

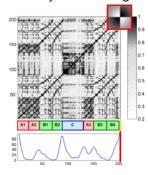
Novelty-based Segmentation



Idea (Foote):

Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.

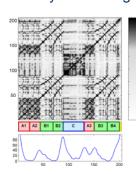
Novelty-based Segmentation



Idea (Foote):

Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.

Novelty-based Segmentation

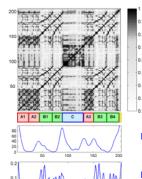


Idea (Foote):

Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.

Novelty function using

Novelty-based Segmentation



Idea (Foote):

Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.

Novelty function using

Novelty function using

Novelty-based Segmentation

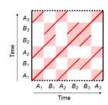
Idea:

Find instances where structural changes occur.

 Combine global and local aspects within a unifying framework

Structure features

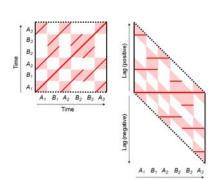
Novelty-based Segmentation



Structure features

Enhanced SSM

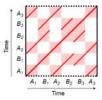
Novelty-based Segmentation

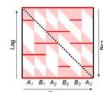


Structure features

- Enhanced SSM
- Time-lag SSM

Novelty-based Segmentation

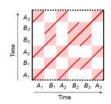


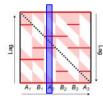


Structure features

- Enhanced SSM
- Time-lag SSM Cyclic time-lag SSM

Novelty-based Segmentation



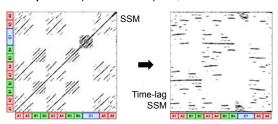


Structure features

- Enhanced SSM
- Time-lag SSM
- Cyclic time-lag SSM
- Columns as features

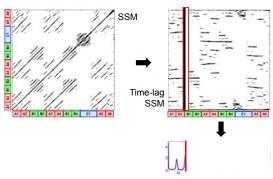
Novelty-based Segmentation

Example: Chopin Mazurka Op. 24, No. 1



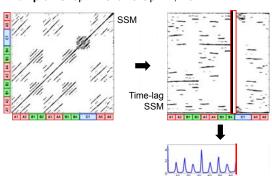
Novelty-based Segmentation

Example: Chopin Mazurka Op. 24, No. 1



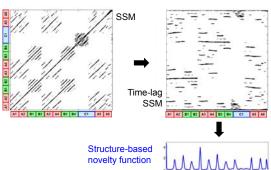
Novelty-based Segmentation

Example: Chopin Mazurka Op. 24, No. 1



Novelty-based Segmentation

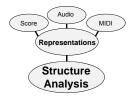
Example: Chopin Mazurka Op. 24, No. 1



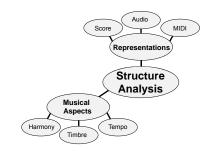
Conclusions

Structure Analysis

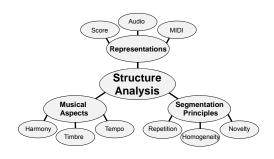
Conclusions

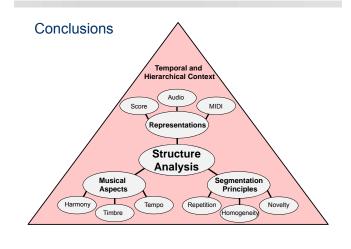


Conclusions



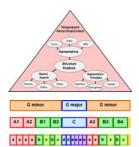
Conclusions





Conclusions

- Combined Approaches
- Hierarchical Approaches
- Evaluation
- Explaining Structure



- MIREX
- SALAMI-Project
- Smith, Chew

References

- M. LEVY, M. SANDLER, AND M. A. CASEY, Extraction of high-level musical structure from audio data and its application to thumbnail generation, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Toulouse, France, 2006, pp. 13–16.
- pp. 10-10.

 L ULKASHEVICH, Towards quantitative measures of evaluating song segmentation, in Proceedings of the International Conference on Music Information Retrieval (ISMIR), Philadelphia, USA, 2008, pp. 375-380.
- Philadelpnia, USA, 2006, pp. 379–360.

 M. MÜLLER AND M. CLAUSEN, Transposition-invariant self-similarity matrices, in Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR), Vienna, Austria,
- ZUUY, pp. 47–50.
 M. MÜLLER, AND N. JIANG, A scape plot representation for visualizing repetitive structures of music recordings, in Proceedings of the 13th International Conference on Music Information Retrieval (ISMIR), Porto, Portugal, 2012, pp. 97–102.
 M. MÜLLER, N. JIANG, AND H. GROHGANZ, SM Toolbox: MATLAB implementations for computing and enhancing similiarty matrices, in Proceedings of the 53rd AES Conference on Semantic Audio, London, GB, 2014.
- Semantic Audio, London, GB, 2014.

 M. MÜLLER, N. JIANG, AND P. GROSCHE, A robust fitness measure for capturing repetitions in music recordings with applications to audio thumbnailing, IEEE Transactions on Audio, Speech & Language Processing, 21 (2013), pp. 531–543.
- M. MÜLLER AND F. KURTH, Enhancing similarity matrices for music audio analysis, in Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toulouse, France, 2006, pp. 437–440.
- M. MÜLLER AND F. KURTH, Towards structural analysis of audio recordings in the presence of musical variations, EURASIP Journal on Advances in Signal Processing, 2007 (2007).

References

- M. SUNKEL, S. JANSEN, M. WAND, E. EISEMANN, H.-P. SEIDEL, Learning Line Features in 3D Geometry, in Computer Graphics Forum (Proc. Eurographics), 2011.

 D. TURNBULL, G. LANCKRIET, E. PAMPALK, AND M. GOTO, A supervised approach for detecting boundaries in music using difference features and boosting, in Proceedings of the International Conference on Music Information Retrieval (ISMIR), Vienna, Austria, 2007, pp. 51–54
- G. TZANETAKIS AND P. COOK, Multifeature audio segmentation for browsing and annotation, in Proceedings of the IEEEWorkshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Platz, NY, USA, 1999, pp. 103–106.

References

- W. CHAI AND B. VERCOE, Music thumbnailing via structural analysis, in Proceedings of the ACM International Conference on Multimedia, Berkeley, CA, USA, 2003, pp. 223–226.
- ACM international conference on multimedia, Berkeley, CA, USA, 2003, pp. 223–226.

 M. COOPER AND J. FOOTE, Automatic music summarization via similarity analysis, in Proceedings of the International Conference on Music Information Retrieval (ISMIR), Paris, France, 2002, pp. 81–85.

 R. B. DANNENBERG AND M. GOTO, Music structure analysis from acoustic signals, in Handbook of Signal Processing in Acoustics, D. Havelock, S.
 J. FOOTE, Visualizing music and audio using self-similarity, in Proceedings of the ACM International Conference on Multimedia, Orlando, FL, USA, 1999, pp. 77–80.

- J. FOOTE, Automatic audio segmentation using a measure of audio novelty, in Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), New York, NY, USA, 2000, pp. 452–455.
- pp. 452–455.

 M. GOTO, A chorus section detection method for musical audio signals and its application to a music listening station, IEEE Transactions on Audio, Speech and Language Processing, 14 (2006), pp. 1783–1794.

 H. GROHGANZ, M. CLAUSEN, N. JIANG, AND M. MÜLLER, Converting path structures into block structures using eigenvalue decompositions of self-similarity matrices, in Proceedings of the 14th International Conference on Music Information Retrieval (ISMIR), Curitiba, Brazil, 2013, pp. 209–214.

 K. JENSEN, Multiple scale music segmentation using rhythm, timbre, and harmony, EURASIP Journal on Advances in Signal Processing, 2007 (2007).

 F. KAISER AND T. SIKORA, Music structure discovery in popular music using non-negative matrix factorization, in Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Utrecht, The Netherlands, 2010, pp. 429–434.

References

- J. PAUL US AND A. P. KLAPURI, Music structure analysis using a probabilistic fitness measure and a greedy search algorithm, IEEE Transactions on Audio, Speech, and Language Processing, 17 (2009), pp. 1159–1170.

 J. PAUL US, M. MÜLLER, AND A. P. KLAPURI, Audio-based music structure analysis, in Proceedings of the 11th International Conference on Music Information Retrieval (ISMIR), Utrecht, The Netherlands, 2010, pp. 625–636.

 P.EETERS, Deriving musical structure from signal analysis for music audio summary generation: "sequence" and "state" approach, in Computer Music Modeling and Retrieval, vol. 2771 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2004, pp. 143–166.

 G. P.EETERS, Sequence representation of music structure using higher-order similarity matrix and maximum-likelihood approach, in Proceedings of the International Conference on Music Information Retrieval (ISMIR), Vienna, Austria, 2007, pp. 35–40.

 C. RHODES AND M. A. CASEY, Algorithms for determining and labelling approximate hierarchical self-similarity, in Proceedings of the International Conference on Music Information Retrieval (ISMIR), Vienna, Austria, 2007, pp. 1–146.

 J. SERRÂ, M. MÜLLER, P. GROSCHE, AND J. L. ARCOS, Unsupervised detection of music boundaries by time series structure features, in Proceedings of the AAI International Conference on Artificial Intelligence, Toronto, Ontario, Canada, 2012, pp. 1613–1619.

 J. B. L. SMITH, J. A. BURGOYNE, I. FullMAGA, D. D. ROURE, AND J. S. DOWNIE, Design and creation of a large-scale database of structural annotations, in Proceedings of the International Conference on Music Information Retrieval (ISMIR), Mami, F. L. USA, 2011, pp. 555–560.
- J. B. L. SMITH AND E. CHEW, Using quadratic programming to estimate feature relevance in structural analyses of music, in Proceedings of the ACM International Conference on Multimedia, 2013, pp. 113–122.